2017高考数学一轮复习第十四章推理与证明14.2直接证明与间接证明课件理
高考数学一轮复习 132直接证明与间接证明课件 理

规范解答 24——怎样用反证法证明问题 【问题研究】 反证法是主要的间接证明方法,其基本特点是反 设结论,导出矛盾,当问题从正面证明无法入手时,就可以考 虑使用反证法进行证明.在高考中,对反证法的考查往往是在试 题中某个重要的步骤进行. 【解决方案】 首先反设,且反设必须恰当,然后再推理得出矛 盾,最后肯定原结论.
单击此处进入 活页限时训练
ห้องสมุดไป่ตู้
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/182022/1/18January 18, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/182022/1/182022/1/181/18/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/182022/1/18
•
一个关系 综合法与分析法的关系 分析法与综合法相辅相成,对较复杂的问题,常常先从结论进 行分析,寻求结论与条件、基础知识之间的关系,找到解决问 题的思路,再运用综合法证明,或者在证明时将两种方法交叉 使用.
考向一 综合法的应用 【例 1】►设 a,b,c>0,证明:ab2+bc2+ca2≥a+b+c. [审题视点] 用综合法证明,可考虑不等式左边两两结合. 证明 ∵a,b,c>0,根据均值不等式, 有ab2+b≥2a,bc2+c≥2b,ca2+a≥2c. 三式相加:ab2+bc2+ca2+a+b+c≥2(a+b+c).a=b=c 时取等 号. 即ab2+bc2+ca2≥a+b+c.
高三数学(文)一轮复习课件6-6 直接证明与间接证明ppt版本

A2=π2-A1, 得B2=π2-B1,
C2=π2-C1,
那么,A2+B2+C2=π2, 这与三角形内角和为 180°相矛盾。 所以假设不成立,又显然△A2B2C2 不是直角三角形,所以△A2B2C2 是钝角 三角形。
答案:钝角
3.(2016·洛阳模拟)数列{an},{bn}的每一项都是正数,a1=8,b1=16,且 an,bn,an+1 成等差数列,bn,an+1,bn+1 成等比数列,n=1,2,3,…。
(1)求 a2,b2 的值;
解析:(1)由 2b1=a1+a2,可得 a2=2b1-a1=24。 由 a22=b1b2,可得 b2=ab221=36。
(2)求数列{an},{bn}的通项公式;
解析:(2)∵an,bn,an+1 成等差数列, ∴2bn=an+an+1。① ∵bn,an+1,bn+1 成等比数列, ∴an2+1=bnbn+1。 ∵数列{an},{bn}的每一项都是正数, ∴an+1= bnbn+1。② 于是当 n≥2 时,an= bn-1bn。③ 将②③代入①式,可得 2 bn= bn-1+ bn+1。 又 b1=16,b2=36, ∴数列{ bn}是首项为 4,公差为 2 的等差数列, ∴ bn= b1+(n-1)d=2n+2,
C.a+2 b2-1-a2b2≤0
D.(a2-1)(b2-1)≥0
解析:∵a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0,故选 D。 答案:D
2.(2016·德州模拟)如果△A1B1C1 的三个内角的余弦值分别等于△A2B2C2 的 三个内角的正弦值,则△A2B2C2 是____是“都大于 60°”。 答案:B
4.设 a,b,c 都是正数,则 a+1b,b+1c,c+1a三个数( ) A.都大于 2 B.都小于 2 C.至少有一个不大于 2 D.至少有一个不小于 2
直接证明与间接证明

用框图表示分析法
得到一个明显
Q P1
P1 P2
P2 P3
…
成立的结论
特点:执果索因.
文字语言: 要证…,只需证…,即证…
整理课件
3
【分析法格式】
要证: 只要证: 只需证: 显然成立 上述各步均可逆 所以 结论成立
要证:
所以 结论成立
整理课件
4
思想方法·感悟提高
1.分析法的特点:从未知看需知,逐步靠拢已知.
(2)假设命题结论不成立,即假设结论的反面成立; (3)由假设出发进行正确的推理,直到推出矛盾为止; (4)由矛盾判定假设不正确,从而肯定命题的结论正确
归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
整理课件
8
常见否定用语
是---不是
有---没有
等---不等
成立--不成立
整理课件
10
整理课件
11
整理课件
12
【分析法格式】
整理课件
13
【综合法格式】
整理课件
14
整理课件
15
整理课件
6
反证法:
要证明某一结论Q是正确的,但不直接证 明,而是先去假设Q不成立(即Q的反面非 Q是正确的),经过正确的推理,最后得 出矛盾,因此说明假设非Q是错误的,从 而断定结论Q是正确的,这种方法叫做反 证法。
反证法的思维方法:
正难则反
整理课件
7
反证法的基本步骤: (1)分清命题的条件和结论
综合法用框图表示为:
P Q1
Q1 Q2
Q2 Q3
… Qn Q
特点:“由因导果”
直接证明与间接证明 高考大一轮复习ppt课件 人教版

基础诊断
考点突破
课堂总结
【训练3】 已知a≠0,证明关于x的方程ax=b有且只有一个根.
b 证明 由于 a≠0,因此方程至少有一个根 x=a. 假设x1,x2是它的两个不同的根,即ax1=b,
①
ax2=b,
由①-②得a(x1-x2)=0, 因为x1≠x2,所以x1-x2≠0, 所以a=0,这与已知矛盾,故假设错误. 所以当a≠0时,方程ax=b有且只有一个根.
基础诊断
考点突破
课堂总结
b 2 1 2 2 a· = |a| |b| 1-|a||b| 4 1 2 2 = [|a| |b| -(a· b)2] 4 1 ∴S△ABC= |a|2|b|2-(a· b)2. 2
基础诊断
考点突破
课堂总结
考点二 证明
分析法的应用 要证明2a3-b3≥2ab2-a2b成立,
叙述较繁;综合法从条件推出结论,较简捷地解决问 题,但不便于思考.实际证题时常常两法兼用,先用分 析法探索证明途径,然后再用综合法叙述出来.
基础诊断 考点突破 课堂总结
3.利用反证法证明数学问题时,要假设结论不成立,并用 假设的命题进行推理,不用假设命题推理而推出矛盾结 果,其推理过程是错误的. [易错防范] 注意推理的严谨性,在证明过程中每一步推理都要有充 分的依据,这些依据就是命题的已知条件和已经掌握了 的数学结论,不可盲目使用正确性未知的自造结论.在
基础诊断
考点突破
课堂总结
2. 间接证明
间接证明是不同于直接证明的又一类证明方法,反证法是
一种常用的间接证明方法. 不成立 即在原命题的条件 (1)反证法的定义:假设原命题_______( 下,结论不成立),经过正确的推理,最后得出矛盾,因此
直接证明与间接证明_知识讲解

直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
数学推理与证明

bm+n=
.
思路分析 分析等差数列、等比数列的区别→分析原命题特征→得到新命题
继续学习
数学
题型全突破 8
第十四章 推理与证明
解析 等差数列中的bn和am可以类比等比数列中的bn和am,等差数列中的bn-am可以类比
等比数列中的 bn am
,等差数列中的 bn-am 可以类比等比数列中的 n-m bn
第十四章 推理与证明
点评 利用综合法证明不等式是不等式证明的常用方法之一,即充分利用已知条 件经过推理论证推导出正确结论,是顺推法和由因导果法.其逻辑依据是三段论式 的演绎推理方法,这就需保证前提正确,推理合乎规律,这样才能保证结论的正确.
数学
知识全通关 5
第十四章 推理与证明
【辨析比较】
综合法与分析法各有优缺点,分析法思考起来比较简单,易找到解题的 思路和方法,缺点是叙述烦琐;综合法从条件推结论,步骤简单,但不便 于思考.实际应用中,通常将它们结合起来使用,先用分析法探索证明 途径,再用综合法叙述出来.
继续学习
数学
知识全通关 6
第十四章 推理与证明
继续学习
数学
题型全突破 3
解析 观察所给等式的左右可以归纳出
.
1- 1 + 1 - 1 +...+ 1 - 1 = 1 + 1 +... 1
2 34
2n 1 2n n 1 n 2 2n
第十四章 推理与证明
继续学习
数学
题型全突破 4
第十四章 推理与证明
考法示例2 某种平面分形图如图15-1所示,一级分形图是由一点出发的三条线段,长度均为 1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为 原来的的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.
推理与证明演绎推理
推理与证明演绎推理ppt xx年xx月xx日CATALOGUE目录•推理与证明概述•推理的类型•证明的方法•演绎推理•推理与证明的应用•推理与证明的挑战与未来发展01推理与证明概述推理是指从已知的事实或前提中推导出结论的过程。
在逻辑学中,推理通常指形式逻辑或数理逻辑,它们是研究推理的有效性和正确性的学科。
推理的定义推理在我们的日常生活中无处不在,它帮助我们理解事物、解决问题、作出决策。
在科学、数学、法律等领域中,推理也扮演着至关重要的角色。
通过推理,我们可以探索未知、发现新知、验证假设。
推理的重要性推理的定义与重要性证明的定义证明是指通过一系列合乎逻辑的步骤,从已知的事实或前提中推导出结论的过程。
在数学和形式逻辑中,证明通常指的是一种结构化的过程,其中每个步骤都有明确的依据和逻辑关系。
证明的意义证明可以帮助我们确认某个结论是正确的或错误的。
通过证明,我们可以建立对某个结论的信任和信心。
此外,证明还可以帮助我们深化对某个领域的知识和理解,因为它要求我们对概念和原理有深入的理解和掌握。
证明的概念及意义推理和证明都是思维过程,它们都涉及到从已知的事实或前提中推导出结论。
在证明中,我们通常使用演绎推理来推导结论。
演绎推理是一种形式化的推理方法,它要求前提必须是确定无疑的,并且推导出的结论必须符合前提的逻辑关系。
推理与证明的区别虽然推理和证明都是从已知推导出未知的过程,但它们的目的和方法有所不同。
推理更注重思维过程和创造性思考,而证明更注重结构的严谨性和逻辑的正确性。
此外,推理往往涉及更多的事实和信息,而证明通常涉及更少的假设和更多的推导步骤。
推理与证明的联系推理与证明的关系VS02推理的类型定义直接推理是从一个或多个前提中直接得出结论的推理方法。
例子例如,如果所有的猫都是哺乳动物,并且小猫是猫,那么可以推断出小猫是哺乳动物。
直接推理定义间接推理是通过排除其他可能性来得出结论的推理方法。
例子例如,如果所有的狗都不会飞,而小狗会飞,那么可以推断出小狗不是狗。
高考数学一轮复习考点知识专题讲解49---推理与证明
高考数学一轮复习考点知识专题讲解推理与证明考点要求1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单的演绎推理.3.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.4.了解反证法的思考过程和特点.知识梳理1.合情推理类型定义特点归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.4.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(4)用反证法证明结论“a>b”时,应假设“a<b”.(×)教材改编题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1B.a n=4n-3C.a n=n2D.a n=3n-1答案C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a=n2.n2.给出下列命题:“①正方形的对角线相等;②矩形的对角线相等,③正方形是矩形”,按照三段论证明,正确的是()A.①②⇒③B.①③⇒②C.②③⇒①D.以上都不对答案C解析“矩形的对角线相等”是大前提,“正方形是矩形”是小前提,“正方形的对角线相等”是结论.所以②③⇒①.3.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案A解析方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根.题型一合情推理与演绎推理命题点1归纳推理例1如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案D解析由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断,第n个图形的顶点个数为(n+2)(n+3).命题点2类比推理例2(2022·铜仁质检)在△ABC中,BC⊥AC,AC=a,BC=b,则△ABC的外接圆的半径r=a2+b22,将此结论类比推广到空间中可得:在四面体P-ABC中,PA,PB,PC两两垂直,PA=a,PB=b,PC=c,则四面体P-ABC的外接球的半径R=________.答案a2+b2+c22解析可以类比得到:在四面体P-ABC中,PA,PB,PC两两垂直,PA=a,PB=b,PC=c,四面体P-ABC的外接球的半径R=a2+b2+c22.下面进行证明:可将图形补成以PA,PB,PC为邻边的长方体,则四面体P-ABC的外接球即为长方体的外接球,所以半径R=a2+b2+c22.命题点3演绎推理例3下面是小明同学利用三段论模式给出的一个推理过程:①若{a n}是等比数列,则{a n +a n+1}是等比数列(大前提),②若b n=(-1)n,则数列{b n}是等比数列(小前提),③所以数列{b n+b n+1}是等比数列(结论),以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案B解析大前提错误:当a n=(-1)n时,an+a n+1=0,此时{a n+a n+1}不是等比数列;小前提正确:∵b n=(-1)n,∴bnbn-1=(-1)n(-1)n-1=-1(n≥2,n∈N*)为常数,∴数列{b n}是首项为-1,公比为-1的等比数列;结论错误:b n+b n+1=(-1)n+(-1)n+1=0,故数列{b n+b n+1}不是等比数列.教师备选1.观察下列各式:72=49,73=343,74=2401,…,则72023的末两位数字为() A.01 B.43 C.07 D.49答案B解析∵72=49,73=343,74=2401,75=16807,76=117649,78=823543,…,∴7n(n≥2,n∈N*)的末两位数字具备周期性,且周期为4,∵2023=4×505+3,∴72023和73的末两位数字相同,故72023的末两位数字为43.2.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有()A.b1·b2·…·b n=b1·b2·…·b19-n(n<19且n∈N*)B.b1·b2·…·b n=b1·b2·…·b21-n(n<21且n∈N*)C.b1+b2+…+b n=b1+b2+…+b19-n(n<19且n∈N*)D.b1+b2+…+b n=b1+b2+…+b21-n(n<21且n∈N*)答案B解析在等差数列{a n}中,若s+t=p+q(s,t,p,q∈N*),则a s+a t=a p+a q,若a m=0,则a n+1+a n+2+…+a2m-2-n+a2m-1-n=0,所以a1+a2+…+a n=a1+a2+…+a2m-1-n成立,当m=10时,a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,在等比数列{b n}中,若s+t=p+q(s,t,p,q∈N*),则b s b t=b p b q,若b m=1,则b n+1b n+2·…·b2m-2-n b2m-1-n=1,所以b1b2·…·b n=b1b2·…·b2m-1-n成立,当m=11时,b1b2·…·b n=b1b2·…·b21-n(n<21且n∈N*)成立.3.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C.思维升华(1)归纳推理问题的常见类型及解题策略①与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号.②与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律.③与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验法验证其真伪性.(2)类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比;数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练1(1)(2022·南昌模拟)已知x>0,不等式x+1x≥2,x+4x2≥3,x+27x3≥4,…,可推广为x+ax n≥n+1,则a的值为()A.n2 B.n n C.2n D.22n-2答案B解析由题意,当分母的指数为1时,分子为11=1;当分母的指数为2时,分子为22=4;当分母的指数为3时,分子为33=27;据此归纳可得x+ax n≥n+1中,a的值为n n.(2)类比是学习探索中一种常用的思想方法,在等差数列与等比数列的学习中我们发现:只要将等差数列的一个关系式中的运算“+”改为“×”,“-”改为“÷”,正整数改为正整数指数幂,相应地就可以得到与等比数列的一个形式相同的关系式,反之也成立.在等差数列{a n}中有a n-k+a n+k=2a n(n>k),借助类比,在等比数列{b n}中有________.答案b n-k b n+k=b2n(n>k)解析由题设描述,将左式加改乘,则相当于a n-k+a n+k改写为b n-k b n+k;将右式正整数2改为指数,则相当于2a n改写为b2n,∴等比数列{b n}中有b n-k b n+k=b2n(n>k).(3)(2022·银川模拟)一道四个选项的选择题,赵、钱、孙、李各选了一个选项,且选的恰好各不相同.赵说:“我选的是A.”钱说:“我选的是B,C,D之一.”孙说:“我选的是C.”李说:“我选的是D.”已知四人中只有一人说了假话,则说假话的人可能是________.答案孙、李解析赵不可能说谎,否则由于钱不选A,则孙和李之一选A,出现两人说谎.钱不可能说谎,否则与赵同时说谎;所以可能的情况是赵、钱、孙、李选择的分别为(A,C,B,D)或(A,D,C,B),所以说假话的人可能是孙、李.题型二 直接证明与间接证明 命题点1综合法例4设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1.证明(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13,当且仅当“a =b =c ”时等号成立.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,当且仅当“a 2=b 2=c 2”时等号成立,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.命题点2分析法例5用分析法证明:当x ≥0,y ≥0时,2y ≥x +2y -x . 证明要证不等式成立,只需证x +2y ≥x +2y 成立, 即证(x +2y )2≥(x +2y )2成立, 即证x +2y +22xy ≥x +2y 成立, 即证2xy ≥0成立,因为x ≥0,y ≥0,所以2xy ≥0, 所以原不等式成立. 命题点3反证法例6已知非零实数a ,b ,c 两两不相等.证明:三个一元二次方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0不可能都只有一个实根. 证明假设三个方程都只有一个实根,则⎩⎨⎧b 2-ac =0,①c 2-ab =0,②a 2-bc =0.③①+②+③,得a 2+b 2+c 2-ab -bc -ca =0, ④ ④化为(a -b )2+(b -c )2+(c -a )2=0. ⑤ 于是a =b =c ,这与已知条件相矛盾. 因此,所给三个方程不可能都只有一个实根. 教师备选(2022·贵州质检)请在综合法、分析法、反证法中选择两种不同的方法证明: (1)如果a >0,b >0,则lg a +b 2≥lg a +lg b 2;(2)22-7>10-3.解(1)方法一(综合法)因为a >0,b >0,所以a+b2≥ab,所以lg a+b2≥lg ab.因为lg ab=12lg(ab)=12(lg a+lg b),所以lg a+b2≥lg a+lg b2.方法二(分析法)要证lg a+b2≥lg a+lg b2,即证lg a+b2≥12lg(ab)=lg ab,即证a+b2≥ab,由a>0,b>0,上式显然成立,则原不等式成立.(2)方法一(分析法)要证22-7>10-3,即证22+3>10+7,即证(22+3)2>(10+7)2.即证17+122>17+270,即证122>270,即证62>70.因为(62)2=72>(70)2=70,所以62>70成立.由上述分析可知22-7>10-3成立.方法二(综合法)由22-7=122+7,且10-3=110+3,由22<10,7<3,可得22+7<10+3,可得122+7>110+3,即22-7>10-3成立.思维升华(1)综合法证题从已知条件出发,分析法从要证结论入手,证明一些复杂问题,可采用两头凑的方法.(2)反证法适用于不好直接证明的问题,应用反证法证明时必须先否定结论.跟踪训练2(1)已知a>0,b>0,求证:a+b2≥2aba+b;(2)已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a>0,b>0,c>0.证明(1)∵a>0,b>0,要证a+b2≥2aba+b,只要证(a+b)2≥4ab,只要证(a+b)2-4ab≥0,即证a2-2ab+b2≥0,而a2-2ab+b2=(a-b)2≥0恒成立,故a+b2≥2aba+b成立.(2)假设a,b,c不全是正数,即至少有一个不是正数,不妨先设a≤0,下面分a=0和a<0两种情况讨论,如果a=0,则abc=0与abc>0矛盾,所以a=0不可能,如果a<0,那么由abc>0可得,bc<0,又因为a+b+c>0,所以b+c>-a>0,于是ab+bc+ca=a(b+c )+bc <0,这和已知ab +bc +ca >0相矛盾,因此,a <0也不可能,综上所述,a >0,同理可证b >0,c >0,所以原命题成立.课时精练1.指数函数都是增函数(大前提),函数y =⎝ ⎛⎭⎪⎫1e x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫1e x是增函数(结论).上述推理错误的原因是() A .小前提不正确B .大前提不正确 C .推理形式不正确D .大、小前提都不正确 答案B解析大前提错误.因为指数函数y =a x (a >0,且a ≠1)在a >1时是增函数,而在0<a <1时为减函数.2.(2022·大庆联考)用反证法证明命题:“若a 2+b 2+c 2+d 2=0,则a ,b ,c ,d 都为0”.下列假设中正确的是() A .假设a ,b ,c ,d 都不为0 B .假设a ,b ,c ,d 至多有一个为0 C .假设a ,b ,c ,d 不都为0 D .假设a ,b ,c ,d 至少有两个为0 答案C解析需假设a ,b ,c ,d 不都为0.3.若一个带分数的算术平方根等于带分数的整数部分乘以分数部分的算术平方根,则称该带分数为“穿墙数”,例如223=223.若一个“穿墙数”的整数部分等于log 28,则分数部分等于()A.37B.49C.38D.716 答案C解析因为log 28=3,所以可设这个“穿墙数”为3+nm,则3+n m =3n m, 等式两边平方得3+n m =9nm, 即n m =38. 4.下面几种推理是合情推理的是() ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -2)·180°. A .①② B .①③④ C .①②④ D .②④ 答案C解析①为类比推理,从特殊到特殊,正确;②④为归纳推理,从特殊到一般,正确;③不符合类比推理和归纳推理的定义,错误.5.(2022·普宁模拟)有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么丁拿到卡片上的数字为() A.1B.2C.3D.4答案C解析乙、丙、丁所说为假⇒甲拿4,甲、乙所说为假⇒丙拿1,甲所说为假⇒乙拿2,故甲、乙、丙、丁4个人拿到的卡片上的数字依次为4,2,1,3.6.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,则第2023项是()A.61B.62C.63D.64答案D解析由规律可得,数字相同的数的个数依次为1,2,3,4,…,n.由n(n+1)2≤2023,得n≤63,且n∈N*,当n=63时,共有63×642=2016项,则第2017项至第2080项均为64,即第2023项是64.7.观察下列各式:已知a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则归纳猜测a7+b7=________.答案29解析观察发现,1+3=4,3+4=7,4+7=11,又7+11=18,11+18=29,∴a7+b7=29.8.若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积S=12(a+b+c)r,利用类比思想:若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积V=________.答案13R(S1+S2+S3+S4)解析设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.9.选用恰当的证明方法,证明下列不等式.(1)证明:6+7>22+5;(2)设a,b,c都是正数,求证:bca+acb+abc≥a+b+c.证明(1)要证6+7>22+5,只需证明(6+7)2>(22+5)2,即证明242>240,也就是证明42>40,式子显然成立,故原不等式成立.(2)2⎝ ⎛⎭⎪⎫bc a +ac b +ab c =⎝ ⎛⎭⎪⎫bc a +ac b +⎝ ⎛⎭⎪⎫bc a +ab c +⎝ ⎛⎭⎪⎫ac b +ab c≥2abc 2ab +2acb 2ac +2bca 2bc=2c +2b +2a , 所以bc a +ac b +abc≥a +b +c ,当且仅当a =b =c 时,等号成立. 10.若x ,y 都是正实数,且x +y >2,求证:1+xy <2与1+yx<2中至少有一个成立.解假设1+x y <2和1+y x<2都不成立,即1+x y ≥2和1+yx≥2同时成立.∵x >0且y >0, ∴1+x ≥2y,1+y ≥2x .两式相加得2+x +y ≥2x +2y ,即x +y ≤2. 此与已知条件x +y >2相矛盾, ∴1+x y <2和1+y x<2中至少有一个成立.11.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,类比上述解决方法,则正数1+11+11+…等于()A.1+32B.1+52C.-1+52D.-1+32答案B解析依题意1+1x=x,其中x为正数,即x2-x-1=0,解得x=1+52(负根舍去).12.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是() A.9 B.10 C.11 D.12答案B解析因为底数为2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,所以m3有m个奇数,则从底数是2到底数是m一共有2+3+4+…+m=(2+m)(m-1)2个奇数,又2n+1=103时,有n=51,则奇数103是从3开始的第52个奇数,因为(9+2)(9-1)2=44,(10+2)(10-1)2=54,所以第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.13.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19,…,则在这个子数列中第2022个数是()A.3976 B.3978 C.3980 D.3982答案C解析由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n次共取了1+2+3+…+n=n(n+1)2个数,且第n次取的最后一个数为n2,当n=63时,63×(63+1)2=2016,即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为632=3969,即第2016个数为3969,所以当n=64时,依次取3970,3972,3974,3976,3978,3980,…,所以第2022个数是3980.14.(2022·平顶山模拟)某市为了缓解交通压力,实行机动车限行政策,每辆机动车每周一到周五都要限行一天,周六和周日不限行.某公司有A,B,C,D,E五辆车,每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可推测出今天是星期________.答案四解析由题意,A,C只能在每周前三天限行,又昨天B限行,E车明天可以上路,因此今天不能是一周的前3天,因此今天是周四.这样周一、周二A,C限行,周三B限行,周四E限行,周五D限行.满足题意.15.已知a ,b ,c ∈R ,若b a ·c a >1且b a +c a≥-2,则下列结论成立的是()A .a ,b ,c 同号B .b ,c 同号,a 与它们异号C .a ,c 同号,b 与它们异号D .b ,c 同号,a 与b ,c 的符号关系不确定答案A 解析由b a ·c a >1知b a 与c a 同号,若b a >0且c a >0,不等式b a +c a ≥-2显然成立,若b a <0且c a<0,则-b a >0,-c a >0,⎝ ⎛⎭⎪⎫-b a +⎝ ⎛⎭⎪⎫-c a ≥2⎝ ⎛⎭⎪⎫-b a ·⎝ ⎛⎭⎪⎫-c a >2,即b a +c a <-2,这与b a +c a ≥-2矛盾,故b a >0且c a >0,即a ,b ,c 同号.16.已知α,β为锐角,求证:1cos 2α+1sin 2αsin 2βcos 2β≥9. 解要证1cos 2α+1sin 2αsin 2βcos 2β≥9, 只需证1cos 2α+4sin 2αsin 22β≥9,① 考虑到sin 22β≤1,可知4sin 2αsin 22β≥4sin 2α, 因而要证①应先证1cos 2α+4sin 2α≥9, 即证sin 2α+cos 2αcos 2α+4(sin 2α+cos 2α)sin 2α≥9,又sin2α+cos2αcos2α+4(sin2α+cos2α)sin2α=sin2αcos2α+4cos2αsin2α+5≥9,所以原不等式成立.。
数学:直接证法与间接证法-反证法
应用场景
存在性问题
当需要证明某事物存在时,反证法可以通过假设该事物不存在, 然后推导出矛盾,从而证明该事物的存在。
唯一性问题
当需要证明某事物是唯一的时,反证法可以通过假设存在多个该事 物,然后推导出矛盾,从而证明该事物的唯一性。
不等式问题
对于一些难以直接证明的不等式问题,反证法可以通过假设不等式 不成立,然后推导出矛盾,从而证明不等式的正确性。
特点
直接证法是一种直接的、逻辑严 密的证明方法,它通过直接的推 理过程,逐步推导出结论,不需 要引入其他假设或反证。
直接证法的应用
代数证明
在代数中,很多定理和性质都是 通过直接证法来证明的,例如整 数的四则运算法则、不等式的性
质等。
几何证明
在几何中,很多定理和性质也是通 过直接证法来证明的,例如勾股定 理、平行线的性质等。
数学证明的多样性与创新性
数学证明的方法多种多样,不仅限于直接证法和间接证法。随着数学理论的发展,新的证 明方法和技巧不断涌现。未来研究可以探索更多具有创新性的证明方法,以解决更多复杂 的数学问题。
对未来研究的展望
01 02
深入研究不同证明方法的内在联系
为了更好地理解和应用各种证明方法,未来的研究可以深入探讨它们之 间的内在联系和相互影响。这有助于发现新的证明技巧和方法,提高数 学证明的效率和准确性。
探索反证法的哲学基础
反证法作为一种重要的间接证明方法,其哲学基础值得深入探讨。研究 反证法的逻辑结构和适用范围,有助于更好地理解其应用范围和局限性。
03
促进数学与其他学科的交叉研究
数学证明的方法不仅限于数学领域,也可以应用于其他学科。未来的研
究可以促进数学与其他学科的交叉研究,探索ห้องสมุดไป่ตู้明方法在不同领域的应
高三数学一轮复习精品课件2:直接证明与间接证明
A.1a<1b
B.a+1b>b+1a
C.b+1a>a+1b
D.ba<ba+ +11
【解析】 ∵a<b<0,∴1a>1b, 又 b>a,∴b+1a>a+1b.
【答案】 D
4.(2013·青岛模拟)已知函数f(x)=lg b,则f(-a)=________(用b表示).
1-x 1+x
,若f(a)=
【解析】 ∵f(-x)=lg11+ -xx=-lg 11- +xx=-f(x),
∴f(x)为奇函数, ∴f(-a)=-f(a)=-b.
【答案】 -b
5.定义一种运算“*”:对于自然数n满足以下运算性 质:
∴(aa12)b1≤b1·aa12+(1-b1), 则 a1b1·a21-b1≤a1b1+a2(1-b1), 故 a1b1·a2b2≤a1b1+a2b2 成立.
已知a>0,1b-1a>1,求证: 1+a> 11-b.
【思路点拨】 从条件难以向结论转化.转换角度从结 论出发,寻找使结论成立的充分条件.
2.综合法的逻辑依据是三段论式的演绎推理.
(2012·湖南高考改编)已知函数f(x)=rx-xr+(1-r),其 中x>0,r为有理数.
(1)若0<r<1,求函数f(x)的最小值. (2)试用(1)的结论证明命题: 设a1>0,a2>0,b1,b2为正有理数,若b1+b2=1,则 a1b1·a2b2≤a1b1+a2b2. 【解】 (1)f′(x)=r-rxr-1=r(1-xr-1), 令f′(x)=0,得x=1,
【答案】 C
3.(2013·潍坊模拟)设a,b,c都是正数,则a+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)证明:假设{an+1}是等比数列,则对任意的 k∈N*, (ak+1+1)2=(ak+1)(ak+2+1), a2 k+1+2ak+1+1=akak+2+ak+ak+2+1,
2k k k 1 a2 · a1qk 1+a1qk 1+a1qk 1. 1q +2a1q =a1q
- + - +
∵a1≠0,∴2qk=qk 1+qk 1.
(1)分析法证明时应注意的问题 ①分析法采用逆向思维,当已知条件与结论之间的联系不够明显、直接,或证明过程中所需要用的知 识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时, 常考虑用分析法. ②应用分析法的关键在于需保证分析过程的每一步都是可逆的,它的常用书面表达形式为 “要证„„ 只需证„„”或用“⇐”.注意用分析法证明时,一定要严格按照格式书写. (2)综合法与分析法应用的注意点 ①综合法与分析法各有特点,在解决实际问题时,常把分析法与综合法综合起来运用,通常用分析法 分析,综合法书写,这一点在立体几何中应用最为明显.同时,在数列、三角函数、解析几何中也大多是 利用分析法分析,用综合法证明的办法来证明相关问题. ②对于较复杂的问题, 可以采用两头凑的方法, 即通过分析法找出某个与结论等价(或充分)的中间结论, 然后通过综合法由条件证明这个中间结论,使原命题得证.
- +
∵q≠0,∴q2-2q+1=0, ∴q=1,这与已知矛盾. ∴假设不成立,故{an+1}不是等比数列.
【解题法】
1.用反证法证明命题的基本步骤
(1)反设,设要证明的结论的反面成立. (2)归谬,从反设入手,通过推理得出与已知条件或公理、定理矛盾. (3)否定反设,得出原命题结论成立. 2. 使用反证法证明问题时, 准确地做出反设(即否定结论)是正确运用反证法的前提, 常见的“结论词” 与“反设词”列表如下:
2
间接证明——反证法
(1)定义 假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明 假设错误,从而证明了原命题成立,这样的证明方法叫做反证法. (2)证明步骤 ①反设——假设命题的结论不成立,即假设原结论的反面为真. ②归谬——把“反设”作为条件,经过一系列正确的推理,得出矛盾. ③存真——由矛盾结果断定反设错误,从而肯定原结论成立. 注意点 使用分析法时的注意事项 (1)分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上 是寻找使结论成立的充分条件. (2) 用 分 析 法 证 明 数 学 问 题 时 , 要 注 意 书 写 格 式 的 规 范 性 , 常 常 用 “ 要 证 ( 欲 证 )„„”“ 只 需 证„„”“即证„„”等分析到一个明显成立的条件,再说明所要证明的数学问题成立.
1.思维辨析 (1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( √ ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明时,推出的矛盾不能与假设矛盾.( × ) (4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )
3.用反证法证明命题“若 a,b∈N,ab 能被 3 整除,那么 a,b 中至少有一个能被 3 整除”时,假设 应为( ) B.a,b 都不能被 3 整除 D.a 不能被 3 整除 A.a,b 都能被 3 整除 C.b 不能被 3 整除
解析 由反证法的定义可知,否定结论,即“a,b 中至少有一个能被 3 整除”的否定是“a,b 都不能 被 3 整除”,故选 B.
撬法· 命题法 解题法
[考法综述] 命题法 1 典例 1
[证明]
高考中,经常以不等式、立体几何、数列等知识为载体,考查分析法、综合法和反证
法的原理,结合具体问题考查学生运用三种方法解决问题的能力. 直接证明 已知 a≥b>0,求证:2a3-b3≥2ab2-a2b.
要证明 2a3-b3≥2ab2-a2b 成立,
2.证明不等式 2+ 7< 3+ 6的最适合的方法是( A.综合法 C.间接证法
解析
)
B.分析法 D.合情推理法
要证明不等式 2+ 7< 3+ 6,只要证( 2+ 7)2<( 3+ 6)2,即证 9+2 14<9+2 18,
故只要证 14< 18,即证 14<18. 以上证明不等式所用的最适合的方法是分析法.
只需证:2a3-b3-2ab2+a2b≥0, 即 2a(a2-b2)+b(a2-b2)≥0, 即(a+b)(a-b)(2a+b)≥0. ∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0, 从而(a+b)(a-b)(2a+b)≥0 成立, ∴2a3-b3≥2ab2-a2b.
【解题法】
应用分析法与综合法证明时需注意的问题
第十四章
推理与证明
考点二
直接证明与间接证明
撬点· 基础点 重难点
1
直接证明
(1)综合法 综合法是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证 明的结论成立. 用 P 表示已知条件、已有的定义、定理、公理等,用 Q 表示所要证明的结论,则综合法可用框图表示 为: P⇒Q1 ―→ Q1⇒Q2 ―→ Q2⇒Q3 ―→„―→ Qn⇒Q (2)分析法 分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判 定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 用 Q 表示要证明的结论,则分析法可用框图表示为: 得到一个 Q⇐P1 ―→ P1⇐P2 ―→ P2⇐P3 ―→„―→ 明显成立 的条件
命题法 2 典例 2
间接证明 设{an}是公比为 q 的等比数列.
(1)推导{an}的前 n 项和公式; (2)设 q≠1,证明数列{an+1}不是等比数列
-
当 q=1 时,Sn=a1+a1+„+a1=na1; 当 q≠1 时,Sn=a1+a1q+a1q2+„+a1qn 1,① qSn=a1q+a1q2+„+a1qn,② ①-②得,(1-q)Sn=a1-a1qn, na ,q=1, 1 a11-qn ∴Sn= ,∴Sn=a11-qn 1- q ,q≠1. 1- q