信号与系统课件2013-13-2

合集下载

信号与系统全套课件

信号与系统全套课件

滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。

第1章信号与系统的基本概念ppt课件

第1章信号与系统的基本概念ppt课件
1. 任一由确定时间函数描述的信号,称为确定信号或规则 信号。对于这种信号,给定某一时刻后,就能确定一个相应 的信号值。如果信号是时间的随机函数,事先将无法预知它 的变化规律,这种信号称为不确定信号或随机信号。
第1-8页

©
信号与系统
第1-9页
图 1.1-1 噪声和干扰信号

©
信号与系统
2. 连续信号与离散信号
k
2
-1

f1 (k )+ f2 (k )

2


1

- 3- 2- 1

0 12345
k

-1


f1 (k )· f2 (k )

1
- 3- 2- 1
0 12345
k

©
信号与系统
1.3 信号的运算
二、时间变换 包括翻转,平移和展缩运算。
1.翻转
将 f (t) → f (– t) , f (k) → f (– k) 称为对信号f (·)的 翻转或反折。从图形上看是将f (·)以纵坐标为轴翻 转180o。如:
解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公 倍数,则它们的和信号
f(t)=x(t)+y(t) 仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
第1-21页

©
信号与系统
(1) 因为sin 2t是一个周期信号,其角频率ω1和周期T1为
12ra/ds,T121 s
23ra/sd ,T 2 222 3 2 3 s
f (t- 1)
1
f (t)
右移t → t – 1

信号与系统ppt

信号与系统ppt

3t) 3 (t
3) dt
0
(6)(t 3 2t 2 3) (t 2) (23 2 22 3) (t 2) 19 (t 2)
(7)e4t (2 2t) e4t 1 (t 1) 1 e4(-1) (t 1) 1 e4 (t 1)
2
2
2
(8)e2t u(t) (t 1) e2(-1)u(1) (t 1) 0 (t 1) 0
表征作用时间极短,作用值很大的物理现象的数学模型。
④ 冲激信号的作用:A. 表示其他任意信号
B. 表示信号间断点的导数
二、奇异信号
2. 冲激信号
(4) 冲激信号的极限模型
f (t) 1
g (t) 1
2
t
t
h (t) 2
t
1/
(t) lim f (t) lim g (t) lim h (t)
(t
π )dt 4
(2)23e5t (t 1)dt
(3)46e2t (t 8)dt (4)et (2 2t)dt
(5)22(t 2
3t) ( t
3
1)dt
(6)(t 3 2t 2 3) (t 2)
(7)e4t (2 2t) (8)e2t u(t) (t 1)
1. 在冲激信号的抽样特性中,其积分区间不一定 都是(,+),但只要积分区间不包括冲
激信号(tt0)的t=t0时刻,则积分结果必为零。
2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
二、奇异信号
3. 斜坡信号
定义:
r(t
)
t 0

信号与系统ppt课件

信号与系统ppt课件
1. 实指数信号: C,a 为实数
a 0 呈单调指数上升。
精品课件
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
C 1 x (t) ej 0 t c o s0 tjsin0 t
• 连续时间情况下:
E lT im T Tx(t)2d t x(t)2dt
•离散时间情况下:
N
E N l i m nNx(n)2n x(n)2
精品课件
在无限区间内的平均功率可定义为:
x(t) P
lim1 T2T
T T
2
dt
PN l i m 2N 11nN Nx(n)2
精品课件
1.2 自变量变换
究确知信号。
精品课件
连续时间信号的例子:
精品课件
离散时间信号的例子:
精品课件
连续时间信号在离散 时刻点上的样本可以构成一个 离散时间信号。
精品课件
二. 信号的能量与功率:
连续时间信号在 [ t1 , t 2 ] 区间的能量定义 为:
E t2 x(t) 2 dt t1
连续时间信号在 [ t1 , t 2 ]
率定义为:
区间的平均功
P 1 t2 x(t)2 dt
t2 t1 t1
精品课件
离散时间信号在 [ n1 , n 2 ]
的能量定义为n2
E
x(n) 2
n n1
区间
离散时间信号在 [ n1 , n 2 ] 平均功率为
P 1
n2 x(n)2
n2 n11nn1
精品课件
区间的
在无限区间上也可以定义信号的总 能量:
•给定信号和系统求变换后的 信号。

信号与系统第二版PPT

信号与系统第二版PPT

系统的稳定性分析
定义
如果一个系统在所有可能的输入下都保持稳定,则称该系 统为稳定系统。
判断方法
通过分析系统的极点和零点分布,判断系统的稳定性。如 果所有极点都位于复平面的左半部分,则系统是稳定的。
稳定性分析的重要性
稳定性是系统设计和应用的重要考虑因素,不稳定的系统 无法在实际应用中实现。
系统的频率响应分析
优点
时域分析方法直观、物理意义明 确,可以方便地处理系统的瞬态 响应和稳态响应。
缺点
对于高阶系统或复杂系统,求解 微分方程或差分方程可能变得非 常复杂。
系统的频域分析方法
定义
频域分析方法是将系统的频率特性作为研究对象,通过傅里叶变换、拉普拉斯变换等数学工具将 时间域的信号或系统转换为频域进行分析。
时不变系统
系统的特性不随时间 变化。
时变系统
系统的特性随时间变 化。
信号与系统的重要性及应用领域
重要性
信号与系统是信息传输和处理的基础, 是通信、控制、图像处理、音频处理 等领域的重要理论基础。
应用领域
信号与系统理论广泛应用于通信、雷 达、声呐、遥感、生物医学工程、自 动控制等领域。
02 信号的特性与表示方法
定义
频率响应是描述系统对不同频率输入信号的响应特性。
分析方法
通过傅里叶变换或拉普拉斯变换等方法,将时域信号转换为频域信 号,然后分析系统的频率响应特性。
频率响应的重要性
频率响应是信号处理、控制系统等领域的重要概念,通过分析频率响 应可以了解系统的性能和特性,如传递函数、带宽、相位失真等。
06 信号处理技术与应用
物联网与边缘计算在系统设计中的应用
利用物联网和边缘计算的技术,实现系统的远程监控和管理,提高系 统的可靠性和响应速度。

《信号与系统》课程讲义课件

《信号与系统》课程讲义课件
《信号与系统》课程讲义 课件
这份课程讲义课件为大家提供了关于《信号与系统》的详细介绍,让您轻松 了解这一重要学科。
课程简介
这门课程涵盖了数字信号处理和系统分析的基础知识,旨在让学生了解信号的特性、表示和处理 方法,以及在实际应用中的相关工具和技能。
1 信号分析
了解不同类型的信号及其特性,如周期信号、离散信号和非周期信号等
1
分析总结
对意见和反馈进行深入分析和总结
3
改进课程
针对性改进课程和教学方法
作业和考核方式
为了评估学生对课程知识的掌握程度,我们采用以下方式进行作业和考核:
作业
• 每周一次作业 • 包括习题集、实验和项目作业等 • 占总评成绩的30%
考试
• 期中、期末闭卷考试 • 包括理论和实践题目 • 占总评成绩的70%
课程反馈和改进
我们非常重视您的反馈,它将帮助我们不断改进课程和教学方法。请通过学校邮件系统或班级论坛,随 时提出您的意见和建议。
数字信号处理应用
掌握数字信号处理相关的技 术和应用,如音频处理和图 像处理等
课程大纲
第一章 第二章 第三章 第四章 第五章 第六章
信号与系统的基本概念 时域分析方法 傅里叶分析方法 滤波器 离散信号的频域分析 离散信号的滤波器设计
教学方法
为了帮助学生更好的掌握课程内容,我们采用了以下教学方法:
小组讨论
2 系统分析
掌握系统的基本概念,如线性时不变系统、滤波器和傅立叶变换等
3 信号处理方法
学会数字信号处理的基本方法,如离散傅立叶变换、数字滤波器和采样等
课程目标
通过本课程,学生将获得以下核心能力:
分析信号
了解信号的特性并进行分析, 从而为实际应用提供解决方 案

信号与系统的基本概念、基本理论、基本方法及其应用ppt课件

5. 信号与系统主要研究确知信号,所以主要关注 信号的频谱分析,而随机信号主要关注功率谱 分析。
精选课件
3
6. 冲击信号或者冲击函数是信号分析中的一个非常重要的 信号。
它的强度(能量)为1,它在除t=0点以外的其他点都 为0,在t=0点为无穷大。
它的傅里叶变换为1。也就是说它包含所有频率分量, 且每个分量的密度或者能量都相同,所以他可以作为检 验系统频率响应的重要检验信号。
信号与系统理论所体现的基本方法或者 基本思想就是变换的思想,从傅里叶级数展 开、傅里叶变换到拉斯变换、Z变换,无不体 现出变换的思想。通过变换,可以认识事物 的多个层面;通过变换,可以得到分析问题 解决问题的新方法。这种思想应该应用到我 们对所有问题的探索和研究工作中去。
精选课件
15
四、应用
(一)传感器系统
精选课件
11
(四)复频域分析(S域分析或拉斯变换)
1. 通过复频域的系统函数H(s)描述系统,建立系统 的S域模型,将微分方程转化为代数方程,从而 极大地简化系统分析的计算过程,降低复杂度。
2. 通过系统函数H(s)的零极点分布,判断系统的稳 定性,系统的时域特性等,简单方便。
3. 没有物理背景。
y t v ( f (t ), X i)
w X i 1 g 1 ( X i ,
)
i
y i g 2 X ei , i
其中wi为高斯噪声,ei为观测噪声。离散化
后,如果按照随机信号来处理,滤波过程实际上变
化为在噪声中检测和估值最接近值的问题。
精选课件
17
(二)传感器网络(物理层,MAC层)
MAC层主要研究以CSMA/CA协议为基础的 相关媒质接入协议,克服隐藏终端和暴露终端的 问题,提高网络吞吐量。

信号与系统基本概念精品PPT课件

第 1 章 信号与系统的基本概念
第 1 章 信号与系统的基本概念 1.1 信号的描述、分类、典型示例 1.2 信号的运算与变换 1.3 奇异信号 1.4 信号的分解 1.5 系统模型及分类 1.6 线性时不变系统 1.7 线性时不变系统分析方法概述
第 1 章 信号与系统的基本概念
内容和要求
信号及其分类;系统及其性质;线性 时不变系统的数学模型。

01 2 3 45
n
单边指数序列
f (n) eanu(n) a 0
第 1 章 信号与系统的基本概念
3)周期信号和非周期信号
a)连续周期信号: f (t) f (t mT ) m 0, 1, 2
b)离散周期信号: f (t)
f (k) f (k mf (Nk)) m 0, 1, 2
第 1 章 信号与系统的基本概念
1.2.1 信号的代数运算
•信号的加减运算: f (t) f1(t) f2 (t)
注意要在对应的时间上进行加减运算。
1
t1 0
t2
1 0
-1
相加
2
1 t1
0
t2
-1
第 1 章 信号与系统的基本概念
•信号的相乘运算: f (t) f1(t) f2 (t)
4)实信号和复信号
a)实信号:物理上可实现的信号,各时刻的函数值为实数。 (如正弦信号、单边指数信号)
b)复信号:物理上不可实现的抽象信号,各时刻的函数值为复数 (是分析的工具)
F (t) Ae( j)t
第 1 章 信号与系统的基本概念 5)能量信号和功率信号
归一化的能量或功率: 信号在单位电阻上消耗的能量或功率。
第 1 章 信号与系统的基本概念

《信号与系统教案》课件

信号与系统分析方法
介绍了信号与系统分析的常用方法,如时域分析、频域分析、复频域 分析等。
信号与系统的应用
列举了一些信号与系统的实际应用案例,如通信系统、控制系统等, 以展示信号与系统在工程实践中的重要性。
未来发展方向与展望
信号处理的新技术
介绍了一些新兴的信号处理技 术,如深度学习在信号处理中 的应用、稀疏信号处理等,并 探讨了这些技术对未来信号处 理领域的影响。
详细描述
信号是信息传输的载体,它可以表示声音、图像、文字等不同形式的信息。信号具有时间、幅度、相 位等特征,这些特征在不同类型的信号中有所不同。根据不同的特征和用途,信号可以分为连续信号 和离散信号、确定信号和随机信号、模拟信号和数字信号等类型。
系统的定义与分类
总结词
系统是实现特定功能的整体,由相互关联的元素组成,可以分为线性系统和非线性系统、时不变系统和时变系统 等类型。
信号与系统是信息传输和处理的基础,广泛应用于通 信、图像处理、声音处理等领域。
详细描述
信号与系统是信息传输和处理的基础,它们在通信、图 像处理、声音处理等领域中发挥着重要的作用。通过信 号的传输和处理,可以实现信息的传递、转换和存储, 为各种应用提供必要的信息支持。同时,信号与系统的 理论和方法也在其他领域中得到了广泛的应用,如生物 医学工程、地震勘探、雷达探测等。随着信息技术的发 展,信号与系统的应用范围还将不断扩大,为人们的生 活和工作带来更多的便利和效益。
信号的测量与监测
控制系统需要对各种物理量进行测量和监测,以实现自动化控制, 测量和监测技术能够将各种物理量转换为可处理的电信号。
信号的反馈与控制
反馈和控制技术能够根据系统输出和期望值的偏差,自动调整系统参 数,使系统输出达到期望值。

信号与系统课件ppt


4.能量信号与功率信号
信号可看作是随时间变化的电压或电流,信号 f (t)在1欧姆的电阻上的瞬时功率为| f (t)|²,在时间
区间所消耗的总能量和平均功率分别定义为:
能量信号:信号总能量为有限值而信号平均功率为零。 功率信号:平均功率为有限值而信号总能量为无限大。
特点:
信号 f (t)可买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
如果包含有(t)及其各阶导数,说明相应的0-状态到0+状态 发生了跳变。
0+ 状态的确定 已知 0- 状态求 0+ 状态的值,可用冲激函数匹配法。 求 0+ 状态的值还可以用拉普拉斯变换中的初值定理求出。
各种响应用初始系统零输入响应时,用的是 0- 状态初始值。 在求系统零状态响应时,用的是 0+ 状态初始值,这时的零状态是 指 0- 状态为零。
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
产生的响应。 LTI的全响应:y(t) = yx(t) + yf(t)] 2、零输入响应 (1)即求解对应齐次微分方程的解 3、零状态响应 (1)即求解对应非齐次微分方程的解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LTI
Evaluation of convolution, examples.
How to calculate the impulse response of a discrete system?
Properties of convolution

Three properties of convolution
y[n]
k
x[k ]h[n k ]

无记忆系统(Memoryless Systems) 可逆性(Invertibility) 因果性 (Causality) 稳定性 (Stability) 单位阶跃响应(Unit Step Response)
Causality

判断:根据h(t) (It must be a causal signal);

对于一个满足因果律的线性时不变系统来 说,如何确定卷积和求和区间。

y[n] x[k ]h[n k ]
k 0
k
x[k ]h[n k ]
n
Stability
对于一个LTI系统而言,系统稳定的条
件是其冲激响应绝对可积的。
h[k ]
k 0

Example
y[n]
x[n]
n n0
yd [ n ]
y[n]
x[ n n0 ]
System
Delay n0
y[n-n0]
x[n]
Delay n0
x[n-n0]
System
yd[n]
Linearity
Linear system:
Additivity
Homogeneity
Determining the linearity of a system
10 discrete-time linear time-invariant system
Impulse representation of discrete-time signals; Convolution for discrete-time LTI System; Properties of DT LTI systems; Difference equation models; Terms in the natural response; Block diagrams System response for complex-exponential inputs.
FIR system, finite impulse response; IIR system, infinite impulse response; Example 10.3; Example 10.4.

y[n] ay[n 1] x[n] h[n] ? x[n] u[n]
Chapter 10 Discrete-time Linear Timeinvariant System Introduction Recall two important properties: Why do we research LTI systems?
Test for time invariance
a1 x1[n] a2 x2[n] a1 y1[n] a2 y2[n]
Why emphasizing LTI systems?
离散 LTI 系统占有十分重要的地位,这 是因为: 许多的物理系统都可按照 LTI 系统建 模。例如,大多数数字滤波器。 我们可以解出描写连续和离散的 LTI 模型的方程解。 通过 LTI 系统的分析和设计,可以得 到很多关于系统的信息。

Review of unit impulse function
1 (n 0) [n] 0 (n 0)
[ n]
0
1 (n n0 ) [n n0 ] 0 ( n n0 )
n
[n n0 ]
0
n0
n
Relationship for common signal and impulse function

Commutative property, figure 10.7;
x[n]* h[n] h[n]* x[n]

Associative property, figure 10.8;
x[n]* h1[n] * h2 (n) x[n]* h1[n]* h2[n]

Distributive property, figure 10.9.
x[n]* h1[n] x[n]* h2 (n) x[n]* h1[n] h2[n]
Example 10.5
[n]* h2[n] hh [n] h2[n] 11
x[n]
h4[n] h3[n] x[n]
h[n]=(h1[n]*h2[n]+h3[n])*(h4[n]
y[n]
y[n]
10.3 Properties of discrete-time LTI systems
Sum of impulse response
x[n]
k
x[k ] [n k ]
y[n]
k

x[k ]h[n k ]
convolution

Definition of Convolution Sum
y[n]

k
x[k ]h[n k ] x[n] * h[n]

卷积和揭示,一个LTI离散系统的冲激响应h[n], 可以完整地描述了系统的输入输出关系。如果 冲激响应已知,就可以利用卷积和求取任意输 入信号作用下的系统响应。
Additional properties of convolution sum
Convolution for unit impulse: y[n]=[n]*h[n]=h[n]; y[n-n0]=[n -n0]*h[n]=[n]*h[n-n0]=h[n-n0]; g[n]=[n]*g[n]; g[n-n0] = [n -n0]*g[n]=[n]*g[n-n0]; Difference between convolution and multiplication!
x[n] [n n0 ] x[n0 ] [n n0 ]
x[k ], x[n] [n k ] 0
x[n]

nk else
k
x[k ] [n k ]
10 discrete-time linear time-invariant system
Impulse representation of discrete-time signals; Convolution for discrete-time LTI System; Properties of DT LTI systems; Difference equation models; Terms in the natural response; Block diagrams System response for complex-exponential inputs.

10.2 Convolution for discrete-time LTI System
x [n ]
LTI
Unit impulse response, figure 10.2; y[n]
[n] h[n]. Sum of impulse Sum of impulse response; Convolution sum;
k

n
s[n] s[n 1]
k
h[k ] h[k ] h[n]
k
n
n 1
Homework
10.5; 10.6(a,c,e,g) 10.8(d); 10.9(a-c); 10.18.

Example 10.2:两个序列的卷积和
y[n]
k
x[k ]h[n k ]
x[k ]

h[k ]
x[n k ]
n0
x[0 k ]
y[0]
h[k ]
k
-1 0 1 2 3 4 5 6
Example 10.2 (continued)
x[1 k ]
( 3)
y[1]
10.6
h[ n] 0.5 u[ n]
n
h[n] 0.5 u[n 1]
n
Unit Step Response
s[n]
k
u[k ]h[n k ] h[n k ]k 0源自s[n] k
u[n k ]h[k ] h[k ]
y[n]
k
x[k ]h[n k ]

10.2 Convolution for discrete-time LTI System
x [n ] Properties of convolutiony[n] sum;
Relationship of response and input;
n 1
h[k ]
-1 0 1 2 3 4 5 6
k
x[2 k ]
n2
y[2]
h[k ]
-1 0 1 2 3 4 5 6
k
卷积和的另外一个例子
n 0, y[0] 4 n 1, y[1] 15
n 2, y[2] 19
y[n]
总结:卷积和计算步骤
FIR and IIR system

10.1 Impulse representation of discretetime signals
相关文档
最新文档