数字信号处理实验-实验四
数字信号处理实验

例5:计算信号的卷积
i=0:1:49 x(n)=sin(2*pi*i/50) h1(n)=[zeros(1,10),1,zeros(1,20)];
h2(n) =[zeros(1,20),1,zeros(1,10)];
图1.1给出了卷积结果的图形,求得的结果存放在数 组c中为:{-2 -4 1 3 1 5 1 -3}。
例2用MATLAB计算差分方程的输出:
已知输入序列 ,求输出 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度')
1.5
2 1
0
0.5
分析范围:[0, 2π] 分析范围:[0, π]
0.5 1 /
1.5
2 1
end
要求
验证线性卷积的线性性质 分析输出和输入之间相对位移与对应系统的h(n)之间的 关系 绘制x(n),h(n)和y(n)。给出分析结果
例4(选做)
编制程序求解下列两个系统的单
位冲激响应和阶跃响应,并绘出其图形。要求分
数字信号处理实验
实验安排
实验一 序列的基本运算 实验二 快速傅立叶变换(FFT)及其应用 实验三 IIR数字滤波器的设计
实验四 FIR数字滤波器的设计
实验一序列的基本运算
数字信号处理 实验4_离散信号的频域分析

实验四离散信号的频域分析1. 计算序列的DTFT和DFT,观察栅栏效应设)()(4nRnx=,要求用MATLAB实现:(1)计算)(nx的傅里叶变换)(ωj eX,并绘出其幅度谱;(2)分别计算)(nx的4点DFT和8点DFT,绘出其幅度谱。
并说明它们和)(ωj eX的关系。
(提示:DFT变换可用MA TLAB提供的函数fft实现,也可以自己用C语言或matlab 编写)源程序:n1=4;n2=8;n=0:n1-1;k1=0:n1-1;k2=0:n2-1;w=2*pi*(0:2047)/2048;Xw=(1-exp(-j*4*w))./(1-exp(-j*w))xn=[(n>=0)&(n<4)];X1k=fft(xn,n1);X2k=fft(xn,n2);subplot(3,1,1)plot(w/pi,abs(Xw));title('x(n)的傅里叶变换的幅度谱')subplot(3,1,2)stem(k1,abs(X1k))title('4点的DFT[x(n)]=X1(k)的幅度谱')subplot(3,1,3)stem(k2,abs(X2k))title('8点的DFT[x(n)]=X1(k)的幅度谱')实验结果图:由实验结果图可知,X(k)是)(ωj e X 的等间隔采样,采样间隔是2π/N 。
2.计算序列的FFT ,观察频谱泄漏已知周期为16的信号)1612cos()1610cos()(n n n x ππ+=。
(1) 截取一个周期长度M=16点,计算其16点FFT 其频谱,并绘出其幅度谱;(2) 截取序列长度M=10点,计算其16点FFT 其频谱,绘出其幅度谱,并与(1)的结果进行比较,观察频谱泄漏现象,说明产生频谱泄漏的原因。
(1)源程序:T=16;fs=1/T;n=0:15;xn=cos(10*pi/16*n*T)+cos(12*pi/16*n*T);Xk=fft(xn,16)stem(n,abs(Xk))实验结果图:(2)源程序:T=16;fs=1/T;n=0:9;xn=cos(10*pi/16*n*T)+cos(12*pi/16*n*T); Xk1=fft(xn,16)stem(0:15,abs(Xk1))实验结果图:如图,可得出,当截取有限长信号时,频谱不再是单一的频谱,它的能量散布到整个频谱的各处。
数字信号处理实验4

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。
二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。
三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。
如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。
格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。
其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。
zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。
②roots 函数。
用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。
2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。
数字信号处理实验四

实验报告课程名称:数字信号处理实验四:离散系统分析班级:通信1403学生姓名:强亚倩学号:1141210319指导教师:范杰清页脚内容1页脚内容2华北电力大学(北京)一、实验目的深刻理解离散时间系统的系统函数在分析离散系统的时域特性、频域特性以及稳定性中的重要作用及意义,熟练掌握利用MATLAB 分析离散系统的时域响应、频响特性和零极点的方法。
掌握利用DTFT 和DFT 确定系统特性的原理和方法。
二、实验原理MATLAB 提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。
1. 离散系统的时域响应在调用MATLAB 函数时,需要利用描述该离散系统的系数函数。
对差分方程进行Z 变换即可得系统函数:在MATLAB 中可使用向量a 和向量b 分别保存分母多项式和分子多项式的系数:这些系数均从z 0按z 的降幂排列。
2.离散系统的系统函数零极点分析离散LTI 系统的系统函数H (z )可以表示为零极点形式:))...()(())...()((1)()()(2121)1(111)1(1110N M N N N N M M M M p z p z p z z z z z z z k z a z a z a z b z b z b b z X z Y z H ------=++++++++==---------- )()(1)()()()1(111)1(1110z a z b z a z a z a z b z b z b b z X z Y z H N N N N M M M M =++++++++==---------- ],,,,1[11N N a a a a -= ],,,,[110M M b b b b b -=页脚内容3使用MATLAB 提供的roots 函数计算离散系统的零极点;使用zplane 函数绘制离散系统的零极点分布图。
注意:在利用这些函数时,要求H (z )的分子多项式和分母多项式的系数的个数相等,若不等则需要补零。
哈尔滨工程大学数字信号处理实验四

t/T x (n )k X (k)t/T x (n)k X (k )一、 实验原理DFT 的快速算法FFT 利用了WN^(nk)的三个固有特性:(1)对称性,(WN^(nk))*=WN^(-nk),(2)周期性,WN^(nk)=WN^(n+N)k=WN^n(k+K),(3)可约性WN^(nk)=WmN^(nmk)和WN(nk)=WN/m^(nk/m)。
FFT 算法基本上可以分为两大类,即按时间抽选法和按频率抽选法。
MATLAB 中提供了进行快速傅里叶变换的fft 函数,X=fft(x),基2时间抽取FFT 算法,x 是表示离散信号的向量;X 是系数向量; X=fft(x ,N),补零或截断的N 点DFT ,当x 的长度小于N 时,对x 补零使其长度为N ,当x 的长度大于N 时,对x 截断使其长度为N 。
Ifft 函数计算IDFT ,其调用格式与fft 函数相同,参考help 文件。
例3.1程序及图形文件 >> k=8;>> n1=[0:19];>> xa1=sin(2*pi*n1/k); >> subplot(221) >> stem(n1,xa1)>> xlabel('t/T');ylabel('x(n)'); >> xk1=fft(xa1);>> xk1=abs(xk1);>> subplot(222)>> stem(n1,xk1)>> xlabel('k');ylabel('X(k)'); >> n2=[0:1:15]; >> xa2=sin(2*pi*n2/k); >> subplot(223) >> stem(n2,xa2)>> xlabel('t/T');ylabel('x(n)');>> xk2=fft(xa2);>> xk2=abs(xk2);>> subplot(224)>> stem(n2,xk2)>> xlabel('k');ylabel('X(k)');上两个图为N=20是的截取信号和DFT 结果,由于截取了两个半周期,频谱出现泄漏;下面的两个图为N=16时的截取信号和DFT 结果,由于截取了两个整周期,得到单一谱线的频谱。
数字信号处理实验4

数字信号处理实验四第一题结果:(1)没有增加过渡点源码如下:N = 15;H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小%H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点k = 0:N-1;A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n)freqz(hn,1,256); %画出幅频相频曲线figure(2);stem(real(hn),'.'); %绘制单位冲激响应的实部line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))');单位脉冲响应曲线幅频和相频特性曲线(2)增加过渡点源码如下:N = 15;H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点k = 0:N-1;A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2);stem(real(hn),'.'); %绘制单位冲激响应的实部line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))');单位脉冲响应曲线幅频和相频特性曲线第二题结果:源码如下:N=35;M = N-1;L = M/2;F = [0:1/L:1]; %设置抽样点的频率,抽样频率必须含0和1。
数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规
第四章常规实验指导实验一常用指令实验一、实验目的1、了解DSP开发系统的组成和结构;2、熟悉DSP开发系统的连接;3、熟悉CCS的开发界面;4、熟悉C54X系列的寻址系统;5、熟悉常用C54X系列指令的用法。
二、实验设备计算机,CCS 2.0版软件,DSP仿真器,实验箱。
三、实验步骤与内容1、系统连接进行DSP实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:2、上电复位在硬件安装完成后,确认安装正确、各实验部件及电源连接正常后,接通仿真器电源,启动计算机,此时,仿真器上的“红色小灯”应点亮,否则DSP开发系统有问题。
3、运行CCS程序待计算机启动成功后,实验箱后面220V输入电源开关置“ON”,实验箱上电,启动CCS,此时仿真器上的“绿色小灯”应点亮,并且CCS正常启动,表明系统连接正常;否则仿真器的连接、JTAG接口或CCS相关设置存在问题,掉电,检查仿真器的连接、JTAG 接口连接,或检查CCS相关设置是否正确。
注:如在此出现问题,可能是系统没有正常复位或连接错误,应重新检查系统硬件并复位;也可能是软件安装或设置有问题,应尝试调整软件系统设置,具体仿真器和仿真软件CCS的应用方法参见第三章。
●成功运行程序后,首先应熟悉CCS的用户界面●学会CCS环境下程序编写、调试、编译、装载,学习如何使用观察窗口等。
4、修改样例程序,尝试DSP其他的指令。
注:实验系统连接及CCS相关设置是以后所有实验的基础,在以下实验中这部分内容将不再复述。
5、填写实验报告。
6、样例程序实验操作说明仿真口选择开关K9拨到右侧,即仿真器选择连接右边的CPU:CPU2;启动CCS 2.0,在Project Open菜单打开exp01_cpu2目录下面的工程文件“exp01.pjt”注意:实验程序所在的目录不能包含中文,目录不能过深,如果想重新编译程序,去掉所有文件的只读属性。
用下拉菜单中Project/Open,打开“exp01.pjt”,双击“Source”,可查看源程序在File Load Program菜单下加载exp01_cpu2\debug目录下的exp01.out文件:加载完毕,单击“Run”运行程序;实验结果:可见指示灯D1定频率闪烁;单击“Halt”暂停程序运行,则指示灯停止闪烁,如再单击“Run”,则指示灯D1又开始闪烁;注:指示灯D1在CPLD单元的右上方关闭所有窗口,本实验完毕。
实验四 有限长序列的线性卷积、圆周卷积及分段卷积(数字信号处理)
电子信息与自动化学院《数字信号处理》实验报告学号: 姓名:实验名称: 实验四 有限长序列的线性卷积、圆周卷积及分段卷积一、 实验目的(1) 在理论学习的基础上,通过本实验,加深对线性卷积、圆周卷积、分段卷积的理解;(2) 掌握计算线性卷积、圆周卷积、分段卷积的方法;(3) 体会有限长序列卷积运算的关系;二、 实验原理1、有限长序列卷积有两种形式:线性卷积和圆周卷积然而现实中要解决的实际问题是要计算两个有限长序列的线性卷积,如信号通过线性系统,系统的输出 y(n)是输入信号 x(n)与系统抽样响应 h(n)的线性卷积:y(n)=x(n)*h(n)。
设n x 1和n x 2是两个长度分别为 M 和 N 的有限长序列,则其线性卷积为)(*)()(211n x n x n y =。
)(1n y 是一个长度为 L1=N+M-1 点的有限长序列.将n x 1和n x 2均补零成 L 点的有限长序列,其中 L ≥max(M,N),则其 L 点的圆周卷积为)(]))(()([)()()(1021212n R m n x m x n x n x n y L L m L ∑-=-=⊗=,现在讨论)(1n y 和)(2n y 的关系。
显然]∑∑∑∑∑∑∑∑∞-∞=∞-∞=∞∞=-=-=∞-∞=-=-=+=+=+-=+-=-=-=r r L r M m L M m L r L M m L L L m L rL n y n R rL n x n xn R rL m n x n R rL m n x m x n R m n x m x n R m n x m x n y )([)()](*)([)()()()()()(]))(()([)(]))(()([)(121102102112110212由此可见,L 点的圆周卷积)(2n y 是线性卷积)(2n y 以 L 为周期,进行周期延拓后在区间 0 到 L-1 范围内所取的主值序列。
数字信号处理实验报告 (实验四)
实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。
2. 运用MA TLAB 验证离散时间傅立叶变换的性质。
二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
例3.1 运用MA TLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。
数字信号处理实验四
实验一:DFS 、DFT 与FFT一、实验内容2、已知某周期序列的主值序列为x(n)=[0,1,2,3,2,1,0],编程显示2个周期的序列波形。
要求:① 用傅里叶级数求信号的幅度谱和相位谱,并画出图形 ② 求傅里叶级数逆变换的图形,并与原序列进行比较。
N=7;xn=[0,1,2,3,2,1,0]; xn=[xn,xn]; n=0:2*N-1; k=0:2*N-1;Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1);stem(n,xn);title('x(n)');axis([-1,2*N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2);stem(n,abs(x));title('IDFS|X(k)|');axis([-1,2*N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk));title('|X(k)|');axis([-1,2*N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk));title('arg|X(k)|');axis([-1,2*N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);课程名称 数字信号 实验成绩 指导教师 王丽霞实 验 报 告院系 信息工程学院 班级 11专升本通信工程 学号 1103100068 姓名 周海霞日期 2011年10月17日12351051015|X (k)|510-2-1012arg|X (k)|3、已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0],要求: ① 求该序列的DFT 、IDFT 的图形;xn=[1,0.5,0,0.5,1,1,0.5,0]; N=length(xn); n=0:N-1; k=0:N-1;Xk=xn*exp(-1i*2*pi/N).^(n'*k); x=(Xk*exp(1i*2*pi/N).^(n'*k))/N; subplot(2,2,1);stem(n,xn);title('x(n)');axis([-1,N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2);stem(n,abs(x));title('IDFT|X(k)|');axis([-1,N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk));title('|X(k)|');axis([-1,N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk));title('arg|X(k)|');axis([-1,N,1.1*min(angle(Xk)),1.1*max(angle(Xk))]);0.510.5124681234|X (k)|2468-2-1012arg|X (k)|② 用FFT 算法求该序列的DFT 、IDFT 的图形;xn=[1,0.5,0,0.5,1,1,0.5,0]; N=length(xn);subplot(2,2,1);stem(n,xn); title('x(n)'); k=0:N-1; Xk=fft(xn,N);subplot(2,1,2);stem(k,abs(Xk)); title('Xk=DFT(xn)'); xn1=ifft(Xk,N);subplot(2,2,2);stem(n,xn1);title('x(n)=IDFT(Xk)');x(n)1234567X k=DFT(xn)x(n)=IDFT(X k)③ 假定采用频率Fs=20Hz ,序列长度N 分别取8、32和64,用FFT 计算其幅度谱和相位谱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4用窗函数法设计FIR 数字滤波器
一, 实验目的
1、掌握用窗函数法设计FIR 数字滤波器的原理和方法。
2、熟悉线性相位FIR 数字滤波器特性。
3、了解各种窗函数对滤波特性的影响。
二,实验原理
一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本实验采用窗函数法,采用矩形窗。
下面简要介绍窗函数法设计FIR 理论知识,更详细的相关知识请参考教材。
如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。
H d (w)
-w c w c
图2
图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=
10)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来截断h d (n),
如式3所示:
)()()(n w n h n h d =(式3)。
最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。
)(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1
0)()(N n jwn jw
e n h e H (式4) 令jw
e z =,则 ∑-=-=1
0)()(N n n z n h z H (式5),式中,N 为所选窗函数)(n w 的长度。
如果要求线性相位特性,)(n h 还必须满足:
)1()(n N h n h --±= (式6),根据式6中的正、负和长度N 的奇偶性又将线性相位FIR 滤波器分成四类。
要根据所设计的滤波器特性正确选择其中一类。
例如:要设计线性相位低通特性,可选择)1()(n N h n h --=类。
三,实验内容及步骤
1)编写能产生矩形窗、升余弦窗、改进升余弦窗和二阶升余弦窗的窗函数子程序,也可调用MATLAB 相关函数。
2)编写低通FIR 数字滤波器主程序。
3)上机实验内容。
A 、用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率rad c 4π
ω=。
窗口长度N
=15,33。
要求在两种窗口长度情况下,分别求出h (n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。
总结窗口长度N 对滤波特性的影响。
B 、n =33,c ω=4π
,用四种窗函数设计线性相位低通滤波器。
绘制相应的幅频特性曲线,
观察3dB 和20 dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。
四,思考题
1,首先由给定参数求出各相应数字参量,2,,δωωst p 等。
再求hd(n),求出c Ω来,从
而得到c ω,已知2/1-=N τ,这样就求出理想线性相位的单位冲击响应。
有ω∆求
出所需的阶数N ,从而选定相应的窗函数。
最后进行验证。
2,)(n h d ={ {}⎩⎨⎧=-≠---⎩⎨⎧τωωπ
τωτωττπn n n n n ),12(1,]1)sin[(]2)sin[()(1,再根据通带,阻带衰减
的要求,可选定窗函数)(n ω及窗的点数N 。
由此可求出线性相位所需单位冲击响应。
再由h (n )的傅里叶变换,最后验证是否满足要求。
五,实验总结
通过这次实验让我了解了用窗函数法设计FIR数字滤波器的原理和方法,熟悉掌握了线性相位FIR数字滤波器特性,了解各种窗函数对滤波特性的影响。
窗函数设计法,一般要求窗函数要满足以下两个要求:1.窗谱主瓣尽可能的窄,以获得较陡的过渡带。
2.尽量减少窗谱的最大旁瓣相对幅度,也就是能量尽量集中在主瓣。
这样使尖锋和纹波减小,就可增大阻带衰减。
但是这两项要求不能同时满足,往往是增加主瓣宽度以换取对旁瓣的拟制。
因而选用不同的窗都是为了使幅度函数得到平坦的幅度响应和较小的阻带纹波。
我们常用到的窗函数有矩形窗,巴特列特窗,汉宁窗,海明窗,布拉克曼窗以及凯泽窗。
可以根据不同的需要选择响应的窗函数进行设计滤波器。