2017-2018学年人教A版必修三阶段质量检测数学试卷及答案解析(一)含解析(原始打印版)

合集下载

高中数学人教A版必修三课时习题:第一、二章滚动测试含答案

高中数学人教A版必修三课时习题:第一、二章滚动测试含答案

第一、二章转动测试班级 ____ 姓名____ 考号 ____ 分数 ____ 本试卷满分 150 分,考试时间 120 分钟.一、选择题:本大题共 12 题,每题 5 分,共 60 分.在以下各题的四个选项中,只有一个选项是切合题目要求的..设有一个回归方程为 ^= 5-6x ,那么它表示数据x 和 y 之间1 y ()A .必定是正有关关系B .必定是负有关关系C .必定是线性有关关系D .不拥有有关关系的数据 x 和 y 也可能获取这个回归直线方程答案: D分析:给出随意一组 x 和 y 的对应数据都能够依据最小二乘法获取一个回归直线方程, 假如这组数据不拥有有关关系, 那么这个回归方程就是毫无心义的.2.以下说法正确的选项是 ( ) A .数据 5,4,4,3,5,2的众数是 4B .一组数据的标准差是这组数据的方差的平方C .数据 2,3,4,5 的标准差是数据 4,6,8,10 的标准差的一半D .频次散布直方图中各小长方形的面积等于相应各组的频数 答案: C3.容量为 100 的样本数据,按从小到大的次序分为 8 组,以下表:组号 1 2 3 4 5 6 7 8频数 10 13 x 14 15 13 12 9第三组的频数和频次分别是 ( ) A .14 和 0.14 B .0.14 和 141 1 1C.14和 0.14D.3和14答案: A114100=0.14.4.在 120 个部件中,一级品 24 个,二级品 36 个,三级品 60 个,用分层抽样的方法从中抽取容量为 20 的样本,则每个个体被抽取的可能性占整体的 ()1 1A.24B.361 1C.60D.6答案: D5.对某中学的高中学生做专项检查.已知该校高一年级有320 人,高二年级有 280 人,高三年级有 360 人,若采纳分层抽样的方法,抽取一个容量为 120 的样本,则高一、高二、高三年级抽取的人数依次为()A.40、35、45 B.35、40、45C.45、25、50 D.25、45、50答案: A120分析: 320+280+ 360=960,高一、高二、高三年级各抽取960120120×320=40(人),960×280=35(人),960×360=45(人).6.三位七进制的数表示的最大的十进制的数是()A.322 B.332C.342 D.352答案: C分析:三位七进制数中最大的为666(7)=6×49+6×7+6=342.7.下面程序履行后输出的结果是()A .- 1B .2C .1D .0 答案: C8.在抽查某产品的尺寸的过程中,将其尺寸分红若干组,[a ,b)是此中一组,抽查出的个体落在该组的频次为 m ,该组的直方图的高为 h ,则 |a -b|=()A .h ·m B. hmmC. h D .与 m ,h 没关答案: C分析: 频次散布直方图中,每一小矩形概率为该地区内的频次,|a -b|为矩形宽.9.以下图的程序框图的输出结果为()A .2B .4C .8D .16 答案: C分析: 由程序语句得 s 1=2,s 2=2×2= 4,s 3=2s 2=8,当 k =4时,因为 k >3 停止循环.输出 s 3=8.10.某工厂对一批产品进行了抽样检测. 如图依据抽样检测后的产品净重 (单位:克 )数据绘制的频次散布直方图,此中产品净重的范围是 [96,106],样本数据分组为 [96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于 100 克的个数是 36,则样本中净重要于或等于 98 克而且小于 104 克的产品的个数是 ()A.90 B.75C.60 D.45答案: A11.履行下面的程序框图,假如输入的 n 是 4,则输出的 p 是() A.8 B.5C.3 D.2答案: C分析:运转程序框图可知, s,t,k,p 的值挨次以下:s0112t1123k1234p1123当 k=4 时,停止循环,输出p=3.12.为认识儿子身高与其父亲自高的关系,随机抽取5对父子的身高数据以下:父亲自高 x(cm)174176176176178儿子身高 y(cm)175175176177177则 y 对 x 的线性回归方程为 ()^^A.y=x-1B.y=x+1高中数学人教A版必修三课时习题:第一、二章滚动测试含答案^=88+1^=176C.y2xD.y答案: C^^^,分析:设 y 对 x 的线性回归方程为 y=bx+a因为^b-2× -1 +0× -1 +0×0+0×1+2×1=-2 2+221=2,^1×=,所以对的线性回归方程为^1a=176-2176 88y x y=2x+88.二、填空题:本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上.13.324,243,135三个数的最大条约数是________.答案: 27分析: 324=243×1+81,243=81×3+0,则 324 与 243 的最大条约数为 81.又 135=81×1+54,81=54×1+27,54=27×2,则 135 与 81 的最大条约数为27,故 324,243,135的最大条约数为 27.14.从 N 个号码中抽取 n 个号码构成样本,若采纳系统抽样方法抽取,则抽取的样本间距应为 ________.N答案:n15.若履行以下图的框图,输入 x1=1,x2=2,x3=4,x4=8,则输出的数等于 ________.15答案:41+2+4+815分析:出的四个数的均匀数,即出的是4=4 .16.某校甲、乙两个班各有 5 名号 1,2,3,4,5 的学生行投,每人投 10 次,投中的次数以下表:学生 1号 2号 3号 4号 5号甲班67787乙班67679以上两数据的方差中小的一个s2=________.2答案:51分析:甲班的均匀数7,方差 s2=5[(6-7)2+02+02+(8- 7)2 2+02]=;57,方差 s2=2 6-7 2+2 7-7 2+ 9-7 26乙班的均匀数5=5.三、解答:本大共 6 小,共 70 分.解答写出文字明、明程或演算步.17.(10 分)以下茎叶了甲、乙两各四名同学的植棵数,乙中有一个数据模糊,没法确,在中以 X 表示.假如 X=8,求乙同学植棵数的均匀数和方差;1(注:方差 s2=n[(x 1- x )2+(x 2- x )2+⋯+ (x n- x )2],此中 x x1,x2,⋯, x n的均匀数 ).解:当 X=8 时,由茎叶图可知,乙组同学的植树棵数是: 8,8,9,10,所以均匀数为8+8+9+1035x =4=4;方差为:21[(8-352+-352+-352-35211s=)(8)) +)]= .444(94(10416 18.(12 分)利用秦九韶算法求多项式f(x) =5x5+4x4+3x3+2x2+x+1 当 x=- 2 时的值,写出详尽步骤.解: f(x) =((((5x +4)x+3)x+2)x+1)x+1v0=5,v1=v0×(-2)+4=- 6,v2=v1×(-2)+3=15,v3=v2×(-2)+2=- 28,v4=v3×(-2)+1=57,v5=v4×(-2)+1=- 113,故 f( -2)=- 113.19.(12 分)对甲、乙两名自行车赛手在同样条件下进行了 6 次测试,测得他们的最大速度 (单位: m/s)的数据以下表 .甲27 38 30 37 3531乙33 28 38 34 2836(1)写出茎叶图.由茎叶图你能获取哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度数据的均匀数、中位数、标准差,并判断选谁参加竞赛更适合.解: (1)茎叶图:由茎叶图能够看出,甲、乙的得分状况都是散布均匀的,不过乙更好一些.乙的中位数是33.5,甲的中位数是33.所以乙发挥比较稳定,整体得分状况比甲好.--乙=;甲=,乙=;甲的中位数是,(2) x 甲=,x3333 s 3.96 s 3.5633乙的中位数是 35.综合比较,选乙参加竞赛较为适合.20 . (12 分 ) 设计一个算法,输入 x 的值,输出函数 y =x2,x≥1 ,2x-1,-2<x<1 ,)的值.要求画出程序框图,写出程序.-5, x≤- 2解:程序框图:程序:21.(12 分)某班同学进行数学测试,将所得成绩 (得分取整数 )进行整理后分红五组,并绘制成图 (如图 ),请联合图中供给的信息,回答以下问题:(1)该班共有多少名学生?(2)80.5~90.5 这一分数段的频数、频次分别是多少?(3)此次成绩的中位数落在哪个分数段内?(4)从左到右各小组的频次比是多少?解: (1)共有 4+6+10+12+18=50(名).12(2)80.5~90.5 这一分数段的学生频数为12,频次为50=0.24.(3)中位数落在 (70.5,80.5)内.(4)从左到右各小组的频次比为2∶5∶9∶6∶3.22.(12 分)某地近来十年粮食需求量逐年上涨,下表是部分统计数据:年份20022004200620082010需求量 /万236246257276286吨^ =^(1)利用所给数据求年需求量与年份之间的回归直线方程y bx+^;a(2)利用 (1)中所求出的直线方程展望该地2012 年的粮食需求量.解: (1)由所给数据看出,年需求量与年份之间是近似直线上涨,下面来求回归直线方程,先将数据办理以下:年份-4-2024—2006需求量-21-1101929—257对办理的数据,简单算得x =0, y =3.2,^=b-4× -21 +-2 × -11 +2×19+4×29-5×0×3.2-42+-2 2+22+ 42-5×02260=40=6.5,高中数学人教A版必修三课时习题:第一、二章滚动测试含答案^^ ^=由上述计算结果,知所求回归直线方程为^-257=y-ba 3.2.x y=6.5(x-2006)+3.2,即^=-+y 6.5(x 2006)260.2.(2) 利用所求得的直线方程,可展望2012 年的粮食需求量为6.5×(2012-2006)+260.2=6.5×6+260.2=299.2(万吨 ).10。

高中数学人教A版必修三 第三章 概率 章末综合测评及答案

高中数学人教A版必修三 第三章 概率 章末综合测评及答案

会,估计运动会期间不.下.雨.的概率. 【解】 (1)在容量为 30 的样本中,不下雨的天数是 26,以频率
估计概率,4 月份任选一天,西安市不下雨的概率为 2360=1153. (2)称相邻的两个日期为“互邻日期对”(如,1 日与 2 日,2 日与 3
日等).这样,在 4 月份中,前一天为晴天的互邻日期对有 16 个,其中 后一天不下雨的有 14 个,所以晴天的次日不下雨的频率为 78.
(2)该班成绩在[60,100]内的概率是 P(A∪B∪C∪D)=P(A)+P(B)
+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.
19.(本小题满分 12 分)小王、小李两位同学玩掷骰子(骰子质地均 匀)游戏,规则:小王先掷一枚骰子,向上的点数记为 x;小李后掷一 枚骰子,向上的点数记为 y.
【答案】 C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在
题中横线上).
13.一个袋子中有 5 个红球,3 个白球,4 个绿球,8 个黑球,如
果随机地摸出一个球,记 A={摸出黑球},B={摸出白球},C={摸出
绿球},D={摸出红球},则 P(A)=________;P(B)=________;P(C∪D)
A,B,C 和 3 名女同学 X,Y,Z,其年级情况如下表:
一年级 二年级 三年级
男同学 A
=________.
【解析】 由古典概型的算法可得 P(A)=280=25,P(B)=230,P(C∪D)
=P(C)+P(D)=240+250=290.
【答案】
2 5
3 20
9 20
14.在区间(0,1)内任取一个数 a,能使方程 x2+2ax+12=0 有两

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

【人教A版】最新高中数学必修三作业与测评单元质量评估(三)

【人教A版】最新高中数学必修三作业与测评单元质量评估(三)

最新人教版数学精品教学资料单元质量评估(三)(第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2. 在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=. 11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( ) A.0.5 B.0.7 C.0.8 D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=. 答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D 为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率. 【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.关闭Word文档返回原板块。

高中数学人教A版必修三 第一章 算法初步 学业分层测评8 Word版含答案

高中数学人教A版必修三 第一章 算法初步 学业分层测评8 Word版含答案

算法案例一、选择题1.用更相减损术求1 515和600的最大公约数时需要做减法次数是()A.15 B.14C.13 D.12【解析】 1 515-600=915915-600=315600-315=285315-285=30285-30=255255-30=225225-30=195195-30=165165-30=135135-30=105105-30=7575-30=4545-30=1530-15=15∴1 515与600的最大公约数是15则共做14次减法.【答案】 B2.计算机中常用的十六进制是逢16进1的计数制采用数字0~9和字母A~F共16个计数符号这些符号与十进制数的对应关系如下表:十六0123456789 A B C D E F 进制十进0123456789101112131415 制例如用十六进制表示:E+D=1B则A×B等于()A.6E B.72C.5F D.B0【解析】A×B用十进制表示10×11=110而110=6×16+14所以用16进制表示6E【答案】 A3.以下各数有可能是五进制数的是()A.15 B.106C.731 D.21 340【解析】五进制数中各个数字均是小于5的自然数故选D【答案】 D二、填空题6.用更相减损术求36与134的最大公约数第一步应为________.【解析】∵36与134都是偶数∴第一步应为:先除以2得到18与67【答案】先除以2得到18与677.用秦九韶算法求f(x)=2x3+x-3当x=3时的值v2=________.【解析】f(x)=((2x+0)x+1)x-3v0=2;v1=2×3+0=6;v2=6×3+1=19【答案】198.将八进制数127(8)化成二进制数为________.【解析】先将八进制数127(8)化为十进制数:127(8)=1×82+2×81+7×80=64+16+7=87再将十进制数87化成二进制数:∴87=1010111(2)∴127(8)=1010111(2).【答案】1010111(2)三、解答题9.用更相减损术求288与153的最大公约数.【解】288-153=135153-135=18135-18=117117-18=9999-18=8181-18=6363-18=4545-18=2727-18=918-9=9因此288与153的最大公约数为910.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.【解】将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64由内向外依次计算一次多项式当x=2时的值v0=1v1=1×2-12=-10v2=-10×2+60=40v3=40×2-160=-80v4=-80×2+240=80v5=80×2-192=-32v6=-32×2+64=0所以f(2)=0即x=2时原多项式的值为0[能力提升]1.下面一段程序的目的是()A.求mn的最小公倍数B.求mn的最大公约数C.求m被n除的商D.求n除以m的余数【解析】本程序当mn不相等时总是用较大的数减去较小的数直到相等时跳出循环显然是“更相减损术”.故选B【答案】 B2.若k进制数123(k)与十进制数38相等则k=________.【解析】由k进制数123可知k≥4下面可用验证法:若k=4则38(10)=212(4)不合题意;若k =5则38(10)=123(5)成立所以k =5或者123(k )=1×k 2+2×k +3=k 2+2k +3∴k 2+2k +3=38k 2+2k -35=0k =5(k =-7<0舍去).【答案】 53.若二进制数10b 1(2)和三进制数a 02(3)相等求正整数ab【28750022】【解】 ∵10b 1(2)=1×23+b ×2+1=2b +9a 02(3)=a ×32+2=9a +2∴2b +9=9a +2即9a -2b =7∵a ∈{12}b ∈{01}∴当a =1时b =1符合题意;当a =2时b =112不符合题意.∴a =1b =14.用秦九韶算法求多项式f (x )=8x 7+5x 6+3x 4+2x +1当x =2时的值.【解】 根据秦九韶算法把多项式改写成如下形式: f (x )=8x 7+5x 6+0·x 5+3·x 4+0·x 3+0·x 2+2x +1=((((((8x +5)x +0)x +3)x +0)x +0)x +2)x +1而x =2所以有v 0=8v 1=8×2+5=21v 2=21×2+0=42v3=42×2+3=87v4=87×2+0=174v5=174×2+0=348v6=348×2+2=698v7=698×2+1=1 397所以当x=2时多项式的值为1 397。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

2019-2020学年高中数学 阶段质量检测(三)直线与方程(含解析)新人教A版必修2

阶段质量检测(三) 直线与方程(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60°D .135°解析:选D 由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |=( )A .10B .180C .6 3D .6 5解析:选D 由k MN =a -4-2-a =-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.已知直线nx -y =n -1和直线ny -x =2n 的交点在第二象限,则实数n 的取值范围是( )A .(0,1)B.⎝⎛⎭⎪⎫-∞,12∪(1,+∞)C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫12,+∞ 解析:选C 由题意,知当n =1时,两直线平行,当n =-1时,两直线重合,故n ≠±1.解方程组⎩⎪⎨⎪⎧nx -y =n -1,ny -x =2n ,得x =nn -1,y =2n -1n -1.∴n n -1<0且2n -1n -1>0,解得0<n <12. 4.已知直线l 1:(2m 2-5m +2)x -(m 2-4)y +5=0的斜率与直线l 2:x -y +1=0的斜率相同,则实数m 等于( )A .2或3B .2C .3D .-3解析:选C 直线l 1的斜率为2m 2-5m +2m 2-4,直线l 2的斜率为1,则2m 2-5m +2m 2-4=1,即2m 2-5m +2=m 2-4,整理得m 2-5m +6=0,解得m =2或3.当m =2时,2m 2-5m +2=0,-(m 2-4)=0,不符合题意,故m =3.5.若直线(m 2-1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1B.⎝⎛⎦⎥⎤-1,12C.⎣⎢⎡⎭⎪⎫-12,1 D.⎣⎢⎡⎦⎥⎤12,1 解析:选D 若直线(m 2-1)x -y -2m +1=0不经过第一象限,则直线经过第二、四象限或第三、四象限或第二、三、四象限,所以直线的斜率和截距均小于等于0.直线方程变形为y =(m 2-1)x -2m +1,则⎩⎪⎨⎪⎧m 2-1≤0,-2m +1≤0,解得12≤m ≤1.6.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:选C 由题意知:-m n =-43,即3m =4n ,且有-1n =13,∴n =-3,m =-4.7.两点A (a +2,b +2)和B (b -a ,-b )关于直线4x +3y =11对称,则a ,b 的值为( ) A .a =-1,b =2 B .a =4,b =-2 C .a =2,b =4D .a =4,b =2解析:选D A 、B 关于直线4x +3y =11对称,则k AB =34,即b +2-(-b )a +2-(b -a )=34,①且AB 中点⎝⎛⎭⎪⎫b +22,1在已知直线上,代入得2(b +2)+3=11,②解①②组成的方程组得⎩⎪⎨⎪⎧a =4,b =2.8.直线l 1与直线l 2:3x +2y -12=0的交点在x 轴上,且l 1⊥l 2,则直线l 1在y 轴上的截距是( )A .-4B .4C .-83D.83解析:选C 设直线l 1的斜率为k 1,直线l 2的斜率为k 2,则k 2=-32.∵l 1⊥l 2,∴k 1k 2=-1,∴k 1=-1k 2=-1-32=23.设直线l 1的方程为y =23x +b ,直线l 2与x 轴的交点为(4,0).将点(4,0)代入l 1方程,得b =-83.9.光线从点A (-3,5)射到x 轴上,经反射以后经过点B (2,10),则光线从A 到B 的路程为( )A .5 2B .2 5C .510D .10 5解析:选C 点A (-3,5)关于x 轴的对称点为A ′(-3,-5),则光线从A 到B 的路程即A ′B 的长,|A ′B |=(-5-10)2+(-3-2)2=510.10.数学家欧拉在1765年提出定理,三角形的外心、重心、垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高线的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点B (-1,0),C (0,2),AB =AC ,则△ABC 的欧拉线方程为( )A .2x -4y -3=0B .2x +4y +3=0C .4x -2y -3=0D .2x +4y -3=0解析:选D 本题考查欧拉线方程,∵B (-1,0),C (0,2),∴线段BC 中点的坐标为⎝ ⎛⎭⎪⎫-12,1,线段BC 所在直线的斜率k BC =2,则线段BC 的垂直平分线的方程为y -1=-12×⎝ ⎛⎭⎪⎫x +12,即2x+4y -3=0.∵AB =AC ,∴△ABC 的外心、重心、垂心都在线段BC 的垂直平分线上,∴△ABC 的欧拉线方程为2x +4y -3=0.故选D.11.已知点M (1,0)和N (-1,0),直线2x +y =b 与线段MN 相交,则b 的取值范围为( ) A .[-2,2]B .[-1,1] C.⎣⎢⎡⎦⎥⎤-12, 12 D .[0,2]解析:选A 直线可化成y =-2x +b ,当直线过点M 时,可得b =2;当直线过点N 时,可得b =-2,所以要使直线与线段MN 相交,b 的取值范围为[-2,2].12.若直线l 1:y -2=(k -1)x 和直线l 2关于直线y =x +1对称,那么直线l 2恒过定点( )A .(2,0)B .(1,-1)C .(1,1)D .(-2,0)解析:选C ∵l 1:kx =x +y -2,由⎩⎪⎨⎪⎧x =0,x +y -2=0,得l 1恒过定点(0,2),记为点P ,∴与l 1关于直线y =x +1对称的直线l 2也必恒过一定点,记为点Q ,且点P 和Q 也关于直线y=x +1对称.令Q (m ,n ),则⎩⎪⎨⎪⎧n +22=m 2+1,n -2m ×1=-1,⇒⎩⎪⎨⎪⎧m =1,n =1,即Q (1,1),∴直线l 2恒过定点(1,1).二、填空题(本大题共4小题,每小题5分,共20分)13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10. 答案:1014.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________.解析:设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-14-(-2)=-23.答案:-2315.已知点M (a ,b )在直线3x +4y =15上,则 a 2+b 2的最小值为________. 解析:a 2+b 2的最小值为原点到直线3x +4y =15的距离:d =|0+0-15|32+42=3. 答案:316.在△ABC 中,已知C (2,5),角A 的平分线所在的直线方程是y =x ,BC 边上的高所在的直线方程是y =2x -1,则顶点B 的坐标为________.解析:依题意,由⎩⎪⎨⎪⎧y =2x -1,y =x ,解得⎩⎪⎨⎪⎧x =1,y =1,则A (1,1).因为角A 的平分线所在的直线方程是y =x ,所以点C (2,5)关于直线y =x 的对称点C ′(5,2)在边AB 所在的直线上, 所以边AB 所在的直线方程为y -1=2-15-1(x -1),整理得x -4y +3=0.又边BC 上的高所在的直线方程是y =2x -1, 所以边BC 所在的直线的斜率为-12,所以边BC 所在的直线方程是y -5=-12(x -2),整理得x +2y -12=0.由⎩⎪⎨⎪⎧x -4y +3=0,x +2y -12=0,解得⎩⎪⎨⎪⎧x =7,y =52,则B ⎝ ⎛⎭⎪⎫7,52.答案:⎝ ⎛⎭⎪⎫7,52 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知直线l 经过点P (-2,1),且与直线x +y =0垂直. (1)求直线l 的方程;(2)若直线m 与直线l 平行且点P 到直线m 的距离为2,求直线m 的方程. 解:(1)由题意得直线l 的斜率为1,故直线l 的方程为y -1=x +2,即x -y +3=0. (2)由直线m 与直线l 平行, 可设直线m 的方程为x -y +c =0,由点到直线的距离公式得|-2-1+c |2=2,即|c -3|=2,解得c =1或c =5.故直线m 的方程为x -y +1=0或x -y +5=0.18.(本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2:(1)相交;(2)平行;(3)重合.解:当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m23m 得m =-1或m =3,由1m -2=62m,得m =3. 故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19.(本小题满分12分)等腰直角三角形斜边所在直线的方程是3x -y =0,一条直角边所在的直线l 的斜率为12,且经过点(4,-2),若此三角形的面积为10,求此直角三角形的直角顶点的坐标.解:设直角顶点为C ,点C 到直线y =3x 的距离为d , 则12d ·2d =10,∴d =10. ∵直线l 的斜率为12,且经过点(4,-2),∴直线l 的方程为y +2=12(x -4).即x -2y -8=0.设直线l ′是与直线y =3x 平行且距离为10的直线, 则直线l ′与l 的交点就是C 点, 设直线l ′的方程是3x -y +m =0, ∴|m |32+(-1)2=10,∴m =±10,∴直线l ′的方程是3x -y ±10=0.由方程组⎩⎪⎨⎪⎧x -2y -8=0,3x -y -10=0或⎩⎪⎨⎪⎧x -2y -8=0,3x -y +10=0,得点C 的坐标是⎝⎛⎭⎪⎫125,-145或⎝⎛⎭⎪⎫-285,-345.20.(本小题满分12分)如图,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为:y -2=x -3,即x -y -1=0. (2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.21.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,说明理由. 解:(1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116, 所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0.若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.解:(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称, 有k OG ·k =-1⇒1a·k =-1⇒a =-k .故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M ⎝ ⎛⎭⎪⎫-k 2,12. 故折痕所在的直线方程为y -12=k ⎝ ⎛⎭⎪⎫x +k 2,即y =kx +k 22+12. 由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E ⎝ ⎛⎭⎪⎫2,2k +k 22+12,交y 轴于点N ⎝⎛⎭⎪⎫0,k 2+12.则|NE |2=22+⎣⎢⎡⎦⎥⎤k 2+12-⎝ ⎛⎭⎪⎫2k +k 22+122=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。

人教A版高中数学必修三试卷第三章 概率阶段测试.docx

第三章 概率阶段测试一.选择题1.下课以后,教室里最后还剩下2位男同学,2位女同学.如果没有2位同学一块儿走,则第2位走的是男同学的概率是( ) A. 12 B. 13 C. 14 D. 152.盒中有10只螺丝钉,其中有3只是不合格的,现从盒中随机地抽取4个,那么恰有两只不合格的概率是( )A .130B .310C . 13 D .123.取一根长度为5米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于6平方米的概率为( ) A.31 B.41 C.52 D.534.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为( ) A.29200 B.725 C.29144 D.7185.甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.166.一个盒子内部有如图所示的六个小格子,现有桔子、苹果和香蕉各两个,将这六个水果随机放在这六个格子里,每个格子放一个,放好之后每行每列的水果种类各不相同的概率( )A. 215B. 29C. 15D. 137.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P(m ,n)在直线x +y =4上的概率是( ) A. 13 B. 14 C. 16 D. 1128.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A. 481π B . 81481π- C.127 D. 8279.向等腰直角三角形()ABC AC BC =其中内任意投一点M , 则AM 小于AC 的概率为( ) A .22 B .212- C . 8π D .4π 10.某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A .156 B .114 C .17 D .314二.填空题11.甲、乙等五名社区志愿者被随机分配到D C B A 、、、四个不同岗位服务,每个岗位至少有一名志愿者,则甲、乙两人同时参加岗位A 服务的概率是_________.12.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是_________.13.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求取出的两个球上标号为相邻整数的概率_________.14.某旅游公司有甲、乙、丙三种特色产品,其数量分别为,,a b c (单位:件),且,,a b c成等差数列。

人教A版高中数学必修三 第1章 算法初步 单元检测(C)

人教A版高中数学必修三第1章算法初步单元检测(C)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构( )A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构2.计算机执行下面的程序段后,输出的结果是()a=1b=3a=a+bb=a-bPRINT a,bA.B.4,1 C.0,0 D.6,03.阅读下边的程序框图,运行相应的程序,则输出s的值为( )A.-1 B.0 C.1 D.34.当x=5,y=-20时,下面程序运行后输出的结果为( )A.22,-22 B.22, 22 C.12, -12 D.-12, 12 5.阅读如图所示的程序框图,运行相应的程序,输出的结果是( )A.2 B.4 C.8 D.166.如图所示的程序框图,其功能是( )A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.求a,b的最大值D.求a,b的最小值7.阅读下面的程序框图,则输出的S等于( )A.14 B.20 C.30 D.558.程序框图如图所示,若输入p=200,则输出结果是( )A.9B.8C.7D.69.将二进制数110 101(2)转化为十进制数为( )A.106 B.53 C.55 D.10810.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i= ( )A.6B.7C.8D.911.下图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是( )A.i>5 B.i≤4C.i>4 D.i≤512.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题4分,共20分)13.读程序本程序输出的结果是________.14.把89化为五进制数是________.15.如图所示的程序框图所表示的算法,输出的结果是2.16.用秦九韶算法求多项式f(x)=x6+2x5+3x4+4x3+5x2+6x,当x=2时f(x)的值为.17.如图是一个程序框图,则输出的S的值是_______________________.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)18.(10分)分别用辗转相除法和更相减损术求779与209的最大公约数. 19.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.20.(12分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.21.(12分)某公司为激励广大员工的积极性,规定:若推销产品价值在10 000元之内的年终提成5%;若推销产品价值在10 000元以上(包括10 000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的程序框图.22.(12分)高一(3)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.23.(12分)在边长为4的正方形ABCD的边上有一点P,在折线BCDA中,由点B(起点)向A(终点)运动,设点P运动的路程为x,△APB的面积为y,求y 与x之间的函数关系式,画出程序框图,写出程序.人教A版高中数学必修三第1章算法初步单元检测(C)解答一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构[答案] B[条件结构就是处理遇到的一些条件判断.算法的流程根据条件是否成立,有不同流向,而循环结构中一定包含条件结构.]2.计算机执行下面的程序段后,输出的结果是()a=1b=3a=a+bb=a-bPRINT a,bA.B.4,1 C.0,0 D.6,0[答案] B[解析] [把1赋给变量a,把3赋给变量b,把4赋给变量a,把1赋给变量b,输出a,b.]3.阅读下边的程序框图,运行相应的程序,则输出s的值为()A.-1 B.0 C.1 D.3[答案] B[解析] [当i=1时,s=1×(3-1)+1=3;当i=2时,s=3×(3-2)+1=4;当i=3时,s=4×(3-3)+1=1;当i=4时,s=1×(3-4)+1=0;紧接着i=5,满足条件i>4,跳出循环,输出s的值为0.]4.当x=5,y=-20时,下面程序运行后输出的结果为()A.22,-22 B.22, 22 C.12, -12 D.-12, 12 [答案] A[解析] [具体运行如下:(x,y)→(5,-20)→(5,-17)∴x-y=22,y-x=-22.] 5.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2 B.4 C.8 D.16[答案] C[解析] [本小题考查的是程序框图中的循环结构,循环体中两个变量S、n其值对应变化,执行时,S与n对应变化情况如下表:S -1 122n 2 4 8故S=2时,输出n=6.如图所示的程序框图,其功能是()A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.求a,b的最大值D.求a,b的最小值[答案] C7.阅读下面的程序框图,则输出的S等于()A.14 B.20 C.30 D.55 [答案] C[由题意知:S=12+22+ (i2)当i=4时循环程序终止,故S=12+22+32+42=30.]8.程序框图如图所示,若输入p=200,则输出结果是()A.9B.8C.7D.6[答案] B9.将二进制数110 101(2)转化为十进制数为()A.106 B.53 C.55 D.108[答案] B[110 101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.]10.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i=()A.6B.7C.8D.9[答案] C11.下图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是()A.i>5 B.i≤4C.i>4 D.i≤5[答案] C[S=1×24+1×23+1×22+1×21+1=(((2×1+1)×2+1)×2+1)×2+1(秦九韶算法).循环体需执行4次后跳出,故选C.]12.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值有()A.1个B.2个C.3个D.4个[答案] C二、填空题(本大题共5小题,每小题4分,共20分)13.读程序本程序输出的结果是________.[答案] 3 3解析由题意知V=34×2×2×3=3 3.14.把89化为五进制数是________.[答案] 324(5)15.如图所示的程序框图所表示的算法,输出的结果是.[答案] 216.用秦九韶算法求多项式f(x)=x6+2x5+3x4+4x3+5x2+6x,当x=2时f(x)的值为[答案] 24017.如图是一个程序框图,则输出的S的值是_______________________.[答案] 63[解析]当n=1时,S=1+21=3;当n=2时,S=3+22=7;当n=3时,S=7+23=15;当n=4时,S=15+24=31;当n=5时,S=31+25=63>33.故S=63.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)18.(10分)分别用辗转相除法和更相减损术求779与209的最大公约数.[解析](1)辗转相除法:779=209×3+152,209=152×1+57,152=57×2+38,57=38×1+19,38=19×2.所以779与209的最大公约数为19.(2)更相减损术:779-209=570,570-209=361,361-209=152,209-152=57,152-57=95,57-38=19,38-19=19.所以779和209的最大公约数为19.19.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.解程序框图如下图:程序:S=0i=1WHILE i<=999S=S+i∧2i=i+2WENDPRINT SEND20.(12分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.【解析】算法如下:第一步,a1=1.第二步,i=9.第三步,a0=2×(a1+1).第四步,a1=a0.第五步,i=i-1.第六步,若i=0,执行第七步,否则执行第三步.第七步,输出a0的值.程序框图和程序如图所示:21.(12分)某公司为激励广大员工的积极性,规定:若推销产品价值在10 000元之内的年终提成5%;若推销产品价值在10 000元以上(包括10 000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的程序框图.解程序框图如下图所示:22.(12分)高一(3)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.解程序如下:程序框图如下图:S =0M =0i =1DOINPUT xIF x>90 THENM =M +1 S =S +xEND IFLOOP UNTIL i>54P =S/MPRINT PEND23.(12分)在边长为4的正方形ABCD 的边上有一点P ,在折线BCDA 中,由点B(起点)向A(终点)运动,设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式,画出程序框图,写出程序.解 y =⎩⎨⎧ 2x , 0≤x ≤4,8, 4<x ≤8,212-x , 8<x ≤12.程序框图如下图.程序如下:。

人教A版数学课本优质习题总结训练——选择性必修三参考答案

人教A 版数学课本优质习题总结训练——选择性必修三参考答案:1.45项【分析】由多项式的乘法法则结合分步乘法计数原理即可得解.【详解】根据多项式的乘法法则,()()()12312312345a a a b b b c c c c c ++++++++展开后每一项均是从()()()12312312345a a a b b b c c c c c ++++++++,,中各取1项相乘得到,所以展开后的项数为335=45⨯⨯项.2.326592种【分析】分析出每天的选法数,结合分步乘法计数原理即可得解.【详解】第一天,每个人均可选,有7种选法;从第二天至第七天,选出的人只需与前一天不同即可,均有6种选法;所以符合题意的安排方法共有7666666=326592⨯⨯⨯⨯⨯⨯种.3.40【分析】对2160分解因数,转化2160的正因数()=253,,,r s tp r s t N ⨯⨯∈,结合参数的取值及分步乘法计数原理即可得解.【详解】由题意,432160=253⨯⨯,则2160的正因数()=253,,,r s tp r s t N ⨯⨯∈,因为r 可取0,1,2,3,4;s 可取0,1;t 可取0,1,2,3;所以2160有52440⨯⨯=个不同的正因数.4.288.【分析】根据分步乘法计数原理以及排列数的思想计算出不同排法的种数.【详解】第一步排音乐节目:有44A 种排法;第二步排舞蹈节目:有33A 种排法;第三步排曲艺节目:有22A 种排法;所以共有432432288A A A =种排法.5.(1)1224;(2)1440.【分析】(1)分别得到从0,2,4,6中任取3个数字和从1,3,5中任取2个数字的种数,然后全排列,再减去首位是零种数即可;(2)由比5000000大,则必须是七位数,且首位是5或6求解;【详解】(1)从0,2,4,6中任取3个数字有34C 种,从1,3,5中任取2个数字有23C 种,五个数全排列有325543C C A 种,其中首位是零的有224433C C A 种,所以一共可组成3222545443331224C C C C A A =-个没有重复数字的五位数;(2)若比5000000大,则有七位数,且首位是5或6,所以由数字0,1,2,3,4,5,6可以组成16621440C A =个没有重复数字,并且比5000000大的正整数.6.(1)60;(2)21;(3)91;(4)120【分析】(1)根据要求直接选取即可;(2)在剩下的7人中任选2人即可;(3)包含两种情况,第一种甲和乙都在内,第二种情况,甲乙选1人;(4)从所有9人中选4人,去掉只有男生和只有女生的情况.【详解】(1)如果4人中男生女生各选2人,有225460C C =种选法;(2)如果男生中的甲和女生中的乙必须在内,则在剩下的7人中任选2人,有2721C =种选法;(3)如果男生中的甲和女生中的乙至少要有1人在内,包含两种情况,第一种甲和乙都在内的选法有2721C =种,第二种情况,甲乙选1人,有132770C C =种选法,则如果男生中的甲和女生中的乙至少要有1人在内,共有217091+=种选法;(4)如果4人中必须既有男生又有女生,先从所有9人中选4人,去掉只有男生和只有女生的情况,故有444945120C C C --=种选法.7.(1)63;(2)31【分析】(1)对于去几人进行分类讨论,最后根据加法计数原理求解即可;(2)对甲和乙两位同学要么都去,要么都不去进行分类讨论,分别计算去法种数,最后相加即可.【详解】(1)一个宿舍的6名同学被邀请参加一个晚会,去1人时,有166C =种去法;去2人时,有2615C =种去法;去3人时,有3620C =种去法;去4人时,有4615C =种去法;去5人时,有566C =种去法;去6人时,有661C =种去法;根据分类计数原理得:共有12345666666663C C C C C C +++++=种去法;(2)当甲和乙两位同学都去,则至少要去2人,则有01234444444216C C C C C ++++==种去法;当甲和乙两位同学都不去,则有1234444415C C C C +++=种去法;根据分类计数原理得:共有161531+=种去法;8.180【分析】先排I ,II ,III 最后排IV ,由此求得不同着色方法数.【详解】先排I ,II ,III 共有3554360A =⨯⨯=种,IV 有133C =种不同的着色方法数有603180⨯=种.9.54【分析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有1863=⨯种名次排列情况;②、甲不是最后一名,甲乙需要排在第二、三、四名,有236A =种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故5人的名次排列可能有54种不同情况.10.D【分析】求出展开式的通项,令x 的指数为5即可求出.【详解】()101x -的展开式通项为()101101rrr r T C x -+=⋅⋅-,令105-=r ,可得=5r ,所以展开式中含5x 的项的系数是510C -.故选:D.11.-15.【分析】在(1)(2)(3)(4)(5)x x x x x -----的展开式中含4x 的项即从5个因式中取4个x ,1个常数即可写出含4x 的项,则可得到答案.【详解】在(1)(2)(3)(4)(5)x x x x x -----的展开式中含4x 的项即从5个因式中取4个x ,1个常数,所以含4x 的项为444444543215x x x x x x -----=-.所以展开式中,含4x 的项的系数是-15.12.102412【分析】根据组合数的性质计算即可.【详解】(1)由组合数的性质可得13511101111111121024C C C C +++⋯+==;(2)由组合数的性质知,0122n n n n n n C C C C +++⋯+=,1012111112n n n n n n C C C C +++++++++=⋯+,所以0120121111112122nn n n n n n n n n n n C C C C C C C C +++++++++⋯+==+++⋯+.故答案为:1024;1213.(1)证明见解析;(2)证明见解析.【分析】(1)先写出展开式的通项公式并确定出常数项,然后将组合数改写为阶乘的形式并化简,由此完成证明;(2)先写出展开式的通项公式并确定出中间项,然后将组合数改写为阶乘的形式并化简,由此完成证明.【详解】(1)展开式的通项为()2222211rr r n rr n rnn C xC xx --⎛⎫⋅⋅-=-⋅⋅ ⎪⎝⎭,令n r =,所以常数项为()21nnn C -⋅,又()()()()()()()()2246...2135...212!1112!!!!n nn nn n n n C n n n n n ⨯⨯⨯⨯⋅⨯⨯⨯⨯--⋅=-⋅=-⋅-⋅⋅()()()()()()()2123...135...21!135...2112!!!!n nn n n n n n n n n ⨯⨯⨯⨯⋅⨯⨯⨯⨯-⋅⨯⨯⨯⨯-=-⋅=-⋅⋅⋅()()135...212!n n n ⨯⨯⨯⨯-=-⋅,所以21nx x ⎛⎫- ⎪⎝⎭的展开式中常数项是()()135...212!n n n ⨯⨯⨯⨯--⋅,故得证.;(2)展开式的通项为222221r n rn r r n rn n C x C x---⋅⋅=⋅,中间项对应的r n =,所以中间项为2nnn C x ⋅,又()()()()()2135...21246...22!2!!!!n nn nn n n n C x x x n n n n n ⨯⨯⨯⨯-⋅⨯⨯⨯⨯⋅=⋅=⋅-⋅⋅()()()()()()135...212135...135 (2)1!2!!!!nnn n n n n x x n n n n ⨯⨯⨯⨯-⋅⨯⨯⨯⨯⨯⨯⨯⨯-⋅=⋅=⋅⋅⋅()()()135...212!n n x n ⨯⨯⨯⨯-=⋅,所以()21nx +的展开式中间一项是()()()135...212!nn x n ⨯⨯⨯⨯-⋅,故得证.14.(1)证明见解析;(2)证明见解析【分析】(1)通过二项式展开可证明;(2)由1010991(1100)1-=--通过二项式展开可证明.【详解】(1)01122222(1)1(1)11n n n n n nn n n n n n n n C C n C n C n n C n C n +-=+-=+++⋯+-=++⋯+,上式中的每一项都可以被2n 整除,故(1)1n n +-能被2n 整除;(2)()10100122101010101010991110011001001001C C C C -=--=-⨯+⨯-⋯+⨯-22101010101000100100C C =-+⨯-⋯+⨯,上式中的每一项都可以被1000整除,故10991-能被1000整除.15.证明见解析.【分析】利用二项式定理直接证明.【详解】左边=112211222(1)2(1)n n n n n nn n n C C C -----⨯+⨯+⋯+-⨯+-()()()1122001210112222(1)2(1111)n n n n n n n n n n n n C C C C C ----=-+--⨯⨯⨯⨯+⨯+⋯+⨯⨯-+⨯⨯-()21n=-=1=右边.即证.16.54【分析】由任意两点连线的条数,再排除边数可得.【详解】任意两点连线的条数,再排除边数,故正十二边形的对角线的条数是21212661254C -=-=.故答案为:54.17.6【分析】根据组合数的性质及组合数的计算公式计算可得;【详解】解:因为1121n n C -+=,所以2121n C +=,即()1212n n +=,即2420n n +-=,解得6n =或7n =-(舍去)故答案为:618.192【分析】先排数学、体育,再排其余4节,利用乘法原理,即可得到结论.【详解】解:由题意,要求数学课排在上午,体育课排在下午,有11428C C =种再排其余4节,有4424A =种,根据乘法原理,共有824192´=种方法,故答案为:192.19.58【分析】从8个顶点中选4个,排除6个表面有6个四点共面情况,6个对角面有6个四点共面情况.【详解】首先从8个顶点中选4个,共有4870C =种结果,其中,有四点共面的情况,6个表面有6个四点共面情况,6个对角面有6个四点共面情况,所以以正方体的顶点为顶点的三棱锥的个数是706658--=.故答案为:58.20.(1)(1)2n n -,(2)(1)2n n -【分析】(1)由题意可知:1条直线,0个交点,2条直线,1个交点,3条直线,12+个交点,4条直线,123++条交点,从而可得到规律,进而可得答案;(2)类比(1)中的方法得出答案【详解】解:(1)因为1条直线,0个交点,2条直线,1个交点,3条直线,12+个交点,4条直线,123++个交点,5条直线,1234+++条交点,……所以n 条直线有123(1)n +++⋅⋅⋅+-个交点,即(1)2n n -个交点;(2)因为1个平面,0条交线,2个平面,1条交线,3个平面,12+条交线,4个平面,123++条交线,5个平面,1234+++条交线,……所以n 个平面有123(1)n +++⋅⋅⋅+-条交线,即(1)2n n -条交线;21.(1)226x -;(2)618C ;(3)14n =或23;(4)135;(5)30.【分析】(1)54(12)(13)x x -+的展开式中按x 的升幂排列的第3项,即展开式中含2x 的项.(2)求出其通项公式,令x 的指数为0即可求解.(3)利用二项展开式的通项公式求出通项求出各项的二项式系数,利用等差数列的定义列出方程解得.(4)先将多项式展开,转化为二项式系数的和差,利用二项展开式的通项公式求出系数即可.(5)()()5522x x yx x y ⎡⎤++=++⎣⎦,两次利用通项公式求解即可.【详解】(1)54(12)(13)x x -+的展开式中按x 的升幂排列的第3项,即展开式中含2x 的项,()()()()221221124554322326C x C x C x C x x +-+⋅-⋅⋅=-.(2)18[9x+ 展开式的通项公式为:()3181818211818939rr rrr r r r T C x C x ----+=⋅⋅=⋅⋅⋅;令31802r -=可得:12r =;故18[9x +展开式的常数项为:126126181839C C -⋅=.(3) 展开式中第9项、第10项、第11项的二项式系数分别为8n C ,9n C ,10n C ,9810!!!229!(9)!8!(8)!10!(10)!n n n n n n C C C n n n ∴=+⇒=+---⇒2119(9)(8)(9)109n n n =+---⨯;化简得90(9)(8)210(8)n n n +--=⨯-,即:2373220n n -+=,解得14n =或23.(4)2101010210(1)(1)(1)(1)(1)x x x x x x x x ++-=-+-+- ,210(1)(1)x x x ∴++-展开式中含4x 的系数为:10(1)x -的含4x 的系数加上其含3x 的系数加上其含2x 项的系数,10(1)x - 展开式的通项为110()rr r T C x +=-,令4r =,3,2分别得展开式含4x ,3x ,2x 项的系数为410C ,310C -,210C ,故210(1)(1)x x x ++-展开式中含4x 的系数为:432101010135C C C -+=,(5)()()5522x x yx x y ⎡⎤++=++⎣⎦Q 设其展开式的通项公式为2551,05,()r r r r T C x y r r N x -+⋅≤≤=+∈,令2r =,得()32x x +的的通项公式为3323603(,),m m m m mx m m N C x C x --⋅=≤≤∈,再65m -=,得1m =,()52x x y ∴++的展开式中,52x y 的系数为215310330C C ⋅=⨯=.即()52x x y ++的展开式中,52x y 的系数为30.22.见解析【分析】根据5555559(561)9+=-+,按照二项式定理展开,化简后,根据展开式的各式都含有因数8可得它能被8整除.【详解】证明:5555559(561)9+=-+0551541253254154555555555555555656(1)56(1)56(1)(1)9C C C C C =+-+-++-+-+ 551545455555656568C C =-+++ 能被8整除.所以55559+能被8整除.23.(1)22m n C C ;(2)222m n l C C C ;【分析】(1)首先分析平行四边形是由两组平行对边构成的,接着结合分步计数原理求解即可;(2)首先分析平行六面体是由3组平行对面构成的,接着结合分步计数原理求解即可;【详解】(1)由题意可知:平面内有两组平行线,一组有m 条,另一组有n 条,要构成平行四边形,需要有两组对边分别平行,故从第一组m 条平行线中任选2条,作为平行四边形的一组对边,共有2m C 种不同的取法,再从第二组n 条条平行线中任选2条,作为平行四边形的另一组对边,共有2n C 种不同的取法,则可以构成22m n C C 个平行四边形.(2)由题意可知:空间有三组平行平面,第一组有m 个,第二组有n 个,第三组有l 个,要构成平行六面体,需要有3组对面分别平行,故从第一组m 个平行平面中任选2个,作为平行六面体的一组对面,共有2m C 种不同的取法,再从第二组n 个平行平面中任选2个,作为平行六面体的第二组对面,共有2n C 种不同的取法,再从第三组l 个平行平面中任选2个,作为平行六面体的第三组对面,共有2l C 种不同的取法,则可以构成222m n l C C C 个平行六面体.24.(1)96,(2)36,(3)48,(4)72【分析】(1)先从另外4道工序中任选1道工序放在最后,再将剩余的4道工序全排列即可;(2)先从另外3道工序中任选2道工序放在最前和最后,再将剩余的3道工序全排列;(3)先排这2道工序,再将它们看做一个整体,与剩余的工序全排列;(4)先排其余的3道工序,出现4个空位,再将这2道工序插空【详解】解:(1)先从另外4道工序中任选1道工序放在最后,有14C 4=种不同的排法,再将剩余的4道工序全排列,有4424A =种不同的排法,故由分步乘法原理可得,共有42496⨯=种加工顺序;(2)先从另外3道工序中任选2道工序放在最前和最后,有236A =种不同的排法,再将剩余的3道工序全排列,有336A =种不同的排法,故由分步乘法原理可得,共有6636⨯=种加工顺序;(3)先排这2道工序,有222A =种不同的排法,再将它们看做一个整体,与剩余的工序全排列,有4424A =种不同的排法,故由分步乘法原理可得,共有22448⨯=种加工顺序;(4)先排其余的3道工序,有336A =种不同的排法,出现4个空位,再将这2道工序插空,有2412A =种不同的排法,所以由分步乘法原理可得,共有61272⨯=种加工顺序,25.2(+6+11)6n n n 【分析】求出(1)n x +展开式中含2x 的系数为2n C ,再利用二项式系数的性质求和即可.【详解】因为(1)n x +展开式的第1r +为1rr r n T C x +=.所以3(1)x +中含2x 项的系数是23C 、4(1)x +中含2x 项的系数是24C ,…,2(1)n x ++中含2x 项的系数是22C n +.所以342(1)(1)(1)n x x x +++++⋯++的展开式中含2x 项的系数为222232223333423342333(+6+11)()6n n n n n n C C CC C C CC CC ++++++=++++-=-=.所以含2x 项的系数是2(+6+11)6n n n .26.()1P BA =∣,1()2P A B =∣【分析】由事件包含关系的意义及条件概率的意义直接写结果,再用条件概率的公式验证.【详解】因为A B ⊆,且()0.3P A =,()0.6P B =,则A 发生B 一定发生,所以()1P BA =∣,0.31()0.62P A B ==∣,又因为()()0.3P AB P A ==,由条件概率公式得:()()()1()()P AB P A P B A P A P A ===∣,()()0.31()()()0.62P AB P A P A B P B P B ====∣.27.(1)0.956;(2)95239.【分析】(1)直接求解即可;(2)根据条件概率公式计算即可.【详解】(1)求这件产品是合格品的概率为()()40156140.956⨯-+⨯-=%%%%(2)设B ={取到的是合格品},A ={产品来自第i 批}()1,2i =,则()()1240,60P A P A ==%%,则()()121595,1496P B A P B A =-==-=%%%%,根据公式得:()()()()()()()111112240959540956096239P A P B A P A B P A P B A P A P B A ⨯==⨯+⨯+%%%%%%.28.0.75【分析】先求目标至少被命中1次的概率,然后根据条件概率公式即可求得.【详解】由题意可得,目标至少被命中1次的概率为()()110.610.40.8---=,又因为甲命中目标的概率为0.6,所以目标至少被命中1次,甲命中目标的概率0.60.750.8P ==.29.证明见解析.【分析】根据()()P B A P B =∣得到()()()P AB P A P B =,然后利用条件概率公式直接就可证明.【详解】因为()0P A >,()0P B >,所以()()()()P AB P BA PB P A ==∣,即()()()P AB P A P B =,所以()()()()()()()P AB P A P B P AB P A P B P B ===∣,即()()P A B P A =∣.30.(1)答案见解析(2)23【分析】(1)根据超几何概率公式,求概率,再写出分布列;(2)根据分布列计算(2)(2)(3)P X P X P X ==+=,即可求解.【详解】(1)(1)设该同学抽到能背诵的课文篇数为X ,X 的可能取值为0,1,2,3则X 的分布列为364310C C ()0,1,2,3C k k P x k k -===,用表格表示为X0123P1303101216(2)及格的概率为112(2)(2)(3)263==+==+=P X P X P X 31.(1)分布列见解析;(2)0.976【分析】(1)X 的取值分别为1,2,3,分别求出()1P X =,()2P X =,()3P X =,由此能求出李明参加考试次数X 的分布列(2)由已知条件,利用对立事件的概率计算能求出李明在一年内领到资格证书的概率.【详解】解:(1)X 的取值分别为1,2,3.()10.6P X ==,()()210.60.70.28P X ==-⨯=,()()()310.610.70.12P X ==-⨯-=所以李明参加考试次数X 的分布列为:X123P0.60.280.12(2)李明在一年内领到资格证书的概率为:()()()110.610.710.80.976P =--⨯-⨯-=32.(1)2.8;(2)10.4【分析】(1)(2)根据期望的性质计算可得;【详解】解:(1)依题意可得()10.120.330.440.150.1 2.8E X =⨯+⨯+⨯+⨯+⨯=(2)()(32)323 2.8210.4E X E X +=+=⨯+=33.()0.84D X =,(27)5X σ+=【分析】先计算出()E X ,即可计算出()D X ,即可计算(27)D X +,则可计算出(27)X σ+.【详解】由题意知:()10.220.330.440.1 2.4E X =⨯+⨯+⨯+⨯=.所以()()()()()22221 2.40.22 2.40.33 2.40.44 2.40.10.84D X =-⨯+-⨯+-⨯+-⨯=.(27)4()40.84 3.36D X D X +==⨯=,(27)X σ+=34.0【分析】先求出()E X ,即可求出()D X .【详解】因为随机变量X 满足()1P X c ==,其中c 为常数.所以()1E X c c =⨯=,所以2()()10D X c c =-⨯=.35.0.6;0.2【分析】根据概率之和为1及期望列出方程求解即可.【详解】由题意知,0.21()00.2121a b E X a b ++=⎧⎨=⨯+⨯+⨯=⎩,解得0.6,0.2a b ==即a 和b 分别为0.6,0.2.36.X 相对于μ的偏离程度小于X 相对于a 的偏离程度,X 相对于μ的偏离程度(即X 的方差)是X 相对于任意常数a 的偏离程度中最小的,从而方差能很好的反映一组数据的集中与离散程度.【分析】由方差的公式结合作差法比较大小即可.【详解】设i X 取i x 的概率为i P ,又()E X μ=,所以X 相对于μ的偏离程度为()()21ni i i x E X P =-∑,X 相对于a 的偏离程度为()21ni i i x a P =-∑,又因为11ni i P ==∑,()1ni i i E X x P ==∑,()E X a ≠,所以()()()2211nni i i i i i x E X P x a P ==---∑∑()()()221ni i ii x E X x a P =⎡⎤=---⎣⎦∑()()22122ni i ii E X x E X x a a P =⎡⎤=-+-⎣⎦∑()()()()()()12n i ii x a E X E X a E X a P =⎡⎤=-++-⎣⎦∑()()(){}12ni i i E X a E X a x P==-+-⎡⎤⎣⎦∑()()()12ni i i i E X a E X a P x P =⎡⎤=-⋅+-⎡⎤⎣⎦⎣⎦∑()()()112n ni i i i i E X a E X a P x P ==⎡⎤=-⋅+-⎡⎤⎣⎦⎢⎥⎣⎦∑∑()()()2E X a E X a E X =-⋅+-⎡⎤⎡⎤⎣⎦⎣⎦()()E X a a E X =-⋅-⎡⎤⎡⎤⎣⎦⎣⎦()20E X a =--<⎡⎤⎣⎦,()()()2211nnii i i i i x E X P x a P ==-<-∑∑,即X 相对于μ的偏离程度小于X 相对于a 的偏离程度,结论的意义:X 相对于μ的偏离程度(即X 的方差)是X 相对于任意常数a 的偏离程度中最小的,从而方差能很好的反映一组数据的集中与离散程度.37.答案见解析【分析】由题设分析得到110,2X B ⎛⎫⎪⎝⎭,进而利用二项分布求概率公式求出相应的概率,进而写出分布列.【详解】设A =“向右下落”,A =“向左下落”,则()()12P A P A ==,因为小球最后落入格子的号码X 等于事件A 发生的次数,而小球下落的过程中共碰撞小木钉10次,所以110,2X B ⎛⎫⎪⎝⎭,X 的可能取值为0,1,2,3,4,5,6,7,8,9,10,所以010010111(0)C 221024P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,9110115(1)C 22512P X ⎛⎫==⨯= ⎪⎝⎭,282101145(2)C 221024P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,373101115(3)C 22128P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,4641011105(4)C 22512P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,555101163(5)C 22256P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,6461011105(6)C 22512P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,737101115(7)C 22128P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,828101145(8)C 221024P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,9910115(9)C 22512P X ⎛⎫==⨯= ⎪⎝⎭,100010111(10)C 221024P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为:X012345678910P11024551245102415128105512632561055121512845102455121102438.均值10,方差203.【分析】由题意得随机变量X 服从二项分布,根据二项分布的均值和方差公式,即可求解.【详解】依题意试验一次成功的概率为13,且每次试验是相互独立,所以30次试验中成功次数X 服从二项分布1(30,)3X B ,11220()3010,()303333E X D X =⨯==⨯⨯=,所以在30次试验中次数X 的均值为10,方差为203.39.(1)516;(2)332.【分析】(1)质点回到原点可知质点向右移动3次,向左移动3次,根据二项分布的概率公式,即可求解;(2)质点位于4的位置可知质点向右移动5次,向左移动1次,根据二项分布的概率公式,即可求解.【详解】设质点向右移动的次数为X ,又质点每隔1s 等可能地向左或向右移动一个单位,共移动6次,且每次移动是相互独立,则1(6,2X .(1)质点回到原点,则3X =,3336115(3)(()2216P X C ==⋅=,所以质点回到原点的概率是516;(2)当质点位于4的位置时,则5X =,556113(5)()(2232P X C ==⋅=,所以质点位于4的位置的概率是332.40.(1)答案见详解;(2)答案见详解.【分析】(1)利用二项分布的概率计算公式即可求解.(2)利用独立事件的概率乘法公式即可求解.【详解】(1)由题意,X 可取0,1,2,3,()()()300000364012020125P X C ==-=,()()()21100003112020125P X C ==-=,()()()1220000312212020125P X C ==-=,()()()033000031312020125P X C ==-=,所以X 的分布列如下:X123P6412548125121251125(2)X 可取0,1,2,3,()()()2010.110.20.648P X ==-⨯-=,()()()()212110.10.110.210.10.20.306P X C ==-⨯⨯-+-⨯=,()()()122210.10.10.20.110.20.044P X C ==-⨯⨯+⨯-=,()230.10.20.002P X ==⨯=.所以X 的分布列如下:X123P0.6480.3060.0440.00241.()22x f x -=0.50.68270.84140.1587【分析】根据正态分布曲线的对称性和σ原则,即可求解.【详解】由题意,机变量(0,1)X N ,则X 的密度函数为()22x f x -=,因为()0.6827P X μσμσ-≤≤+≈,根据正态分布曲线的对称性,可得(0)0.5P X ≤=,()()1110.6827P X P X ≤=-≤≤≈,()()0.68271(0)010.50.84142P X P X P X ≤=<+≤≤≈+=,10.6827(1)0.15872P X ->=≈42.(1)0.2;(2)()0.68E X =,()0.2976D X =.【分析】(1)由概率之和为1可求得;(2)根据分布列直接计算期望和方差即可.【详解】(1)由题可得20.36121q q +-+=,解得0.2q =或 1.8q =,当 1.8q =时,12 2.60q -=-<,不符合题意,舍去,∴0.2q =;(2)由(1)可得分布列为X 012P0.360.60.04()00.3610.620.040.68E X ∴=⨯+⨯+⨯=,222()(00.68)0.36(10.68)0.6(20.68)0.040.2976D X ∴=-⨯+-⨯+-⨯=.43.19【分析】根据随机变量的数学期望公式列出方程,求解方程即可.【详解】因为随机变量X 取可能的值1,2,…,n 是等可能的,所以1(),(1,2,,)P X i i n n=== ,所以1111(1)11()12(12)22n n n E X n n n n n n n ++=⨯+⨯++⨯=+++⨯=⨯= ,所以1102n +=解得19n =.44.(1)0.267;(2)9【分析】(1)利用二项分布的概率计算公式即可求解.(2)由题意列出0010.795n ->,解不等式即可求解.【详解】(1)10门大炮同时对某一目标各射击一次,设击中目标的次数为X ,则()10,0.3X B ,故恰好击中目标3次的概率为()733100.310.30.267C ⨯⨯-≈.(2)由题意,n 门大炮同时对某一目标各射击一次,击中0次的概率为()10.30.7nn -=,则至少击中一次的概率为10.7n -,则0010.795n ->,即lg 0.7lg 0.05n <,解得lg 0.051lg 210.30108.40lg 0.7lg 710.84511n ---->=≈≈--,因为n N *∈,所以如果使目标至少被击中一次的概率超过95%,至少需要9门大炮.45.(1)0.0037;(2)0.9197【分析】(1)用X 表示10万人中遭遇意外伤害的人数,可得()5100000,10X - ,则由()()414P X P X >=-≤可求;(2)可得一年内最多只能有2人出险,求出()2P X ≤即可.【详解】(1)一份意外伤害保险费为20元,销售10万份保单可得保险费200万元,保险金额为50万元,可得出在一年内若有4人以上出险,保险公司将亏本,由题意可得10万人参保,可看作10万次独立重复实验,每人是否遭遇意外伤害相互独立,用X 表示10万人中遭遇意外伤害的人数,每人遭遇意外的概率为510-,则()5100000,10X - ,则这家保险公司亏本的概率()()414P X P X >=-≤()()()()()101234P X P X P X P X P X =-=+=+=+=+=⎡⎤⎣⎦()()010510000015999991000001000001[100.99999100.99999C C --=-⨯⨯+⨯⨯()()()234259999835999974599996100000100000100000100.99999100.99999100.99999]C C C ---+⨯⨯+⨯⨯+⨯⨯10.996340.0037=-≈;(2)这家保险公司一年内获利不少于100万元,则一年内最多只能有2人出险,则()()()()2012P X P X P X P X ≤==+=+=()()()0120510000015999992599998100000100000100000100.99999100.99999100.99999C C C ---=⨯⨯+⨯⨯+⨯⨯0.9197≈.46.111[1(1)]32nn ---⋅【分析】记n A 表示事件“经过n 次传球后,球在甲的手中”,设n 次传球后球在甲手中的概率为n p ,得到11110,n n n n n p A A A A A +++==⋅+⋅,化简整理得111,1,2,3,22n n p p n +=-+= ,即1111(323n n p p +-=--,结合等比数列的通项公式,即可求解.【详解】记n A 表示事件“经过n 次传球后,球在甲的手中”,设n 次传球后球在甲手中的概率为,1,2,3,,n p n n = ,则有11110,n n n n n p A A A A A +++==⋅+⋅,所以11111()()()n n n n n n n n n p P A A A A P A A P A A +++++=⋅+⋅=⋅+⋅1111()(|)()(|)(1)0(1)22n n n n n n n n n P A P A A P A P A A p p p ++=⋅+⋅=-⋅+⋅=-,即111,1,2,3,22n n p p n +=-+= ,所以1111()323n n p p +-=--,且11133p -=-,所以数列1{}3n p -表示以13-为首项,12-为公比的等比数列,所以1111(332n n p --=-⨯-,所以1111111([1(1)]32332n nn p --=-⨯-+=--⋅.即n 次传球后球在甲手中的概率是111[1(1)]32nn ---⋅.47.(1)减少;(2)7k =.【分析】(1)根据已知求出阳性的人数,然后从极端情形入手求出5人一组的最大化验次数,比较可得;(2)仿照(1)求出k 人一组时最大测试次数,然后由基本不等式求最小值,由k 为正整数,比较得k 的值.【详解】(1)按照此种方法,需要化验两轮,第一轮化验次数为1000020005=,携带病毒的人占5%,因此携带病毒的人有100005%500⨯=(人),第二轮最多有500组需要化验,最多化验次数为50052500⨯=,因此这种方法最多化验次数为200025004500+=,化验次数减少.(2)按(1)中方法,按k 人一组,第一轮需要化验10000k次,如果携带病毒的人只占2%,则携带病毒的人有100002%200⨯=(人),最多有200组需要化验第2轮,第二轮最多化验次数为200k ,因此最多化验次数为1000050200200()20022000k k k k +=+≥⨯k =时等号成立,由于*k N ∈,易得50507878+<+,所以7k =时,化验次数最少.48.不同意;理由见详解.【分析】根据相关关系的判断方法即可给出理由.【详解】某个地区的环境条件适合天鹅栖息繁衍,与这个地区的环境条件有很大的关系,适合天鹅栖息的地区天鹅栖息就较多,不适合天鹅栖息的地区天鹅栖息就较少,婴儿出生率与生理遗传有关,当然也受地区环境的影响,但是两者并不存在必然的相关关系,“天鹅能够带来孩子”这个结论是错误的.49.ˆ0.249314.84hd =+【分析】由已知数据先计算,d h ,再根据回归方程中系数公式计算系数得方程.【详解】解:由已知18.120.140.229.083312d +++=≈ ,18.819.224.722.091712h +++=≈ ,2222(18.118.820.119.240.224.7)1229.083322.09170.2493(18.120.140.2)1229.0833b⨯+⨯++⨯-⨯⨯=≈+++-⨯ 22.09870.249329.083314.84a=-⨯≈,所以线性回归方程为:ˆ0.249314.84h d =+.50.(1)线性函数关系(2)1【分析】(1)根据题意得到解释变量和响应变量的关系是线性函数关系;(2)由(1)知:21R =【详解】(1)因为散点图中所有的散点都落在一条斜率为非0的直线上,所以解释变量和响应变量的关系是线性函数关系.(2)由(1)知:21R =51.答案见解析【分析】列出数据扩大10倍的22⨯列联表,计算出2χ的观测值,结合独立性检验的基本思想可出结论.【详解】数据扩大10倍的22⨯列联表为:学校数学成绩合计不优秀()0Y =优秀()1Y =甲校()0X =330100430乙校()1X =38070450合计710170880假设0:H 学校与数学成绩无关,由列联表数据得()22880330703801008.365 2.706430450710170χ⨯⨯-⨯=≈>⨯⨯⨯,根据小概率值0.1α=的独立性检验,我们推断假设0H 不成立,即认为学校与数学成绩有关,又因为甲校成绩优秀和不优秀的概率分别为1000.2326430≈,3300.7674430≈,乙校成绩优秀和不优秀的概率分别为700.1556450≈,3800.8444450≈,又因为0.23260.1556>,所以,从甲校、乙校各抽取一个学生,甲校学生数学成绩优秀的概率比乙校学生优秀的概率大.所以,结论不一样,不一样的原因在于样本容量,当样本容量越大时,用样本估计总体的准确性会越高.52.C【分析】根据用一元线性回归模型2()0,()Y bx a eE e D e σ=++⎧⎨==⎩有关概念即可判断.【详解】解:用一元线性回归模型2()0,()Y bx a e E e D e σ=++⎧⎨==⎩得到经验回归模型ˆˆˆy bx a =+,根据对应的残差图,残差的均值()0E e =可能成立,但明显残差的x 轴上方的数据更分散,2()D e σ=不满足一元线性回归模型,正确的只有C.故选:C.53.C【分析】根据卡方独立性检验可得【详解】由表可知当0.05α=时, 3.841x α=,因为2.2.9743841x αχ==<,所以分类变量x 与y 相互独立,因为212.706 2.49874 3.χ<=<,所以分类变量x 与y 相互独立,这个结论犯错误的概率不超过0.1,故选:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数输入自变量x的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是()A.顺序结构B.条件结构C.顺序结构、条件结构D.顺序结构、循环结构2.下列赋值语句正确的是()A.M=a+1 B.a+1=MC.M-1=a D.M-a=13.若十进制数26等于k进制数32,则k等于()A.4 B.5 C.6 D.84.用“辗转相除法”求得360和504的最大公约数是()A.72 B.36 C.24 D.2 5205.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是()A.m=0? B.x=0?C.x=1? D.m=1?6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S *(n+1) B.S=S*x n+1C.S=S * n D.S=S*x n7.已知一个k进制的数132与十进制的数30相等,那么k等于()A.7或4 B.-7C.4 D.以上都不对8.用秦九韶算法求多项式:f(x)=12+35 x-8 x 2+79 x 3+6 x 4+5 x 5+3 x 6在x=-4的值时,v4的值为()A.-57 B.220 C.-845 D.3 3929.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4 C.2,3 D.2,910.下列程序的功能是()S=1i=1WHILE S<=10 000i=i+2S=S*iWENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n11.(2015·新课标全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A .0B .2C .4D .1412.如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 二、填空题(本大题共4小题,每小题5分,共20分)13.用更相减损术求三个数168,54,264的最大公约数为________. 14.将258化成四进制数是________.15.阅读如图所示的程序框图,运用相应的程序,若输入m 的值为2,则输出的结果i =________.16.下面程序执行后输出的结果是________,若要求画出对应的程序框图,则选择的程序框有________________.T=1S=0WHILE S<=50S=S+1T=T+1WENDPRINT TEND三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)画出函数的程序框图.18.(12分)用“更相减损术”求(1)中两数的最大公约数;用“辗转相除法”求(2)中两数的最大公约数.(1)72,168;(2)98,280.19.(12分)利用秦九韶算法判断函数f(x)=x 5+x 3+x 2-1在[0,2]上是否存在零点.20.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.21.(12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,并用基本语句编写程序.22.(12分)如图甲所示在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA 由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,且y与x之间的函数关系式用如图乙所示的程序框图给出.图甲图乙(1)写出程序框图中①,②,③处应填充的式子;(2)若输出的面积y值为6,则路程x的值为多少?并指出此时点P在正方形的什么位置上.答案1. 答案:C2. 解析:选A根据赋值语句的功能知,A正确.3. 解析:选D由题意知,26=3×k1+2,解得k=8.4. 解析:选A504=360×1+144,360=144×2+72,144=72×2,故最大公约数是72.5. 解析:选D阅读程序易知,判断框内应填m=1?,应选D.6. 解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.7. 解析:选C132(k)=1×k2+3×k+2=k2+3k+2=30,即k=-7或k=4.∵k>0,∴k=4.8. 解析:选B f(x)=(((((3 x+5) x+6) x+79) x-8) x+35) x+12,当x=-4时,v0=3;∴v 1=3×(-4)+5=-7;v 2=-7×(-4)+6=34,v 3=34×(-4)+79=-57;v 4=-57×(-4)-8=220.9. 解析:选A输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.10. 解析:选D法一:S是累乘变量,i是计数变量,每循环一次,S乘以i一次且i增加2. 当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.法二:最后输出的是计数变量i,而不是累乘变量S.11. 解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.12. 解析:选C由于x=a k,且a>A时,将x值赋给A,因此最后输出的A值是a1,a2,…,a N中最大的数;由于x=a k,且x<B时,将x值赋给B,因此最后输出的B值是a1,a2,…,a N中最小的数,故选C.13. 解析:为简化运算,先将3个数用2约简为84,27,132.由更相减损术,先求84与27的最大公约数.84-27=57,57-27=30,30-27=3,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.故84与27的最大公约数为3.再求3与132的最大公约数,易知132=3×44,所以3与132的最大公约数就是3.故84,27,132的最大公约数为3;168,54,264的最大公约数为6.答案:614. 解析:利用除4取余法.则258=10 002(4).答案:10 002(4)15. 解析:由程序框图,i=1后:A=1×2,B=1×1,A<B?否;i=2后:A=2×2,B=1×2,A<B?否;i=3后:A=4×2,B=2×3,A<B?否;i=4后:A=8×2,B=6×4,A <B?是,输出i=4.答案:416. 解析:本题为当型循环语句,可以先用特例循环几次,观察规律可得:S=1,T=2;S=2,T=3;S=3,T=4;…;依此循环下去,S=49,T=50;S=50,T=51;S=51,T =52.终止循环,输出的结果为52.本题使用了输出语句、赋值语句和循环语句,故用如下的程序框:起止框、处理框、判断框、输出框.答案:52起止框、处理框、判断框、输出框17. 解:程序框图如图所示.18. 解:(1)用“更相减损术”168-72=96,96-72=24,72-24=48,48-24=24.∴72与168的最大公约数是24.(2)用“辗转相除法”280=98×2+84,98=84×1+14,84=14×6.∴98与280的最大公约数是14.19. 解:f (0)=-1<0,下面用秦九韶算法求x=2时,多项式f(x)=x 5+x 3+x 2-1的值.多项式变形为f (x)=((((x+0) x+1) x+1) x+0) x-1,v0=1,v 1=1×2+0=2,v 2=2×2+1=5,v 3=5×2+1=11,v 4=11×2+0=22,v 5=22×2-1=43,所以f(2)=43>0,即f (0)·f (2)<0,又函数f (x)在[0,2]上连续,所以函数f(x)=x 5+x 3+x 2-1在[0,2]上存在零点.20. 解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:21. 解:程序框图如图.程序如下.S =0k =1DOS =S +1/(k*(k +1))k =k +1LOOP UNTIL k >99PRINT S END22. 解:(1)由题意,得y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,故程序框图中①,②,③处应填充的式子分别为:y =2x ,y =8,y =24-2x .(2)若输出的y 值为6,则2x =6或24-2x =6,解得x =3或x =9.当x =3时,此时点P 在正方形的边BC 上,距C 点的距离为1;当x =9时,此时点P 在正方形的边DA 上,距D 点的距离为1.。

相关文档
最新文档