String Inspired Neutrino Mass Models

合集下载

Model Building

Model Building

1.1
Hale Waihona Puke Fields• Higgs sector.....................2 • TOTAL........................19 There are other fundamental questions to bear in mind: Why three families? Why SU (3) × SU (2) × U (1)? Why these fermion representations? Elementarity of the Higgs?
and similarly in the second and third families: cα sα tα bα 1.1.3 c ¯α ¯α Ls L
L
νµ µ ντ τ
µ ¯L
L
¯α ¯α t L bL
L
τ ¯L
L
Scalar Fields
There are three conditions to judge models by: • Motivation The model should explain, shed light on, an otherwise unexplained aspect of the SM. • Testability At accessible energies either new particles, or rare decays, should be predicted to depart clearly from the SM. 3
The gauge sector is based on the group SU (3)C × SU (2)L × U (1)Y . There are 12 gauge bosons each with two helicity states (we count fields before symmetry breaking) totalling 24. 1.1.2 Fermion Fields

research statement的范例_jiangyun

research statement的范例_jiangyun

Research StatementYun JiangPh.D.candidate in Physics at U.C.Davis2013LHC-TI Graduate FellowMy current research concentrates on Large Hadron Collider(LHC)phenomenology,especially that related to Higgs physics and dark matter.The phenomenology of the125.5GeV Higgs boson,which was discovered at the LHC,in the next-to-minimal supersymmetric standard model(NMSSM)and two-Higgs-doublet model(2HDM)has constituted the main part of my work towards my Ph.D. degree.I am in the process of expanding my research work to include the topics of extra dimensions and inflation of the early universe.Accomplished workWefirst assessed the extent to which various semi-constrained NMSSM(scNMSSM)scenarios with a∼125GeV lightest CP-even Higgs h1are able to describe the LHC signal.We found that enhancedγγrates are most natural when the h1has mass similar to the second lightest CP-even Higgs,h2,with enhancement particularly likely if the h1and h2are degenerate.To experimentally probe this possibility,we developed diagnostic tools that could discriminate whether or not there are two(or more)Higgs bosons versus just one contributing to the LHC signals at125.5GeV.In addition,we considered the case where the lightest Higgs h1provides a consistent description of the small LEP excess at98GeV whereas the heavier Higgs h2possesses the primary features of the LHC Higgs-like signals at125GeV.Besides the NMSSM studies,the2HDM,one of the simplest extensions of the Higgs sector,is another focus of my research work.We recently performed an exhaustive analysis for Type I and Type II models to address an important question:to what extent are the latest measurements of the125.5GeV Higgs-like signal at the LHC compatible with the2HDM,assuming that the observed 125.5GeV state is one of the two CP-even Higgs bosons?We also discussed the implications for future colliders,including expectations regarding other lighter or heavier Higgs bosons.In an earlier study,we examined the maximum Higgs signal enhancements that can be achieved in the2HDM in which either a single Higgs boson or multiple Higgs bosons have mass(es)near125.5GeV.We found that the constraints requiring vacuum stability,unitarity and perturbativity substantially restrict possibilities for signal enhancement.Furthermore,we extend the2HDM by adding a real gauge-singlet scalar(2HDMS),which couldbe stable under the extra Z2symmetry and thereby a possible dark matter(DM)candidate. Comparing with the simplest singlet extension this model has richer phenomenology.For heavy DM (mass above55GeV)which generates the desired relic abundance,the predicted cross section for DM-nucleon scattering is below the current LUX limit and even the future XENON1T projection. In contrast,this model can accommodate light DM,even if the constraint on Higgs invisible decay is taken into account,and describe the CDMS II and CoGeNT positive signal regions. More impressively,the tension with the LUX/SuperCDMS exclusion can be alleviated in the Type II2HDMS in which the DM-nucleon interaction could be isospin-violating.In the process of completing this project,we independently worked out the modelfiles for the FeynRules program and will make the model database publicly available soon.Ongoing projectsBased on the comprehensive studies we have accomplished,we focus on the light(pseudo)scalar Higgs boson region in the2HDM.We are also pursuing whether the current LHC8TeV-run data pushes the2HDM to the alignment limit and/or the decoupling limit.In the meanwhile we are developing a routine to simplify the calculation for gluon-fusion and bottom-quark associated production cross sections.Besides,we consider the decoupling2HDM to determine if the vacuum could be stable above the inflation or GUT scale,assuming the2HDM is a low-energy effective theory.If it is stable,then the inflation driven by the2HDM Higgs would be possible and a topic for future study.One of the most important extensions of the standard model(SM)is the inclusion of additional particle(s)that comprise the DM of the universe.So far a number of collaborations have been devoted to working on the direct detection of DM.They typically translate the limit on the event rate against recoil energy they directly detect into a limit on the DM-proton cross section as a function of DM mass.However,there are several standard assumptions hidden in this translation that might not be correct.In particular,it is normally assumed that DM has equal coupling to neutrons and protons.In fact,the tension between the null LUX/SuperCDMS exclusions and the positive signal regions favored by CDMS II and CoGeNT could be alleviated if the DM interactions with nucleons are allowed to violate isospin symmetry.Thus,we are now interested in exploring the possibilities of a light isospin-violating DM(IVDM)in the2HDMS and NMSSM even though such an isospin-violation effect in supersymmetry(SUSY)models has been claimed to be negligible.If present,such light annihilating IVDM may explain the origin of the excess of gamma rayflux from the galactic center,as indicated in the previous studies.Another project I am now involved in is warped DM.In view of the success of extra dimensions in resolving the hierarchy andflavor problems of the SM,we are studying DM in warped extra dimensions in particular with Randall-Sundrum like geometries.We consider the case that all SM fields live in the bulk.In our model thefirst Higgs excited state is a possible stable DM candidate due to the presence of a geometric KK-parity.Our focus is on phenomenological implications of the DM after imposing constraints from current experimental data.Future planIn the near future I will continue investigating LHC implications of various Higgs models beyond the SM both within and outside the framework of SUSY.Potential extensions to my previous studies include the future prospects of2HDM at the100TeV collider and the related analyses in the framework of phenomenological NMSSM,a version of NMSSM without GUT-scale unification assumptions.Additionally,dark matter physics and inflation of the early universe driven by the Higgs boson,Higgs portal DM,axion,etc.will be important topics of exploration in my post-doctoral research.It is well-known that Higgs inflation is unlikely to occur within the pure SM given the latest LHC measurement on the top quark mass.To remedy this issue,I am considering the additional loop contribution from Higgs portal interactions to raise the tensor-to-scalar ratio at the inflation scale.Another probable direction of my future work is in Higgs triplet and neutrino physics.I wish to construct a model that contains a LHC observed Higgs and a DM candidate and is also able to explain the neutrino mass by means of Type-II seesaw mechanism.Rather than being the end of the story,the discovery of the125.5GeV Higgs boson has marked a new era in particle physics.I anticipate that this discovery will provide a key window into theories beyond the SM,and that additional Higgs bosons and SUSY particles may well be found.A variety of ongoing experiments aimed at detecting dark matter will either provide further limits or succeed in detecting dark matter.Either way,DM models will be constrained and/or eliminated,thereby providing guidance to ongoing theoretical work.As a young researcher,I am fortunate to be in the midst of an exciting time and will certainly work extremely hard to contribute to our high energy physics community.。

The Neutrino World - Fermilab Home:中微子的世界-费米实验室的家-PPT精选文档

The Neutrino World - Fermilab  Home:中微子的世界-费米实验室的家-PPT精选文档

17
Determining whether the spectrum is like or like could be a unique contribution of NOnA or its
proton-driver-enhanced successor, or of a Brookhaven Long Base Line program.
cij cos qij sij sin qij
eia1/2 0 0
0
eia2/2
0
0
0 1
q12 ≈ qsol ≈ 32°,
q23 ≈ qatm ≈ 35-55°,
q~13
<
15°
Majorana phases
CP
would lead to P(na nb) ≠ P(na nb). CP
What Cosmology/Astrophysics and Neutrino Physics can Teach Each Other
Steve Barwick <>, John Beacom <>
Theory Discussion Group
n3
From max. atm. mixingn, 3nm+2nt
(Mass)2
n2 n1
Dm2atm
{From nm(Up ) oscillate
{dIPnosbonLul(’Mntt enAm–(nDMeo)Sw=Wnn,)e fraction
} of n2 Dm2sol
From distortion of ne(solar) and ne(reactor)
physics/astrophysics/cosmology have for each other?

The Neutrino World:中微子的世界

The Neutrino World:中微子的世界
In such models, there are N > 3 i, and U is N x N, but still unitary.
11
Just as each neutrino of definite flavor is a superposition of mass eigenstates i, so each mass eigenstate is a superposition of flavors .
The mixing matrix U is 3 x 3 and unitary: UU† = U†U = 1.
Some models include “sterile” neutrinos — neutrinos that experience none of the known forces of nature except gravity.
2
These discoveries come from the observation of
neutrino oscillation.
3
The Physics of Neutrino Oscillation
4
Neutrinos Come in at Least Three Flavors
The known neutrino flavors:
8
Leptonic mixing —
le e, l , l
When W+ l+ + ,
e, , or
the produced neutrino state |> is
|
>
=

i
U*i
|i>

粒子宇宙学简介中科院高能所张新民2006.6.5

粒子宇宙学简介中科院高能所张新民2006.6.5
One of such experiments is the HEAT. (The HEAT signal may indicate the non-thermal production or the subhalo nearby)
ASg and ARGO: (High Duty cycle,Large
暗能量
实验证据:
基本特征:
a/ a 4G ( 3 p)
3
a 0 3p 0 w p / 1/ 3
注意:辐射 w=1/3, 物质 w=0
暗能量的候选者:
1,真空能(宇宙学常数)
T
8G
g
w p / 1
p (2 103 eV )4 8G
m ~ 10-3 eV
但是: th / ob ~ 10宇120宙学常数问题!
F.O.V)
~100GeV
~TeV
中意合作 ARGO 实验RPC大厅
中日合作 AS γ 实验区闪烁体探测器阵列
ARGO hall, floored by RPC. Half installed.
Here comes the two experiments hosted by YBJ observatory. One is call ASg, a sampling detector covering 1% of the area and have been operated for 15 years. The other full coverage one is called ARGO, still under installation. ASg use scintillation counter and ARGO use RPC to detector the arrival time and the number of secondary particles, with which the original direction and energy of CR particle can be restored. ASg has a threshold energy at a few TeV while ARGO down to about 100GeV. Both experiment have the advantages in high duty cycle and large field of view. Because for both of the experiments there is only one layer of detector, it is very difficult to separate the g ray shower from CR nuclei showers. Working in the similar energy range on mountain Jemez near Los Alamos, by using water cherenkov technique, MILAGRO has two layer of PMT, which enable it a rather good capability to separate g ray from background. Though it locates in a low altitude, has a smaller effective area, it has similar sensitivity to ASg experiment. To combine this technique with high altitude would greatly improve the sensitivity of our current EAS experiments.

Mussel-inspired surface chemistry for multifunctional coatings

Mussel-inspired surface chemistry for multifunctional coatings

elements (four cases),LTR elements (five cases),SINEs (six cases)and simple sequences (two cases),and (ii)high complexity regions:SDs (five cases)and unique DNA (five cases).As an interesting example of the latter,we observed a fusion involving the protein-coding regions of two olfactory-receptor (OR)genes,OR51A4and OR51A2,resulting in a new gene predicted to encode a protein identical to OR51A4,with upstream regions from OR51A2(Fig.5,B and C).OR51A4and OR51A2are found in the rhesus monkey;their presence confirms that the “ances-tral ”region contains both genes and that SV formation involved a recent gene-fusion event.We suggest that deviation in gene content for the large OR gene family may lead to diversity of olfactory perception in the human population.In addition to NHEJ,retrotransposition,and NAHR,other events may have occurred or could not be assigned.In four cases,simple sequence DNA was present at the breakpoint junctions;NAHR or other mechanisms may be involved in their formation (23).Four cases were unassigned,and two sequenced SVs closed gaps in the human reference sequence (see,e.g.,Fig.5,B and C).We also analyzed 14inversions.Four instances of homologous recombination between inverted repeats (HRIR)were observed;surprisingly,the remaining 10inversions appeared to involve events that do not require homology.Overall,a large fraction of all of the SVs we sequenced (at least 57%)had one or both breakpoints in nonrepetitive sequence,indicating that high-complexity genomic regions are subject to structural variation.Discussion.PEM enabled global detection of SVs at 3-kb resolution,and an average resolution of breakpoint assignment of 644bp.We identified ~1300SVs in two individuals,which suggeststhat humans may differ to a greater extent in SVs than in SNPs,when considering the total number of nucleotides affected.To date,most human genome –sequencing projects do not directly analyze SVs.Our study reveals that,given their high frequency,it will be essential to incorporate SV detection into human genome –sequencing projects (24).Overall,PEM is a cost-effective method both for improving genome assemblies and for revealing SVs present in the genome for a better understanding of human diversity.PEM has several advantages over existing methods.First,PEM increases resolution of SV detection to the level of confirmation by PCR,and resolution can be further improved by more careful selection of evenly sized DNA frag-ments for circularization.Second,PEM does not require preparation of a DNA library that in-volves cloning.However,the short size of frag-ments (3kb)used in this study hampers the detection of simple insertions >3kb,although larger insertions can be detected by their mated ends.Similar to other SV detection methods,a limitation of PEM is that SVs in regions with multiple copies of highly similar and long (>3kb)repeats are difficult to identify.Fortunately,al-though 45%of the human genome is composed of high –copy number repeat elements,these are often sufficiently divergent or short and can thus be distinguished by PEM.Additional refinements of PEM are also possible and will eventually allow detection of all SVs in the human genome.References and Notes1.J.Sebat et al .,Science 305,525(2004).2.A.J.Iafrate et al .,Nat.Genet.36,949(2004).3.E.Tuzun et al .,Nat.Genet.37,727(2005).4.R.Redon et al .,Nature 444,444(2006).5.B.E.Stranger et al .,Science 315,848(2007).6.H.Stefansson et al .,Nat.Genet.37,129(2005).7.E.Gonzalez et al .,Science 307,1434(2005).8.M.Fanciulli et al .,Nat.Genet.39,721(2007).9.J.R.Lupski,P.Stankiewicz,PLoS Genet 1,e49(2005).10.J.L.Freeman et al .,Genome Res.16,949(2006).11.J.O.Korbel et al .,Proc.Natl.Acad.Sci.U.S.A.104,10110(2007).12.Materials and methods are available as supportingmaterial on Science Online.13.M.Margulies et al .,Nature 437,376(2005).14.The International HapMap Consortium,Nature 437,1299(2005).15.R.R.Selzer et al .,Genes Chromosomes Cancer 44,305(2005).16.A.E.Urban et al .,Proc.Natl.Acad.Sci.U.S.A.103,4534(2006).17.B.P.Coe et al .,Genomics 89,647(2007).18.P.M.Kim et al.,in preparation,available at http://arxiv.org/abs/0709.4200v1.19.J.A.Bailey,G.Liu,E.E.Eichler,Am.J.Hum.Genet.73,823(2003).20.E.V.Linardopoulou et al .,Nature 437,94(2005).ls,E.A.Bennett,R.C.Iskow,S.E.Devine,TrendsGenet.23,183(2007).22.R.Belshaw et al .,J.Virol.79,12507(2005).23.A.Bacolla,R.D.Wells,J.Biol.Chem.279,47411(2004).24.R.Khaja et al .,Nat.Genet.38,1413(2006).25.We thank C.Turcotte,C.Celone,D.Riches,and 454colleagues,and R.Bjornson at the Yale High Performance Computation Center (funded by NIH grant:RR19895-02)for technical support.Funding was provided by a Marie Curie Fellowship (J.O.K.),the Alexander von Humboldt Foundation (A.T.),the Wellcome Trust (N.P.C.,M.E.H.,J.C.,and F.Y.),Roche Applied Science,and the NIH (Yale Center of Excellence in Genomic Science grant).Accessions can be found in table S5,and at /.Supporting Online Material/cgi/content/full/1149504/DC1Materials and Methods Tables S1to S6Fig.S1References21August 2007;accepted 13September 2007Published online 27September 2007;10.1126/science.1149504Include this information when citing this paper.Mussel-Inspired Surface Chemistry for Multifunctional CoatingsHaeshin Lee,1Shara M.Dellatore,2William ler,2,3Phillip B.Messersmith 1,3,4*We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine.Inspired by the composition of adhesive proteins in mussels,we used dopamine self-polymerization to form thin,surface-adherent polydopamine films onto a wide range of inorganic and organic materials,including noble metals,oxides,polymers,semiconductors,and ceramics.Secondary reactions can be used to create a variety of ad-layers,including self-assembled monolayers through deposition of long-chain molecular building blocks,metal films by electroless metallization,and bioinert and bioactive surfaces via grafting of macromolecules.Methods for chemical modification of bulk material surfaces play central roles in modern chemical,biological,and materials sciences,and in applied science,engineering,and technology (1–4).The exist-ing toolbox for the functional modification of material surfaces includes methods such as self-assembled monolayer (SAM)formation,func-tionalized silanes,Langmuir-Blodgett deposition,layer-by-layer assembly,and genetically engi-neered surface-binding peptides (5–9).Although widely implemented in research,many available methods have limitations for widespread practi-cal use;specific examples include the require-ment for chemical specificity between interfacial modifiers and surfaces (e.g.,alkanethiols on noble metals and silanes on oxides),the use of complex instrumentation and limitations of sub-strate size and shape (Langmuir-Blodgett depo-sition),or the need for multistep procedures for implementation (layer-by-layer assembly and ge-netically engineered surface-binding peptides).Development of simple and versatile strat-egies for surface modification of multiple classes of materials has proven challenging,and few generalized methods for accomplishing this have been previously reported (10).Our approach is inspired by the adhesive proteins secreted by19OCTOBER 2007VOL 318SCIENCE426o n M a r c h 1, 2016D o w n l o a d e d f r o mmussels for attachment to wet surfaces (11).Mus-sels are promiscuous fouling organisms and have been shown to attach to virtually all types of inorganic and organic surfaces (12),including classically adhesion-resistant materials such as poly(tetrafluoroethylene)(PTFE)(Fig.1A).Clues to mussels ’adhesive versatility may lie in the amino acid composition of proteins found near the plaque-substrate interface (Fig.1,B to D),which are rich in 3,4-dihydroxy-L -phenylalanine (DOPA)and lysine amino acids (13).In addition to partici-pating in reactions leading to bulk solidification of the adhesive (14–16),DOP A forms strong covalent and noncovalent interactions with substrates (17).DOPA and other catechol compounds perform well as binding agents for coating inorganic sur-faces (18–23),including the electropolymerization of dopamine onto conducting electrodes (24);however,coating of organic surfaces has proven much more elusive.Hypothesizing that the co-existence of catechol (DOPA)and amine (lysine)groups may be crucial for achieving adhesion to a wide spectrum of materials,we identified dopa-mine as a small-molecule compound that con-tains both functionalities (Fig.1E).We show that this simple structural mimic of Mytilus edulis foot protein 5(Mefp-5)is a powerful building block for spontaneous deposition of thin polymer films on virtually any bulk material surface and that the deposited films are easily adapted for a wide variety of functional uses.Simple immersion of substrates in a dilute aqueous solution of dopamine,buffered to a pH typical of marine environments (2mg of dopamine per milliliter of 10mM tris,pH 8.5),resulted in spontaneous deposition of a thin adherent poly-mer film (Fig.1,F to H).Analysis by atomic force microscopy (AFM)indicated that the poly-mer film thickness was a function of the immer-sion time and reached a value of up to 50nm after 24hours (Fig.1G).X-ray photoelectron spec-troscopy (XPS)analysis of 25diverse materials coated for 3hours or more revealed the absence of signals specific to the substrate (solid red bars in Fig.1H;see also fig.S1),indicating the for-mation of a polymer coating of 10nm or more in thickness.Little variation in the atomic composition of the coating was found (blue circles in Fig.1H),suggesting that the composition of the polymer coating was independent of the substrate com-position.The nitrogen-to-carbon signal ratio (N/C)of 0.1to 0.13is similar to that of the theoretical value for dopamine (N/C =0.125),implying that the coating is derived from dopamine polymeriza-tion.Evidence for dopamine polymerization wasfound through analysis of the modification solution by gel permeation chromatography (fig.S2)and of coated substrates by time-of-flight secondary ion mass spectrometry (TOF-SIMS)(fig.S3).Poly-mer was found both in solution and on the sub-strate,with TOF-SIMS clearly revealing signals corresponding to dihydroxyphenyl-containing poly-mer fragments.Although the exact polymeriza-tion mechanism is unknown at this time,it is likely to involve oxidation of the catechol to a quinone,followed by polymerization in a manner reminiscent of melanin formation,which occurs through polymerization of structurally similar compounds (25)(fig.S3).The polydopamine coating is able to form on virtually all types of material surfaces (Fig.1H):noble metals (Au,Ag,Pt,and Pd),metals with native oxide surfaces (Cu,stainless steel,and NiTi shape-memory alloy),oxides [TiO 2,non-crystalline SiO 2,crystalline SiO 2(quartz)Al 2O 3,and Nb 2O 5],semiconductors (GaAs and Si 3N 4),ceramics [glass and hydroxyapatite (HAp)],and synthetic polymers {polystyrene (PS),poly-ethylene (PE),polycarbonate (PC),polyethyleneFig.1.(A )Photograph of a mussel attached to commercial PTFE.(B and C )Schematic illustrations of the interfacial location of Mefp-5and a simplified molecular representation of characteristic amine and catechol groups.(D )The amino acid sequence of Mefp-5(13,34).(E )Dopamine contains both amine and catechol functional groups found in Mefp-5and was used as a molecular building block for polymer coatings.(F )A schematic illustration of thin film deposition of polydopamine by dip-coating an object in an alkaline dopamine solution.(G )Thickness evolution of polydopamine coating on Si as measured by AFM of patterned surfaces.(H )XPS characterization of 25different polydopamine-coated surfaces.The bar graph represents the intensity of characteristic substrate signal before (hatched)and after (solid)coating by polydopamine.The intensity of the unmodified substrate signal is in each case normalized to 100%.Substrates with characteristic XPS signals indistinguishable from the polydopamine signal are marked by “N.A.”The blue circles represent the N/C after polydopamine coating (details of XPS data analysis are available in fig.S1and table S2).1Biomedical Engineering,Northwestern University,2145Sheridan Road,Evanston,IL 60208,USA.2Chemical and Biological Engineering,Northwestern University,2145Sheridan Road,Evanston,IL 60208,USA.3Institute for BioNanotechnology in Medicine,Northwestern University,2145Sheridan Road,Evanston,IL 60208,USA.4Materials Science and Engineering,Northwestern University,2145Sheridan Road,Evanston,IL 60208,USA.*To whom correspondence should be addressed.E-mail:philm@ SCIENCEVOL 31819OCTOBER 2007427REPORTSFig.2.Polydopamine-assisted electroless metallization of sub-strates.(A to C )Electroless copper deposition on polydopamine-coated nitrocellulose film (A),coin (B),and three-dimensional plastic object (C).(D )Schematic representation of electroless metallization of photoresist-patterned surfaces coated with polydopamine.Photoresist (blue)was removed before silver metallization (left)or after copper metallization (right).(E and F )Scanning electron microscopy images showing micropatterns of silver on Si (E)and copper on a glass substrate(F).Fig. 3.Polydopamine-assisted grafting of various organic molecules.(A )Schematic illustration of alkanethiol monolayer (top right)and PEG polymer (bottom right)grafting on polydopamine-coated surfaces.(B )Pictures of water droplets on several unmodified (left),polydopamine-coated (middle),and alkanethiol-grafted (right)substrates.Substrates investigated include organic polymers [PTFE,PC,and nitrocellulose (NC)],metal oxides (SiO 2and TiO 2),and noble metals (Cu and Au).Contact angle values are shown in table S1.(C )NIH 3T3fibroblast cell adhesion to unmodified glass (“Bare ”)and OEG6-terminated alkanethiol monolayer formed on polydopamine-coated glass.Error bars indicate SD.(D to F )Total internal reflection fluo-rescence (TIRF)microscopy of Cy3-conjugated Enigma homolog protein adsorption to mPEG-NH 2–grafted polydopamine-coated glass (48-hour exposure to protein solution)(D),bare glass (30-min exposure)(E),and mPEG-silane immobilized on bare glass (48-hour exposure)(F).(G )NIH 3T3fibroblast cell adhesion to bare surfaces (black)and to polydopamine-coated surfaces after grafting with mPEG-SH (red)(prenormalized data are available in table S3).Error bars indicateSD.19OCTOBER 2007VOL 318SCIENCE 428REPORTSterephthalate (PET),PTFE,polydimethylsiloxane (PDMS),polyetheretherketone (PEEK),and poly-urethanes [Carbothane (PU1)and Tecoflex (PU2)]}.The polydopamine coating was found to be an extremely versatile platform for secondary re-actions,leading to tailoring of the coatings for diverse functional uses.For example,the metal-binding ability of catechols (26)present in the polydopamine coating was exploited to deposit adherent and uniform metal coatings onto sub-strates by electroless metallization.This was dem-onstrated through deposition of silver and copper metal films via dip-coating of polydopamine-coated objects into silver nitrate and copper(II)chloride solutions,respectively (Fig.2).Metal film deposition was confirmed by XPS and TOF-SIMS analysis,which demonstrated successful metal film deposition on several ceramic,poly-mer,and metal substrates:nitrocellulose,coinage metals,commercial plastics,Si 3N 4,glass,Au,TiO 2,SiO 2PC,PS,PEEK,Nb 2O 5,Al 2O 3,and NiTi (figs.S4and S5).Metal coatings were suc-cessfully applied in this manner to flexible poly-mer substrates and bulk objects with complex shapes (Fig.2,A to C),as well as to flat surfaces in which the polydopamine coating had been patterned by means of standard photolithography techniques (Fig.2,D to F).Unlike many other approaches to electroless metallization (27),the use of (immobilized)colloidal metal seed par-ticles was unnecessary for spontaneous formation of adherent metal films.In the case of silver film deposition,the apparent reductive capacity of the polydopamine sublayer was sufficient to elimi-nate the need for addition of an exogenous reducing agent in the metal salt solution,implying oxidation of the underlying polydopamine layer.Polydopamine coatings also support a variety of reactions with organic species for the creation of functional organic ad-layers.For example,un-der oxidizing conditions,catechols react with thiols and amines via Michael addition or Schiff base reactions (14,28)(fig.S3B).Thus,immer-sion of polydopamine-coated surfaces into a thiol-or amine-containing solution provided a convenient route to organic ad-layer deposition through thiol-and amine-catechol adduct forma-tion (Fig.3A).We demonstrated this approach for deposition of organic ad-layers in the form of alkanethiol monolayer,synthetic polymer,and biopolymer coatings.A monolayer of alkanethiol was spontane-ously formed through simple immersion of polydopamine-coated substrates (Fig.3B).Mono-layer formation on the polydopamine sublayer is believed to involve reaction between terminal thiol groups and the catechol/quinone groups of the polydopamine coating,in a manner analo-gous to the reaction between thiols and noble metal films in the formation of conventional SAMs.Alkanethiol monolayers formed by this approach are likely to contain defects but nevertheless appear to be functionally similar to conventionally formed SAMs.We therefore refer to these monolayers of alkanethiols as “pseudo-SAMs ”(pSAMs).For example,spontaneous formation of pSAMs with the use of methyl-terminated alkanethiol (C12-SH)was suggested by water contact angles of greater than 100°(Fig.3B and table S1)(29)and XPS spectra revealing the presence of sulfur in the modified surfaces (fig.S6).pSAMs were formed in this way on at least seven different materials,including several ceramics and polymers.Through proper choice of secondary reactants,polydopamine coatings can be transformed into surfaces that have specific chemical properties,such as the suppression of nonspecific biological interactions or the promotion of specific ones (23,24).We first demonstrated this by formation of pSAMs from heterobifunctional molecular pre-cursors on polydopamine-coated surfaces as de-scribed above.pSAMs terminated by oligo(ethylene glycol)(OEG6)were found to be largely resistant toward fibroblast cell attachment (Fig.3C),be-having in a qualitatively similar fashion to nonfoul-ing SAMs formed on gold (30).Grafting of polymer ad-layers onto polydo-pamine coatings was accomplished through the use of thiol-or amine-functionalized polymers in the secondary reaction step,giving rise to bio-resistant and/or biointeractive surfaces.For ex-ample,fouling-resistant surfaces were made by covalently grafting amine-or thiol-terminated methoxy-poly(ethylene glycol)[(mPEG-NH 2or mPEG-SH)in 10mM tris,pH 8.5,50°C]to the polydopamine-coated surface (fig.S7).mPEG-NH 2–modified polydopamine-coated glass exhib-ited substantial reduction in nonspecific protein adsorption as compared with uncoated glass and also outperformed glass surfaces modified by a silane-terminated PEG in terms of fouling resist-ance after 2days of continuous exposure to pro-tein solution (Fig.3,D to F).Similarly,mPEG-SH grafting onto a variety ofpolydopamine-coatedFig.4.Polydopamine-assisted grafting of a biomacromolecule for biospecific cell interaction.(A )Representative scheme for HA conjugation to polydopamine-coated surfaces.(B )Adhesion of M07e cells on polydopamine-coated PS increases with the HA solution concentration used during grafting.Error bars indicate SD.(C )Bioactive HA ad-layers were formed on polydopamine-coated glass,tissue-culture PS,and indium tin oxide (ITO),as demonstrated by attachment of M07e cells (red bars).Competition with soluble HA (blue bar)confirmed that cell adhesion was due to grafted HA.Error bars indicate SD.(D to F )Polydopamine-modified PS grafted with HA (0.5mg of HA per milliliter of 10mM tris,pH 8.0)retains bioactivity during long-term culture with M07e cells.Images taken after normal-force centrifugation show almost 100%attachment of expanding M07e cells at days 2[2760±390cells/cm 2(D)]and 4[5940±660cells/cm 2(E)].In the absence of HA,the polydopamine-coated surface supported similar levels of M07e cell expansion at day 4but did not support cell adhesion [610±630cells/cm 2(F)].SCIENCEVOL 31819OCTOBER 2007429REPORTSsubstrates led to dramatic reduction of fibroblast cell attachment as compared with the unmodified substrates (Fig.3G and table S3).The polydopa-mine coating itself was supportive of fibroblast cell adhesion at a level similar to that of bare sub-strates {for example,the total area of attached cells on 1.08mm 2of polydopamine-modified SiO 2[(46±1.4)×103m m 2]was similar to that of unmodified SiO 2[(55±8.6)×103m m 2]},leading us to conclude that the observed de-crease in cell adhesion was due to the grafted mPEG-SH.Finally,we engineered polydopamine surfaces for specific biomolecular interactions by forming an ad-layer of the glycosaminoglycan hyaluronic acid (HA).HA/receptor interactions are important for physiological and pathophysiological pro-cesses,including angiogenesis,hematopoietic stem cell commitment and homing,and tumor metastasis (31,32).Partially thiolated HA (33)was grafted onto a variety of polydopamine-coated substrates (Fig.4),and HA ad-layer bio-activity was measured via adhesion of the human megakaryocytic M07e cell line.Unlike fibroblasts,M07e cells did not adhere to polydopamine but did adhere to HA-grafted polydopamine surfaces in a dose-dependent manner (Fig.4B).Together with decreased binding in the presence of soluble HA (Fig.4C),these findings are consistent with expression of the HA receptor CD44by M07e cells (fig.S8).Polydopamine and HA-grafted poly-dopamine surfaces were biocompatible,as evi-denced by similar levels of M07e cell expansion as compared with cell expansion on tissue-culture PS surfaces,although only the HA-grafted poly-dopamine surfaces supported cell adhesion (Fig.4,D to F,and fig.S9).We introduced a facile approach to surface modification in which self-polymerization of do-pamine produced an adherent polydopamine coating on a wide variety of materials.Poly-dopamine coatings can,in turn,serve as a ver-satile platform for secondary surface-mediated reactions,leading ultimately to metal,SAM,and grafted polymer coatings.This two-step method of surface modification is distinctive in its ease of application,use of simple ingredients and mild reaction conditions,applicability to many types of materials of complex shape,and capacity for multiple end-uses.References and Notes1.B.D.Ratner,A.S.Hoffman,Eds.,Biomaterials Science:An Introduction to Materials in Medicine (Elsevier Academic,San Diego,CA,ed.2,2004).2.J.-H.Ahn et al .,Science 314,1754(2006).3.P.Alivisatos,Nat.Biotechnol.22,47(2004).nger,Science 293,58(2001).5.J.C.Love,L.A.Estroff,J.K.Kriebel,R.G.Nuzzo,G.M.Whitesides,Chem.Rev.105,1103(2005).6.G.Decher,Science 277,1232(1997).7.G.Roberts,ngmuir-Blodgett Films (Plenum,New York,1990).8.S.R.Whaley,D.S.English,E.L.Hu,P.F.Barbara,A.M.Belcher,Nature 405,665(2000).9.C.Tamerler,M.Sarikaya,Acta Biomater.3,289(2007).10.D.Y.Ryu,K.Shin,E.Drockenmuller,C.J.Hawker,T.P.Russell,Science 308,236(2005).11.J.H.Waite,M.L.Tanzer,Science 212,1038(1981).12.G.A.Young,D.J.Crisp,in Adhesion ,K.W.Allen,Ed.(Applied Science,London,vol.6,1982).13.J.H.Waite,X.X.Qin,Biochemistry 40,2887(2001).14.L.A.Burzio,J.H.Waite,Biochemistry 39,11147(2000).15.M.J.Sever,J.T.Weisser,J.Monahan,S.Srinivasan,J.J.Wilker,Angew.Chem.Int.Ed.43,448(2004).16.M.Yu,J.Hwang,T.J.Deming,J.Am.Chem.Soc.121,5825(1999).17.H.Lee,N.F.Scherer,P.B.Messersmith,Proc.Natl.Acad.Sci.U.S.A.103,12999(2006).18.M.Yu,T.J.Deming,Macromolecules 31,4739(1998).19.J.L.Dalsin,B.-H.Hu,B.P.Lee,P.B.Messersmith,J.Am.Chem.Soc.125,4253(2003).20.A.R.Statz,R.J.Meagher,A.E.Barron,P.B.Messersmith,J.Am.Chem.Soc.127,7972(2005).21.T.Paunesku et al .,Nat.Mater.2,343(2003).22.C.Xu et al .,J.Am.Chem.Soc.126,9938(2004).23.S.Zürcher et al .,J.Am.Chem.Soc.128,1064(2006).24.Y.Li,M.Liu,C.Xiang,Q.Xie,S.Yao,Thin Solid Films497,270(2006).25.W.Montagna,G.Prota,J.A.Kenney Jr.,Black Skin:Structure and Function (Academic Press,San Diego,CA,1993).26.C.G.Pierpont,nge,Prog.Inorg.Chem.41,331(1994).27.M.Charbonnier,M.Romand,G.Stremsdoerfer,A.Fares-Karam,Recent Res.Dev.Macromol.Res.4,27(1999).Voie,B.L.Ostaszewski,A.Weihofen,M.G.Scholssmacher,D.J.Selkoe,Nat.Med.11,1214(2005)ibinis et al .,J.Am.Chem.Soc.113,7152(1991).30.K.L.Prime,G.M.Whitesides,J.Am.Chem.Soc.115,10714(1993).31.D.N.Haylock,S.K.Nilsson,Regenerat.Med.1,437(2006).32.B.P.Toole,Nat.Rev.Cancer 4,528(2004).33.H.Lee,S.H.Choi,T.G.Park,Macromolecules 39,23(2006).34.Single-letter abbreviations for the amino acid residuesare as follows:A,Ala;C,Cys;D,Asp;E,Glu;F,Phe;G,Gly;H,His;I,Ile;K,Lys;L,Leu;M,Met;N,Asn;P,Pro;Q,Gln;R,Arg;S,Ser;T,Thr;V,Val;W,Trp;and Y,Tyr.35.This research was supported by NIH grants DE 14193andHL 74151.The authors thank T.G.Park and H.Lee for donation of thiolated HA,N.F.Scherer and X.Qu for their generous discussion and technical assistance with TIRF microscopy,and K.Healy for photomask donation.This research used the NUANCE characterization facilities (Keck II,EPIC,and NIFTI)at Northwestern University.Supporting Online Material/cgi/content/full/318/5849/426/DC1Materials and Methods Figs.S1to S10Tables S1to S3References2July 2007;accepted 12September 200710.1126/science.1147241Structure of a ThiolMonolayer –Protected GoldNanoparticle at 1.1ÅResolutionPablo D.Jadzinsky,1,2*Guillermo Calero,1*Christopher J.Ackerson,1†David A.Bushnell,1Roger D.Kornberg 1‡Structural information on nanometer-sized gold particles has been limited,due in part to the problem of preparing homogeneous material.Here we report the crystallization and x-ray structure determination of a p -mercaptobenzoic acid (p-MBA)–protected gold nanoparticle,which comprises 102gold atoms and 44p-MBAs.The central gold atoms are packed in a Marks decahedron,surrounded by additional layers of gold atoms in unanticipated geometries.The p-MBAs interact not only with the gold but also with one another,forming a rigid surface layer.The particles are chiral,with the two enantiomers alternating in the crystal lattice.The discrete nature of the particle may be explained by the closing of a 58-electron shell.Nanometer-size metal particles are of fundamental interest for their chemical and quantum electronic properties andof practical interest for many potential applica-tions (1,2).With the development of facile routes of synthesis (3),gold nanoparticles coatedwith surface thiol layers have been studied in most detail.The particles are typically hetero-geneous as synthesized,and though their size distribution may be narrowed by fractionation or other means (4–9),no atomically monodisperse preparation has been reported,and no atomicstructure has been obtained.Electron microscopy (EM)(10,11),powder x-ray diffraction (PXRD)(12),and theoretical studies have led to the idea of Marks decahedral (MD)and truncated octa-hedral geometries of the metal core,with crys-talline packing and {111}faces (13).According to this idea,discrete core sizes represent “magic numbers ”of gold atoms,arising from closed geometric shells (14).Alternatives of amorphous (15),molten,or quasimolten (16)cores have also been proposed.The structure of the surface thiol layer is similarly obscure.The nature of the gold-sulfur interaction (17),the fate of the sulfhydryl proton (18),and the conformation of the organic moiety all remain to be determined.The thiols are1Department of Structural Biology,Stanford University School of Medicine,Stanford,CA 94305,USA.2Department of Applied Physics,Stanford University,Stanford,CA 94305,USA.*These authors contributed equally to this work.†Present address:Department of Chemistry and Bio-chemistry,University of Colorado,Boulder,CO 80309,USA.†Present address:Department of Chemistry and Biochem-istry,University of Colorado,Boulder,CO 80309,USA.‡To whom correspondence should be addressed.E-mail:kornberg@19OCTOBER 2007VOL 318SCIENCE430REPORTS。

【doc】高能所2002年学术活动

高能所2002年学术活动附录4.高能所2002年学术活动169附录4.高能所2002年学术活动序号学术活动11月10日,加速器中心邀请清华大学加速器实验室葛军,黄文会分别做了题为"①在束流纵向不稳定性问题中应用Fokker-Planck方程的研究;②2×7 Superstructure高阶模计算与测量"的报告.21月17日,加速器中心邀请清华大学加速器实验室黄刚做了题为"束团反馈系统设计研究"的报告.31月17日,加速器中心物理组邢军和胡春良分别做了题为"电子云不稳定性模拟研究的物理模型"和"基于束流的准直测量系统"的报告.41月21日,加速器中心邀请韩国浦项加速器部主任南相熏博士做了题为"①韩国浦项加速器运行及R&amp;D:②韩国浦项加速器直线加速器"的报告.51月22日,学术委员会加速器分会受BEPCII工程指挥部委托对BEPCII储存环初步设计方案进行阶段评审,听取了曹建设"束流测量系统",赵籍九"控制系统",王光伟"高频系统",程健"磁铁电源系统",郝耀斗,韩谦"注入系统"的设计报告.61月23日,学术委员会加速器分会受BEPCII工程指挥部委托对BEPCII储存环初步设计方案进行阶段评审,听取了董海义"真空系统设计",庞家标"对撞区Septum铁设计",尹兆升"对撞区双孔径四极铁轮廓计算",王莫托"对撞区支架系统设计",彭全岭"超级四极铁技术要求",石才土"磁铁系统设计",屈化民"机械设计"报告.71月24日,理论物理室段斌博士做了题为"量子库仑三体问题"的报告.81月25日,实验物理中心邀请伦敦大学,英国皇家学会会员DavidBugg教授做了题为"HowtodoPartialWaveAnalysis"报告.91月25日,非加速器物理中心邀请Kanagawa大学ShojiTorii教授做了题为"CALET:AnImagingCalorimeterforCosmicElectromagneticComponentsatJapaneseExperimentModuleofISS"报告.101月25日,科研处,党政联合办,教育办联合组织的"高能所科技论坛"第一期,非加速器物理中心引进的国外杰出人才胡红波博士做了题为"CP破坏介绍"报告.l11月28日,理论物理室邀请伦敦大学,英国皇家学会会员DavidBugg教授做了题为"qq(bar)and'Extra'Mesonsupto2400MeV"的报告.121月29日,实验物理中心邀请伦敦大学,英国皇家学会会员DavidBugg教授做了题为"NewResultsonBESJ/一1,4丁c,丁c7c,yKsK-T-丁c±"的报告. 131月31日,核分析室邵涵如副研究员做了题为"防护知识讲座"的报告.l70中国科学院高能物理研究所2002年《年报》唾}喀}●}矗}誊0上喀*謦唪序号学术活动141月31日,加速器中心高文春博士做了题为"直线加速器相控系统研究"的博士后开题报告.152月1日,理论室邀请CzechNuclearPhysicsInstitute的AlesCieply博士做了题为"Kaonicatoms—probingkaoninteractioninnuclearmedium"的报告.162月6—7日,宇宙线与高能天体物理重点实验室召开"神舟2空间天文观测结果及相关问题"学术研讨会,介绍神舟2观测数据及主要结果,近期宇宙伽马射线暴的观测和物理进展,2001年太阳活动期的耀斑观测,太阳活动和地磁现象,磁暴和粒子沉降等.国家基金委,北京大学,南京大学,国家天文台,院空间中心,紫金山天文台和高能所30多人参加了研讨会.172月21日,理论室邀请台湾大学何小刚教授做了题为"Strong,Electroweak InteractionsandtheirUnificationwithNoncommutativeSpace—Time"的报告.182月21日,所学术委员会召开常委会,讨论推荐2002年度北京市科学技术进步奖项目.192月26日,核分析室审议申请国家自然科学基金课题报告.202月27日,谢家麟院士做了题为"参量辐射——一种新光源的应用"的报告.21.2月28日,核分析室张钧做博士后开题报告,题目是"金属富勒烯及其衍生物在生物体内的分布和生物学效应的研究".222月28日,加速器中心邀请日本KEK的R.Jugahara教授做了"①Installation andalignmentofKEKBmagnets,②Interactionregion"报告,介绍了KEKB磁铁和KEKB对撞区部件的安装及准直测量.232月28日,加速器中心邀请JohnEhmann先生,做了题为"V arian真空产品在加速器中的应用"的报告,介绍了干泵,分子泵,离子泵的性能和结构以及真空计的应用.242月28日,加速器中心的李少鹏做了"BEPCII低温系统初步设计中期报告". 252月28日,加速器中心的赵升初和孙虹做了访问KEK的汇报,报告题目是: ①1.3GHz中(结构超导腔的制造及测量结果,②几种超导腔在垂直测量中辐射剂量监测结果,③KEK超导腔垂直测量系统简介及部分测量结果.263月1日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第二期,同步辐射室吴白玉博士做了题为"同步辐射光源及世纪前沿科学"的报告.273月4日一6日,实验物理中心邀请美国SLAC的JerryV a'vra教授举办《漂移室系列讲座》:"1.Fundamentalsofdriftchambers:2.Wirechamber agingsintheneweraofhighluminositymachines:3.Performance problemsofRPC"..每附录4.高能所2002年学术活动171序号学术活动283月5日一7日,实验物理中心在CCAST举办了《J/物理研讨会》,来自北京大学,浙江大学,山东大学,武汉大学,中国科技大学,南开大学,中科院研究生院,理论所,高能所的31位代表在会上做了报告.293月5日,加速器中心邀请意大利INFN的MarioV escovi教授做了题为"ActivitiesatFrascatiAcceleratorDivision"的报告.303月5日,8日,12日,科技开发与企业管理处和加速器中心微波组举行报告会:介绍ANL,KHI国际合作项目的总体情况以及加速管,能量倍增器的检测结果.3l3月12日,实验物理中心邀请法国Sacley的WitoldKozanecki教授做了题为"MeasurementofmachinebackgroundofPEPII"的报告.323月12日,核分析室邀请化学所百人计划入选者王春儒研究员做了题为"内嵌富勒烯的新奇结构及应用"的报告;核分析室张天保研究员做了题为"Y谱学"的报告.333月13日,学术委员会召开了常委扩大会,审议2002年国家自然科学基金申请项目(面上项目40项,杰出青年项目6项).343月14日,核分析室邀请美国罗德岛大学大气化学中心K.Rahn教授做了题为"气溶胶中元素示踪体系的发展"的报告.353月15日,理论室邀请德国Tubingen大学理论所所长A.Faessler教授做了题为"Searchfornewphysics:Istheneutrinolessdoublebetadecaydetected?"的报告.363月15日,核分析室邀请日本原子力研究所,筑波大学池添博教授做了题为"Heavy—ionfusionreactionstosynthesisheavyandsuperheavynuclei--studyoffusionreactionmechanism"的报告:中国原子能院张焕乔院士做了题为"Asymptoticnorma1izationcoeffieintsandneutronhaloof theexcitedstatesinBandC"的报告.373月15日,同步辐射室邀请日本光子工厂安藤教授做了题为"X射线暗场成像研究"的报告.383月15日,加速器中心运行组黄泓做了题为"BEPC真空,高频参数显示系统" 的报告,控制组战明川和运行组吴正良做了题为"储存环真空管道表面温度测量系统"的报告,功率源组池云龙做了题为"速调管测试台升级改造"的报告.393月18日,同步辐射室邀请英国Durham大学的ThomosHase博士做了题为"利用同步辐射掠入射X射线研究过渡金属多层膜"的报告.403月21日,理论室陈莹博士做了题为"KaonMatrixElementsontheLattice"的报告.4l3月22日,加速器中心邀请日本KEK的J.Urakawa教授和M.Akemoto教授分别做了题为"RecentstatesofA TF"和"R&amp;Donklystronmodulatorfor superKEKB"的报告.中国科学院高能物理研究所2002年《年报》序号学术活动423月22日,核分析室邀请克罗地亚离子束分析实验室主任MilkoKaksic教授做了题为"克罗地亚质子核探针的应用研究"的报告,介绍了用核探针等核分析方法进行的材料,考古等领域的应用研究成果和现状.433月26日,实验物理中心邀请日本KEK的HitoshiY amamoto教授做了题为"KEKB/BELLE对撞机设计和本底研究"的报告.443月26日,理论室邀请浙江大学杨焕雄副教授做了题为"TypeIIBOrbifolds andInducedStandard—likeModels"的报告.453月27日,实验物理中心邀请日本KEK的M.Ishida博士:"(12)ANew SymmetryinHadronSpectroscopyand()-,MesonsinJ/Decays",日本KEK的K.Takamatsu教授:"Ahintforalchiral,achiralpartnerof(770)inthe3znstateandanewchiralnonets",:北京大学郑汉青教授:"Towardsmodel—independentdeterminationoftheo-meson",理论室邹冰松研究员:"胍S-waveand0十十particles".463月27日,英国物理学会出版社(IOPP)国际部高级主管RobertBrown教授做了题为"物理学研究电子网络出版的未来方向"的报告,介绍IOPP出版发行37种物理学期刊及电子版出版情况.473月27日,非加速器物理中心邀请美国Utah大学的曹臻博士做了题为"CosmicRayEnergySpectrumandCompositionabove10neV"的报告.483月28日,理论室场论组顾晓艳博士做了题为"QuantumThree—bodySysteminDDimensions"的报告.493月29日,科研业务处,党政联合办,教育办联合组织《高能所科技论坛》第三期,理论物理室邹冰松博士做了题为"BEPC强子物理简介"的报告.504月3日,加速器中心物理组邢军做了题为"SimulationStudyonECIfor BEPCandItsUpgradePlanBEPCII"的报告.514月4日,理论物理室晏启树博士做了题为"BraneFluctuationandthe Electro—weakChiralLagrangian"的报告.524月8日,研究生部主办了2002年度博士后学术交流会,在站的25位博士后介绍了他们的科研工作情况.534月9日,实验物理中心邀请台湾中研院物理所王子敬等共同讨论TEXONO工作进展情况.544月9日,理论物理室凌意博士做了题为"ThermalEffectinBraneWorld"的报告.554月11日,理论物理室吕才典研究员做了题为"在微扰QCD理论下的衰变"的报告.564月12日,同步辐射室邀请瑞典皇家理工学院HansAgren教授做了题为"Wave—packetdynamicsofresonantx—rayphOtOemissiOnandphotoioni—zation"的报告.辔ii赘学誊一虹联謦~附录4.高能所2002年学术活动173序号学术活动574月l6日,同步辐射室邀请日本光子工厂安藤教授做了题为"X光成像的新进展及应用"的报告.584月l6日,实验物理中心邀请意大利罗马大学R.Santonic教授做了题为"对RPC性能影响的各种因素"的报告,介绍了RPC的体电阻,气体,高压,温度,电缆连接等各种因素对RPC性能的影响.594月l8日,理论物理室邀请北大物理系刘川教授做了题为"I=2Pion ScatteringLengthonCoarseAnisotropicLattices"的报告.604月l9日,理论物理室邀请台湾中央研究院李湘楠教授做了题为"Quark—hadrondualityininclusiveBdecays"的报告.614月23日,实验物理中心邀请HERA—B的Spokesperson,MichaelMedinnis 博士做了题为"HERA—BExperiment:design,performance,expectation"的报告.624月24日,学术委员会召开了物理分委员会会议,邀请所内外专家审议了非加速器中心创新项目.634月24日,王兰法博士在加速器中心做了题为"3DParticleinCellProgram forE1ectronCloud"的报告.644月25日,实验物理中心邀请HERA—B的Spokesperson,MichaelMedinnis 博士做了题为"TheHERA—BPhysicsProgram:Preliminaryresults,the future"的报告.654月25日,理论物理室邀请清华大学毕效军博士做了题为"LeptonFlavor ViolationandaNewNeutrinoMassModel"的报告.664月26日,核分析室邀请意大利IspraJointResearchCenter的Enrico Sabbioni博士做了题为"TheRoleofNuclearandRadiochemical TechniquesinHumanMetalToxicology"的报告.674月26日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第四期,实验物理中心引进的国外杰出人才王贻芳博士做了题为"北京正负电子对撞机二期工程(BEPCII/BESIII)"的报告.684月29日,加速器中心组织了"BEPCII技术设计国际评审会(SLAC)"英文报告预讲,张闯等l5位同志做了报告.695月l0日,计算中心马梅副研究员做了"软件能力成熟度模型SW—CMM";马楠做了"统一建模语言UML"报告.705月l3日,核分析室柴之芳研究员做了"中子活化分析"报告.715月l4日,实验物理中心邀请清华大学工程物理系邵贝贝教授做了"开放式数据采集系统"的报告.725月l4日,高能所邀请日本KEK的HiromiHirabayashi教授做了"SuperconductingAccelerator&amp;MagntesforHighEnergyPhysics''的报告.735月l5日,学术委员会副主任郁忠强主持了《高级科技讲座》,邀请冼鼎昌院士做了题为"后基因组学时代中生物学与物理学的交叉"的报告.l74中国科学院高能物理研究所2002年《年报》序号学术活动745月15日和21日,理论室邀请美国Carnegie—Mellon大学L.S.Kisslinger教授分别做了"EarlyuniverseQCDphasetransitionandcosmicmicrowave backgroundradiation"和"Thegluebal1/sigmapictureandcharmmesondecay"的报告.755月16日,理论室张新民研究员做了"暗能量和反物质"报告.765月17日,理论室孙宝玺博士后做了"原子核内光子有效质量及APEX/EPOS 重离子碰撞实验中800KeV e+e一对的生成"报告.775月2O日和27日,核分析室邵涵如研究员做了"X射线荧光分析"报告.785月22日,加速器中心沈莉,罗云,邢军分别做了题为"固态调制器测试研究","LHC动力学孔径研究","电子云不稳定性研究进展"的出国访问报告.795月23日,理论物理室博士后沙依莆佳玛丽做了"TowardsaClassification ofUnitaryConformalFieldTheorieswithCentralChargeC=2"报告.8O5月24日,加速器中心邀请美国Brookhaven国家实验室MeiBai博士做了"BeamDynamicsIssuesinRHIC"报告.8l5月24日,实验物理中心黄光顺博士做了"迷人的高能物理"报告.825月24日,计算中心马梅副研究员做了"KEK等高能物理实验室控制系统数据库应用";马楠做了"统一建模语言UML(二)"报告.835月29,3O,31日,加速器中心邀请CERN的PS分部的P.Pearce博士分别做了"CLICandCTF3HighPowerRFPulseGenerationSystems","Multi-beamKlystronstobeUsedinCLIC"."Solid—stateModulator DevelopmentinCERN"报告.845月31日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第五期,核分析室引进的国外杰出人才赵宇亮博士做了"碳纳米材料一纳米足球和它的同伴们"报告.856月3日,理论物理室邀请复旦大学苏汝铿教授做了题为"有限温度场论(系列讲座)"的报告.866月3日,加速器中心邀请CERNPS分部的P.Pearce博士做了题为"D'Qing MethodUsedinCERNLine—typeModulators"的报告.876月3日,加速器中心党支部和学术小组联合举办了"加速器中心物理与技术系列讲座",第一讲由张闯做了题为"绪论一粒子加速器的回顾与展望"的报告.886月5日一6日,高能所举办了BESHI合作组会议,陈和生所长致欢迎词,李卫国副所长和王贻芳研究员等向合作组成员通报了BES-III探测器的初步设计及其R&amp;D的进展情况,广泛征求意见及探讨进一步扩大国内外合作的可能性.896月6日,理论物理室杜东生研究员做了题为"ChiraliFenhancedpower correctionsandB-'-&gt;PP,VP-'-&gt;BdecaysinQCDFactorizationApproach''的报告.F鼙}专}▲}土量I#孽£毒董善l哥螯簧群餐鲑t{..附录4,高能所2002年学术活动175FEFEElE}II£譬EB莨E}EE譬苣EEIlIEI譬IlIII量lII|fIIIElEI|巨I}}E}E譬ItE}f}IEE£}_;;;-l}}EE}EE群EE能群睇譬毽匿时爵瞄嚣噩辩睇磐匿群鞋£I蘑ItI £重I瞻置BEeB重量量譬IEI||量It量|IIfEIFff序号学术活动906月9日一12日,第十一届BES合作组年会在四川成都举行.来自合作组的各单位及国外代表共120多人参加了会议,40多位代表报告了包括BEPC/BES在过去一年来的运行状况,计算机网络环境建设,BES软硬件改善,J/1lr,(2S)及R值相关课题的理论和实验进展,以及BESIII方案的初步设计等各方面的进展情况.916月10日,高能所邀请耶鲁大学Prof.WernonHughex做了题为"MuonAnormalousMagneticMoment"的报告.926月12日,加速器中心功率源组董东和徐强分别做了题为"速调管研究"和"BEPCII电子枪高频脉冲调制器的研制"的报告.936月19日,加速器中心邀请SLAC的陈丕粲博士做了题为"Astrophysicsand CosmologyontheBench"的报告.946月20日,粒子天体物理研究中心邀请1988年诺贝尔奖获得者Jack Steinberger教授(CERN)做了题为"CosmicBackgroundRadiationand relevantcosmology"的报告.956月20日,理论物理室邀请西班牙V alenciaUniv.的E.Oset教授做了题为"ChiralUnitaryApproachtoMeson—MesonandMeson—Baryon InteractionsandNuclearApplications"的报告.966月20日,计算中心的研究生范勇和叶梅分别进行了"集群作业调度系统的设计与实现"和"基于Web的BES和BEPC数据存储管理系统"论文答辩.976月21日,加速器中心物理与技术系列讲座第二讲,国智元做了题为"加速器物理基本概念"的报告.986月26日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第六期,加速器中心董东做了题为"加速器与引力波"的报告.997月5日,加速器中心超导组孙安博士做了题为"中p质子射频超导腔腔型研究"的博士后出站报告.1007月8日一l2日,粒子天体物理研究中心羊八井组举办了YBJ—ARGO合作组DAQ和在线系统培训.山东大学,西南交通大学,西藏大学,云南大学物理系,云南大学宇宙线研究所,郑州大学和羊八井组的20余人参加.l017月l1日,计算中心邀请CERN/~h京大学访问学者钱思进博士做了题为"GRID 发展介绍"的报告.1027月l2日,学术委员会副主任郁忠强研究员主持了《高级科技讲座》,邀请中科院空间中心林宝军研究员做了题为"中国载人航天与应用"的报告.1037月15日,17日和18日,所学术委员会物理,加速器,应用各分会举行了《为高能所科研工作发展出谋划策》座谈会.l047月19日,理论物理室邀请美国密执安大学的GordonKane教授做了题为"ParticlePhysicsFrontierExperimentalandTheory"的报告.1057月23日,加速器中心党支部和学术小组联合举办了"加速器中心物理与技术系列讲座"第三讲,韩谦研究员做了题为"同步加速器的注入与引出(一)"的报告.l76中国科学院高能物理研究所2002年《年报》序号学术活动lO67月26日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第七期,高能所"百人计划"入选者傅世年研究员做了题为"先进加速器技术的新生长点——强流质子加速器"的报告.lO78月2日,加速器中心邀请美国BNL的B.Parker教授做了关于"BEPCIISC MagnetDesign"报告.lO88月8日,所学术委员会召开会议向全所科研人员传达2002年第31届国际高能物理会议情况.lO98月12日,加速器中心党支部和学术小组联合举办"加速器中心物理与技术系列讲座"第四讲,方守贤院士做了题为"散裂中子源及洁净核能源"的报告.llO8月20日,所学术委员会加速器分会召开全体委员会议,听取了高频系统的初步工作计划汇报,提出了"关于落实高频系统CPM计划的意见"的报告.lll8月20—25日,中科院高能所,理论所,中国高等科技中心,中国科技大学和亚太理论物理中心联合主办的中国北京2002粒子物理前沿一中微子和宇宙学专题讲习班在京郊密云举行.ll28月20—22日,加速器中心主办了第三届EPICS国际研讨会,来自日本,美国,德国的7位控制专家和高能所,上海原子核所的30多人参加了研讨会.ll38月21日,理论物理室邀请德国JohannesGutenbergUniversity核物理研究所的H.Arenhovel教授做了题为"Electromagneticreactionsonthe deuteronintheintermediateenergyregion"的报告.ll48月21日,加速器中心邀请CERN加速器学校的E.J.NWilson博士做了题为"NeutrinoFactory"的报告.ll58月23日,加速器中心的王生博士做了题为"日本强子装置中能输运线的设计,调试及束流实验和SDTL加速结构的研究"的出国访问报告.ll68月26日,粒子天体物理中心邀请法国EcolePolytechnique的Alain Debraine教授做了题为"GLASTEXPERIMENT"的报告.ll78月26日,加速器中心党支部和学术小组联合举办"加速器中心物理与技术系列讲座"第五讲,韩谦研究员做了题为"同步加速器的注入与引出(二)"的报告.ll88月27日,粒子天体物理中心邀请中科院理论所的张肇西教授做了题为"Bc StudyatLHC"的报告.ll98月27日,加速器中心邀请法国LAL—ORSAY的J.LeDuff教授做了题为"RSd) ACTIVITIESATLAL—ORSAY"的报告.l2O8月27日,实验物理中心邀请意大利罗马大学的MarioGreco教授做了题为"e+e—interactionsathighenergies"的报告.l2l8月27日,粒子天体物理中心邀请德国Max—Planck—InstitutfurPhysik的GeorgRaffelt教授做了题为"Axions:TheoreticalMotivation, AstrophysicalLimitsandExperimentalSearches"的报告.参专t#奄}毒}_.专#鼙蠢毒氅枣l謦£毒量j差r1零,羹;毒章矗tt''}垂霉童雾形附录4.高能所2002年学术活动177序号学术活动1228月29日,粒子天体物理中心邀请日本KanagawaUniversity的Fumiyoshi Makino教授做了"X-rayandgamma—rayemissionfromblazar"的报告.1238月29日,理论物理室邀请着名物理学家,美国普林斯顿大学Inst.of AdvancedStudy(IAS)的EdwardWitten教授与科研人员和研究生进行了学术座谈.1248月3O日,理论物理室邀请美国LBL的王新年教授做了题为"Monojetsin heavyioncoilision"的报告.1258月3O日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第八期,理论物理室引进的国外杰出人才邢志忠研究员做了题为"味混合与物质一反物质不对称"的报告.1269月2日,粒子天体物理中心邀请加拿大BritishColumbia大学的陈少敏博士做了题为"CKM矩阵元Vtd的测量"的报告.1279月2日,粒子天体物理中心邀请查敏博士做了题为"Searchforthegamma raysignalinTA(TelescopeArray)Project"的报告.1289月3日,理论物理室邀请日本东京Sophia大学的KiyotakaShimizu教授做了题为"DescriptionofSU(3)octetanddecupletSandPwaveexcitedbaryons"的报告.1299月l1日,所学术委员会物理分会召开了全体会议,讨论"BESIII超导磁铁方案".13O9月l1日,实验物理中心邀请加州理工学院朱人元教授做了题为"Comments onLCcalorimetry"的报告.l3l9月12日,所学术委员会加速器分会召开了全体会议,讨论如何"进一步提高BEPC同步辐射专用模式运行质量".1329月19日,理论物理室邀请意大利INFN的CarloGiunti教授做了题为"CurrentStatusofNeutrinoMassesandMixings"的报告.1339月19日,实验物理中心邀请东京大学SchoolofScience的KatsuhikoSato教授做了题为"NeutrinoBurstfromSupernovaandNeutrinoOscillation"的报告.1349月2O日,安捷伦公司和北京航天测控公司举行了"VXI技术讲座",介绍了VXI总线自动测试系统,VXl总线硬件电路设计及其关键技术和安捷伦产品及其在测试系统中的应用.1359月26日,理论物理室杨茂志副研究员做了题为"微扰QCD在B物理中的应用及B一冗形状因子的研究"的报告.1369月3O日,理论物理室邀请美国LBL实验室的王新年教授做了题为"Monojets inheavyioncollision"的报告.13710月1O日,同步辐射室邀请德国Hamburg大学的Zimmever教授做了题为"LuminescenceSpectroscopybySR"的报告,介绍了DESY的FEL进展.l78中国科学院高能物理研究所2002年《年报》誉}}警毒H枣.童毒幸l__,参;夸tl垂}专謦童i鼍事t羊童善鼍旁辱摹舌I善参售tt尊童囊,l序号学术活动138l0月11日,所学术委员会加速器分会召开全体委员会议,认真听取了优化BEPCIILattice设计阶段的汇报,加速器中心提出了四种与原设计不同的优化方案.139l0月11日,实验物理中心邀请荷兰Nijmegen大学的W.J.Metzger教授做了题为"ColorReconnectionandBose—EinsteinEffectsine+e一ww''的报告.140l0月11日,加速器中心党支部和学术小组联合举办了"加速器中心物理与技术系列讲座"第六讲,徐中雄研究员做了"电磁兼容简介"的报告,介绍电磁兼容技术学科的基本范畴和概念,介绍了电磁兼容的测试技术和设备,接地和搭接技术,屏蔽技术,滤波技术.141l0月l6日,同步辐射室邀请英国约克大学MichaelWoolfson教授做了题为"ABriefHistoryofStructuralCrystallography"(结构晶体学发展简史)的报告.142l0月17日,加速器中心党支部和学术小组联合举办了"加速器中心物理与技术系列讲座"第七讲,吴英志研究员做了题为"BEPCII对撞区布局介绍"的报告,介绍目前BEPCII对撞区的设计进展情况,同时介绍了其他对撞机对撞区的布局情况.143l0月17日,理论物理室邀请日本茨城大学理学院H.Suzuki教授做了题为"ChiralAnomalyinReducedModel(Abelian格点规范中的手征反常与手.征费米子)"的报告.144l0月18日,冼鼎昌院士做了题为"生物学世纪里的物理学"报告,介绍了人类基因组学工程的发展方向,物理学对生命科学起的重大作用.145l0月18日,同步辐射室邀请中国科技大学,中科院引进国外杰出人才潘建伟教授做了题为"基于原子和光子的量子信息处理"的报告,综述了利用参量下转换技术进行量子信息处理以及检验量子力学的若干基本问题.146l0月21日,实验物理中心邀请美国Kentucky大学的Keh—FeiLiu教授做了题为"轻子重子谱(包括胶子球寻找等内容)"的报告.147l0月21日,核分析室邀请斯洛文尼亚Ljubljana大学JosefStefen研究所的MilenaHorvat教授和LjudmilaBenedik博士分别做了题为"Recent ProgressinMercuryStudy"和题为"DeterminationofTraceElementsand RadionuclidesinEnvironmentalandBiologicalSamples"的报告,介绍了斯洛文尼亚及欧洲最新的有关汞研究的进展和Stefen实验室用于生物及环境样品中的放射化学实验方法.148l0月21日,科研业务处,党政联合办,教育办联合组织的《高能所科技论坛》第十期,理论物理室常哲研究员做了题为"超弦与M理论"的报告.149l0月22日,理论物理室邀请德国海德堡大学Nachtmann教授做了题为"CP—ViolationinFlavorDiagonalReactionsatHighEnergies"的报告.15Ol0月23日,实验物理中心邀请美国Kentucky大学的Keh—FeiLiu教授做了题为"ChiralSymmetryBreakingandOverlapFermion"的报告.附录4.高能所2002年学术活动179序号学术活动l5l10月23日,高能所邀请中国社科院美国研究所副所长张宇燕教授做了题为"经济全球化与中国"的报告.l5210月24日,理论物理室晏启树博士做了题为"TheRenormalizationofthe NonlinearEffectiveU(1)LagrangianWithSpontaneousSymmetryBreaking"的报告.l5310月29日,美国PTPRadiationOncologyDelegation来所访问,中华放射肿瘤学会主任殷蔚伯教授,美国华盛顿大学医学中心主任GeorgeLaramore教授,中国人民解放军301医院马林教授,中国军事医学科学院冯勤富教授分别做了题为"PresentStatusofRadiationOncologyinChina","Role ofParticleRadiationinCancerTreatment","FastNeutronRadiation。

PACC_国际物理学分类表_

如何查PACC代码?PACC代码是《Physics Abstracts,Classification and Contents》的缩略。

PACC专业代码是英国科学文摘(INSPEC)用于论文分类的代码。

按照论文的内容将其分为十大类有0000,1000,……5000,……9000表示,例如:凝聚物质由6000及7000表示,其中6000内包括凝聚物质的结构、热学和力学性质,而7000内包括凝聚物质的电子结构、电学、磁学和光学性质。

再仔细分则由6100……6200等表示,例如6100表示液体和固体结构。

而X射线晶体结构测定及精确化技术表示固体结构的测定包含在6100中,而用6110M来表示。

所以要查出某一论文的PACC专业代码,应先确定该论文主要内容属于哪一大类,就在那一大类中找出其代码,其次再找出该论文包括的其它次要内容的代码。

国际物理学分类表PACC(Physics Abstracts, Classification andContents)0000 总论 GENERAL0100 通讯、教育、历史和哲学 communication,education,history,andphilosophy0110 通报、消息和组织活动announcements, news, and organizational activities0110C 通报、消息和颁奖announcements, news, and awards 0110F 会议、演讲和学会conferences, lectures, and institutes 0110H 物理学组织活动physics organizational activities 0130 物理学文献及出版物physics literature and publications0130B 讲稿的出版(进修学院,暑期学校等)publications of lectures (advanced institutes, summer schools, etc.)0130C 会议录 conferenceproceedings 0130E 专著和著作集 monographs,andcollections 0130K 手册和字典handbooks and dictionaries0130L 物理数据、表格汇编collections of physical data, tables0130N 教科书 textbooks0130Q 报告、学位论文、论文reports, dissertations, theses0130R 评论及教学参考论文,资源通讯reviews and tutorial papers, resource letters0130T 书目 bibliographies 0140 教育 education0140D 课程设置与评价course design and evaluation0140E 中小学科学science in elementary and secondary school0140G 课程设置,教学方法,策略和评价curricula, teaching methods, strategies, and evaluation0140J 教师培训 teachertraining0150 教具(包括设备和实验及教学用材料)educational aids(inc.equipment, experiments andteaching approaches to subjects)0150F 视听教具、电影audio and visual aids, films0150H 计算机在教学中的使用instructional computer use0150K 试验理论和技术testing theory and techniques0150M 示范教学的实验和设备demonstration experiments and apparatus 0150P 实验室实验和设备laboratory experiments and apparatus0150Q 实验室课程设置、组织和评价laboratory course design, organization, and evaluation0150T 建筑物和设备 buildingsandfacilities 0155 普通物理 generalphysics 0160 传记、历史和个人笔记biographical, historical, and personal notes 0165 科学史history of science0170 科学哲学 philosophyofscience 0175 科学与社会 scienceandsociety 0190 其他一般论题other topics of general interest0200 物理学中的数学方法mathematical methods in physics0210 代数、集合论和图论algebra, set theory, and graph theory0220 群论(量子力学中的代数方法见0365;基本粒子物理学中的对称见1130)group theory(for algebraic methods in quantummechanics, see 0365; for symmetries inelementary particle physics, see 1130)0230 函数论,分析function theory, analysis0240 几何学、微分几何学和拓扑学(0400相对论与引力)geometry, differential geometry, andtopology(0400 relativity and gravitation)0250 概率论、随机过程和统计学(0500统计物理学)probability theory, stochastic processes, andstatistics(0500 statistical physics)0260 数字近似及分析numerical approximation and analysis0270 计算技术(数据处理与计算见0650)computational techniques(for data handling and computation, see 0650)0290 物理学中数学方法的其它论题other topics in mathematical methods in physics0300 经典及量子物理学;力学与场classical and quantum physics; mechanics and fields0320 离散系统的经典力学:一般数学问题(离散系统的应用经典力学见4610;天体力学见9510)classical mechanics of discrete systems: generalmathematical aspects ( for applied classicalmechanics of discrete systems, see 4610; forcelestial mechanics, see 9510)0330 狭义相对论 specialrelativity0340 连续介质经典力学:一般数学问题classical mechanics of continuous media: general mathematical aspects0340D 弹性力学的数学理论(4620连续介质力学,4630固体力学)mathematical theory of elasticity(4620 continuummechanics, and 4630 mechanics of solids)0340G 流体动力学:一般数学问题(4700流体动力学)fluid dynamics; general mathematicalaspects(4700 fluid dynamics)0340K 波和波传播:一般数学问题(4630M机械波和弹性波;4320一般线性声学)waves and wave propagation; generalmathematical aspects(4630M mechanical andelastic waves, 4320 general linear acoustics)0350 经典场论 classicalfieldtheory0350D 麦克斯韦理论:一般数学问题(应用经典电动力学,见4100)Maxwell theory: general mathematical aspects(forapplied classical electrodynamics, see 4100)0350K 其它具体经典场论other special classical field theories0365 量子论;量子力学(0530量子统计力学;相对论性波动方程,见1110)quantum theory; quantum mechanics(0530quantum statistical mechanics;for relativisticwave equations, see 1110)0365B 基础、测量理论、其它理论foundations, theory of measurement, miscellaneous theories0365C 形式论 formalism 0365D 泛函分析方法functional analytical methods0365F 代数方法(0220群论;3115分子物理学中计算方法)algebraic methods(02 20 group theory; 3115calculation methods in molecular physics)0365G 波动方程解:边界态solutions of wave equations: bound state0365N 非相对论性散射理论 nonrelativisticscatteringtheory 0365S 半经典理论和应用semiclassical theories and applications0367 量子信息 Quantuminformation 0370 量子场论(1110场论) theory of quantized fields(1110 field theory)0380 散射的一般理论(1120 S-矩阵论;1180相对论性散射)general theory of scattering(1120 S-matrix theory,and 1180 relativistic scattering)0400 相对论与引力(狭义相对论,见0330;相对论性天体物理学,见9530; 相对论性宇宙学,见9880)relativity and gravitation(for special relarivity,see0330;for relativistic astrophysics,see 9530;forrelativistic cosmology,see 9880)0420 广义相对论(0240几何学和拓扑学)general relativity (0240 geometry and topology) 0420C 基本问题和普通形式论fundamental problems and general formalism0420F 典型的形式论、拉氏函数和变分原理canonical formalism, Lagrangians, and variationalprinciples0420J 方程解solutions to equations0420M 守恒定律和运动方程conservation laws and equations of motion 0430 引力波和辐射:理论gravitational waves and radiation: theory0440 连续介质;电磁及其它混合引力系统continuous media; electromagnetic and othermixed gravitational systems0450 统一场论及其它引力理论unified field theories and other theories of gravitation0455 引力替代理论alternative theories of gravitation0460 引力的量子论quantum theory of gravitation0465 超引力 supergravity0470 黑洞物理学(参见9760L 黑洞) physics of black holes (see also 9760L black holes)0480 广义相对论的实验检验及引力辐射观测experimental tests of general relativity andobservations of gravitational radiation0485 中程力(包括第五和第六力) intermediate range forces (inc.fifth and sixth forces)0490 相对论和引力的其它论题other topics in relativity and gravitation0500 统计物理学和热力学(0250概率论、随机过程和统计学)statistical physics and thermodynamics(0250probability thory,stochastic processes,andstatistics)0520 统计力学 statisticalmechanics 0520D 分子运动论 kinetictheory0520G 经典系综论classical ensemble theory0530 量子统计力学(6700量子流体;7100凝聚物质的电子态)quantum statistic al mechanics(6700 quantumfluids, and 7100 electron states in condensedmatter)0530C 量子系综论quantum ensemble theory0530F 费米子系统和电子气Fermion systems and electron gas 0530J 玻色子系统 Bosonsystems0530L 任意子和仲统计学(量子统计力学)anyons and parastatistics (quantum statistical mechanics)0540 涨落现象、随机过程和布朗运动fluctuation phenomena, random processes, and Brownian motion0545 混沌系统的理论和模型(流体系统中的混沌,见4752)theory and models of chaotic systems(for chaos inflowing systems,see 4752)0547 非线性动力学系统和分岔(流体系统中的分岔,见4752)nonlinear dynamical systems and bifurcations(bifurcations in flowing systems,see 4752)0550 点阵理论和统计学;伊辛问题(7510H伊辛模型)lattice theory and statistics; Ising problems(7510HIsing models)0555 分形(流体系统中的分形,见4752)fractals (fractals in flowing systems,see 4752) 0560 输运过程:理论 transportprocesses:theory 0565 自组织系统 Self-organizedsystems0570 热力学(4460热力学过程;6400状态方程,相平衡和相变;6500凝聚物质的热性质 ; 化学热力学,见8260)thermodynamics(4460 thermodynamic processes;6400 equation s of state, phase equilibria andphase transitions; 6500 thermal properties ofcondensed matter;for chemical thermodynamics,see 8260)0570C 热力学函数及状态方程thermodynamic functions and equations of state0570F 相变:一般问题phase transitions: general aspects 0570J 临界点现象critical point phenomena0570L 非平衡热力学、不可逆过程(3430势能表面;8200物理化学)nonequilibrium thermodynamics, irreversibleprocesses(3430 potential energy surfaces, 8200physical chemistry)0580 经济物理学 Econophysics0590 统计物理学和热力学的其它论题other topics in statistical physics and thermodynamics0600 测量科学、普通实验室技术及测试设备系统Measurement science, general laboratorytechniques, and instrumentation systems0620 基本度量学 metrology 0620D 测量与误差理论measurement and error theory0620F 单位 units 0620H 测量标准和校正measurement standards and calibration 0620J 基本常数测定determination of fundamental constants 0630 基本变量测量measurement of basic variables0630C 空间变量测量(包括空间延伸的所有变量如:直径、重量、厚度、位移、表面拓扑学、粒子尺寸、弥散系统区)spatial variables measurement(inc.measurementof all variables extending in space e.g. diameter,weight, thickness, displacement , surfacetopography, particle size, area of dispersesystems)0630E 质量与密度的测量mass and density measurement0630F 时间与频率的测量(天文学方面的,见9570)time and frequency measurement(for astronomicalaspects see 9570)0630G 速度、加速度和转动测量(流速测量,见4780)velocity, acceleration and rotationmeasurement(for flow velocity measurement see4780)0630L 基本电磁变量测量(0750电学仪器和技术)measurement of basic electromagneticvariables(0750 electrical instruments andtechniques)0630M 机械变量测量(包括弹性模量,力,冲击,应变,应力,力矩和振动)(压力测量,见0630N;声学变量测量,见4385D;固体力学测量,见4630R;粘度测量,见4780;材料试验,8170)measurement of mechanical variables(inc.elasticmoduli,force,shock ,strain,stress,torque,andvibration)(for pressure measurement,see0630N;for acoustic variables measurement,see4385D;for measurement in the mechanics ofsolids, see 4630R;for viscosity measurement,see4780;for materials testing,see 8170)0630N 压力测量(真空测量,见0730D;高压技术,见0735)pressure measurement(for vacuum measurement,see 0730D;for high-pressure techniques, see0735)0650 数据处理和计算(0270计算技术;2980核信息处理;光学数据处理,存贮及检索, 见423 0;地球物理数据采集和存贮,见9365)data handling and computation(0270computational techniques; 2980 nuclearinformation processing;for optical dataprocessing , storage and retrieval see 4230; forgeophysical data acquisition and storage see9365)0650D 数据搜集、处理、记录、数据显示(含数显技术)data gathering, processing, and recording, datadisplays (including digital techniques)0650M 计算装置与技术computing devices and techniques0660 实验室技术 laboratorytechniques 0660E 样品制备 samplepreparation0660J 高速技术(微秒到微微秒) high speed techniques (microsecond to picosecond)0660S 微检验装置、微定位器和切片机micromanipulators, micropositioners , and microtomes0660V 车间技术(焊接、机械加工、润滑作用和轴承等)workshop techniques ( welding, machining,lubrication, bearings, etc.)0660W 安全(2880辐射监测和防护;8760M辐射剂量测定法;8760P辐射防护)safety( 2880 radiation monitoring and protection,8760M radiation dosimetry, 8760P radiationprotection)0670 普通测试设备 generalinstrumentation 0670D 敏感元件和探测器sensing and detecting devices0670E 试验设备 testingequipment 0670H 显示、记录与指示器display, recording, and indicating instrument s0670M 换能器(电磁辐射换能器见0762;声换能器见4388;液流换能器见4780)transducers(for electromagnetic radiationtransducers see 0762; for acoustic transducers see4388; for flow transducers see 4780)0670T 伺服及控制装置servo and control devices0690 测量科学、普通实验室技术及测试设备系统中的其它论题other topics in measurement science, generallaboratory techniques and instrumentationsystems0700 物理学中普遍使用的专用测试设备与技术(各分支学科的专用测试设备与技术入各自的分支学科)specific instrumentation and techniques of generaluse in physics(within each subdiscipline forspecialized instrumentation and techniques)0710 机械仪器与测量方法(固体力学测量见4630R;材料试验见8170)mechanical instruments and measurementmethods(for measurement in the mechanics of solids, see 4630R; for materials testing, see 8170)0710C 微机械器件和系统(微光学器件和技术,见4283)micromechanical devices and systems (formicrooptical devices and technology,see 4283)0710F 隔振 vibrationisolation0710Y 其他机械仪器和技术(包括摆、陀螺仪、离心器)other mechanical instruments andtechniques(inc.pendulums,gyroscopes,centrifuges)0720 热仪器和技术(4450物质的热性质;4460热力学过程;热辐射的辐射度学和检测, 见 0760D和0762)thermal instruments and techniques(4450 thermalproperties of matter, 4460 thermodynamicprocesses;for radiometry and detection of thermalradiation see 0760D and 0762)0720D 温度测量 thermometry 0720F 量热学 calorimetry 0720H 加热炉 furnaces0720K 高温技术及测试设备;测高温术high temperature techniques and instrumentation; pyrometry0720M 低温实验法 cryogenics 0725 测湿法 hygrometry0730 真空产生与真空技术(包括低于1个大气压的压力;稀薄气体动力学入4745;8115 G 真空淀积)vacuum production and techniques(inc.pressuresbelow 1atmosphere; 4745 rarefied gas dynamics;8115G vacuum deposition)0730B 排空能力、除气、剩余气体evacuating power, degasification, residual gas 0730C 真空泵 vacuumpumps 0730D 真空计 vacuummeters 0730G 真空设备及试验方法vacuum apparatus and testing methods0730K 辅助设备、器件及材料auxiliary apparatus, hardware and materials0735 高压产生与技术(包括大于1个大气压的压力)high pressure production and techniques(inc.pressures above 1 atmosphere)0750 电学仪器及技术electrical instruments and techniques 0755 磁测量仪器及技术magnetic instruments and techniques0758 磁共振谱仪、辅助仪器和技术(6116N电子顺磁共振和核磁共振测定)magnetic resonance spectrometers, auxiliaryinstruments and techniques(6116N EPR and NMRdeterminations)0760 光学仪器和技术(辐射探测见0762;光谱学和光谱计见0765;全息术见4240;光源和标准见4272;光学透镜和反射系统见4278;光学器件、技术和应用见4280;光学试验和加工技术见4285;辐射谱仪和光谱技术见2930;辐射测量、检测和计数见2970)optical instruments and techniques(for radiationdetection, see 0762; for spectroscopy andspectrometers, see 0765; for holography, see4240; for optical sources and standards, see 4272;for optical lens and mirror systems, see 4278; foroptical devices , techniques and applications, see4280; for optical testing and workshop techniques,see 4285; for radiation spectrometers andspectroscopic techniques, see 29 30; for radiationmeasurement, detection and counting, see 2970)0760D 光度学和辐射度学(包括色度学,辐射探测入0762)photometry and radio metry(inc.colorimetry;0762detection of radiation)0760F 偏振测量术与椭园偏振测量术 polarimetryandellipsometry0760H 折射测量术与反射测量术 refractometryandreflectometry 0760L 干涉量度学 interferometry 0760P 光学显微术 opticalmicroscopy0762 辐射探测(测辐射热计、光电管、红外波与亚毫米波探测)detection of radiation (bolometers, photoelectriccells, IR. and submillimetre waves detection)0765 光谱学与光谱计(包括光声谱术) optical spectroscopy and spectrometers(inc.photoacoustic spectroscopy)0765E 紫外和可见光谱学与光谱仪UV and visible spectroscopy and spectrometers 0765G 红外光谱学与光谱仪IR spectroscopy and spectrometers0768 照相术、照相仪器与技术(光敏材料参见4270;照相过程的化学参见8250)photography, photographic instruments andtechniques(for light sensitive materials see also4270 for chemistry of photographic process seealso 8250)0775 质谱仪与质谱测定技术(质谱化学分析见8280)mass spectrometers and m ass spectrometrytechniques(for mass spectroscopic chemicalanalysis, see 8280)0777 粒子束的产生与处理;(2925基本粒子和核物理中的粒子源和靶;4180粒子束和粒子光学)particle beam production and handling;(2925particle sources and targets in elementary particle and nuclear physics, 4180 particle beamsand particle optics)0779 扫描探针显微术及其相关技术(包括扫描隧道显微术,原子力显微术、磁力显微术,摩擦力显微术,和近场扫描光学显微术,(结构测定方面,参见6116P)scanning prob e microscopy and relatedtechniques(inc.scanning tunnellingmicroscopy,atomic force microscopy,magneticforce microscopy,friction force microscopy,andnear field scanning opticalmicroscopy)(structure determination aspects, seealso 6116P)0780 电子与离子显微镜及其技术(6116D凝聚物质中的电子显微术;6116F凝聚物质中的场离子显微术)electron and ion microscopes andtechniques(6116D in condensed matter electronmicroscopy, 6116F field ion microscopy)0781 电子和离子谱仪及其相关技术(参见2930辐射谱仪和光谱技术)electron and ion spectrometers and relatedtechniques(see also 2930 radiation spectrometersan d spectroscopic techniques)0785 X射线与γ射线仪器与技术(包括穆斯堡尔谱仪和技术)X-ray, gamma-ray instruments and techniques(inc.Moessbauer spectrometers and technique s)0788 粒子干涉量度学和中子仪器(粒子束的产生与处理,参见0777;中子谱仪,参见 2930H ,原子干涉量度学,参见3580粒子光学,参见4180)particle interferometry and neutroninstrumentation(for particle beam production andhandling,see 0777;for neutron spectrometers,seealso 2930H;for atomic interferometry,see also3580;for particle optics,see also 4180)0790 专用设备中的其它论题other topics in specialised instrumentation1000 基本粒子物理与场(宇宙线见9440;高能实验技术和设备见 2900)THE PHYSICS OF ELEMENTARY PARTICLESAND FIELDS(for cosmic rays ,see 9440;for highenergy experimental techniques andinstrumentation, see 2900)1100 场和粒子的一般理论(0365量子力学;0370量子场论;0380散射的一般理论)general theory of fields and particles(0365quantum mechanics, 0370 theory of quantizedfields, 0380 general theory of scattering)1110 场论 fieldtheory 1110C 公理法 axiomaticapproach 1110E 拉氏函数和哈密顿函数法Lagrangian and Hamiltonian approach1110G 重正化 renormalization 1110J 渐近问题与特性asymptotic problems and properties1110L 非线性或非局域理论及模型nonlinear or nonlocal theories and models1110M 史文格源理论 Schwingersourcetheory 1110N 规范场论gauge field theories1110Q 相对论性波动方程relativistic wave equations1110S 束缚与非稳定态;贝特-沙耳皮特方程bound and unstable states; Bethe-Salpeterequations1110W 有限温度场论finite temperature field theory1117 弦理论和其他扩展物质理论(包括超弦和膜)theories of strings and other extendedobjects(inc.superstrings and membranes)1120 S-矩阵论 S-matrixtheory 1120D 散射矩阵和微扰论scattering matrix and perturbation theory1120F 色散关系和S矩阵的分析特性dispersion relations and analytic properties of the S-matrix1130 对称和守恒定律(0220群论) symmetry and conservation laws(0220 group theory)1130C 洛伦兹与庞加莱不变性Lorentz and Poincare invariance1130E 电荷共轭、宇称、时间反演和其它分立对称charge conjugation, parity, time reversal and otherdiscrete symmetries1130J SU(2)和SU(3)对称SU(2) and SU(3) symmetries1130K SU(4)对称 SU(4)symmetry 1130L 其他内部对称和高度对称other internal and higher symmetries1130N 非线性对称和动力学对称性(谱生成对称)nonlinear and dynamical symmetries (spectrum generating symmetries)1130P 超对称 supersymmetry1130Q 自发性对称破缺spontaneous symmetry breaking1130R 手征对称 chiralsymmetries 1140 流及其特性currents and their properties1140D 流的一般理论general theory of currents1140F 流代数的拉格朗日算法Lagrangian approach to current algebras1140H 部分守恒轴矢量流partially conserved axial vector currents 1150 色散关系与求和定则dispersion relations and sum rules1150E n/d法 n/dmethod 1150G 靴襻 bootstraps 1150J 交叉对称 crossingsymmetries 1150L 求和定则 sumrules1150N 多变量色散关系(包括曼德尔斯坦表象)multivariable dispersion relations(inc.Mandelstamrepresentation)1160 复合角动量;雷其(理论)体系(0380一般散射理论;1240强相互作用中的复合角动量)complex angular momentum; Reggeformalism(0380 general theory of scattering, 1240in strong interactions)1180 相对论性散射理论(0380一般散射理论)relativistic scattering theory (0380 general theoryof scattering)1180C 运动特性(螺旋性和不变振幅、运动奇异性等)kinematical properties (helicity and invariantamplitudes, kinematic singularities, etc.)1180E 部分波分析 partial wave analysis1180F 近似法(程函近似法,变分原理等) approximations (eikonal approximation, variational principles, etc)1180G 多道散射 multichannelscattering 1180J 多体散射和Faddeev方程Many-body scattering and Faddeev equation 1180L 多次散射 multiplescattering 1190 一般场论和粒子理论的其它论题other topics in general field and particle theory1200 具体理论和相互作用模型;粒子分类系统specific theories and interaction models; particlesystematics1210 统一场论和模型unified field theories and models1210B 电弱理论 electroweaktheories 1210C 统一化标准模型standard model of unification1210D 标准模型以外的统一模型(包括GUTS,颜色模型和SUSY模型)unified models beyond the standardmodel(inc.GUTS,technicolour and SUSY models)1220 电磁相互作用模型models of electromagnetic interactions1220D 量子电动力学的具体计算和极限specific calculations and limits of quantum electrodynamics1220F 量子电动力学的实验检验experimental tests of quantum electrodynamics 1225 引力相互作用模型(0460引力的量models for gravitational interactions(0460子论) quantum theory of gravitation)1230 弱相互作用模型models of weak interactions1230C 中子流 neutralcurrents 1230E 中间玻色子 intermediatebosons 1235 粒子的复合模型composite models of particles1235C 量子色动力学的一般特性(动力学,禁闭等)general properties of quantum chromodynamics(dynamics, confinement, etc.)1235E 量子色动力学在粒子特性和反应中的应用applications of quantum chromodynamics toparticle properties and reactions1235H 粒子的结构和反应的唯象复合模型(部分子模型,口袋模型等)phenomenological composite models of particlestructure and reactions (partons, bags, etc.)1235K 其它复合模型(包括复合夸克模型和轻子模型)other composite models( posite quarksand leptons)1240 强相互作用模型models of strong interactions1240E 统计模型 statisticalmodels1240F 靴襻模型 bootstrapmodels1240H 二重性和双关模型duality and dual models1240K 强子分类方案 hadronclassificationschemes1240M 复合角动量平面;雷其极点和割线(雷其子)(1160复合角动量,雷其体系的一般理论)complex angular momentum plane; Regge polesand cuts (Reggeons)(1160 for general theory)1240P 吸收模型,光学模型和程函模型(衍射和衍射生成模型见1240S)absorptive, optical, and eikonal models(fordiffraction and diffractive production models, see1240S)1240Q 势模型 potentialmodels1240R 边缘碰撞模型(一个或多个粒子交换) peripheral models (one or more particle exchange)1240S 多重边缘碰撞模型和多雷其模型(包括衍射和衍射生成模型)multiperipheral and multi Reggemodels(inc.diffraction and diffractive productionmodels)1240V 矢量介子优势 Vector-mesondominance 1270 强子质量公式hadron mass formulas1290 其它各种理论设想与模型miscellaneous theoretical ideas and models1300 具体基本粒子反应和唯象论specific elementary particle reactions and phenomenology1310 轻子间的弱相互作用和电磁相互作用weak and electromagnetic interactions of leptons1315 中微子相互作用(包括宇宙射线相互作用)neutrino interactions(inc.interactions involvingcosmic rays)1320 介子的轻子与半轻子衰变leptonic and semileptonic decays of mesons1320C π衰变 pidecays1320E K衰变 Kdecays1320G Ψ/J介子、Υ介子、Φ介子psi/J, upsilon, phi mesons1320H B介子轻子/半轻子衰变 Bmesonleptonic/semileptonicdecays 1320I f介子轻子/半轻子衰变 fmesonleptonic/semileptonicdecays 1320J 其它介子衰变other meson decays1325 介子的强子衰变 hadronicdecaysofmesons 1330 重子的衰变 decaysofbaryons1330C 轻子与半轻子衰变leptonic and semileptonic decays1330E 强子衰变 hadronicdecays 1335 轻子的衰变 decaysofleptons1338 中间玻色子和希格斯玻色子的衰变decays of intermediate and Higgs Bosons1340 电磁过程与特性electromagnetic processes and properties1340D 电磁质量差electromagnetic mass differences1340F 电磁形状因子、电矩和磁矩electromagnetic form factors; electric and magnetic moments1340H 电磁衰变 electromagneticdecays1340K 强相互作用和弱相互作用过程的电磁修正electromagnetic corrections to strong and weakinteraction processes1360 光子及带电轻子与强子的相互作用(中微子相互作用见1315)photon and charged lepton interactions withhadrons(for neutrino interactions, see 1315)1360F 弹性散射与康普顿散射elastic and Compton scattering1360H 总截面和单举(反应)截面(包括深度非弹性过程)total and inclusive crosssections(inc.deep-inelastic processes)1360K 介子产生 mesonproduction 1360M 介子共振产生 Meson-resonanceproduction 1360P 重子和重子共振产生baryon and baryon resonance production1365 电子-正电子碰撞产生强子hadron production by electron-positron collisions1375 强子诱发的低能和中能反应及散射(能量≤10GeV见1385)Hadron-induced low energy and intermediate energy reactions and scattering, energy ≤10GeV( for higher energies, see 1385)1375C 核子-核子相互作用,包括反核子和氘核等(能量≤10GeV;核中的核子-核子相互作用见2130)Nucleon-nucleon interactions, includingantinucleon, deuteron, etc. (energy ≤10GeV)(for n-n interactions in nuclei, see 2130)1375E 超子-核子相互作用(能量≤10GeV)Hyperon-nucleon interactions (energy ≤10 GeV)1375G π介子-重子相互作用(能量≤10GeV) Pion-baryon interactions (energy ≤10 GeV)1375J K介子-重子相互作用(能量≤10GeV) Kaon-baryon interactions (energy ≤10 GeV)1375L 介子-介子相互作用(能量≤10GeV)Meson-meson interactions (energy ≤10 GeV) 1380 光子-光子相互作用和散射 Photon-photon interactions and scattering1385 强子诱发的高能和超高能相互作用(能量>10GeV)(低能情况见1375) Hadron-induced high-energy and super-high-energy interactions, energy > 10GeV(for low energies, see 1375)1385D 弹性散射(能量=10GeV) elastic scattering (energy = 10 GeV)1385F非弹性散射、双粒子终态(能量>10GeV) inelastic scattering, two-particle final states(energy > 10 GeV) 1385H 非弹性散射、多粒子终态(能量>10GeV) inelastic scattering, many-particle final states(energy>10GeV)1385K 单举反应,包括总截面(能量>10GeV) inclusive reactions, including total cross sections,(energy > 10 GeV)1385M 宇宙射线相互作用(9440宇宙线) cosmic ray interactions(9440 cosmic rays)1385N 强子诱发的高能相互作用(能量>1TeV) hadron induced very high energy interactions(energy>1 TeV)1387大Q2基本粒子相互作用中的射流jets in large-Q2 elementary particle interactions 1388相互作用和散射中的极化 polarisation in interactions and scattering 1390基本粒子的具体反应及唯象论的其它论题 other topics in specific reactions and phenomenology of elementary particles 1400具体粒子的性质与共振 properties of specific particles and resonances 1420 重子与重子共振(包括反粒子) baryons and baryon resonances(inc.antiparticles)1420C 中子 neutrons1420E 质子 protons1420G s =0时的重子共振baryon resonances with s=0 1420J超子和超子共振 hyperons and hyperon resonances 1420P双重子 dibaryons1440 介子和介子共振 mesons and meson resonances 1440D π介子 pi mesons1440F K 介子 K mesons1440K Ρ介子、Ω介子和η介子rho, omega, and eta mesons 1440L d 介子和F 介子d and F mesons 1440N Ψ/J 介子、Υ介子、Φ介子psi/J, upsilon, phi mesons 1440P其它介子 other mesons 1460 轻子 leptons1460C 电子和正电子 electrons and positrons 1460E μ介子 muons1460G 中微子 neutrinos1460J重轻子 heavy leptons 1480 其它粒子和假设粒子 other and hypothetical particles1480A 光子 photons1480D 夸克和胶子 quarksandgluons 1480F 中间玻色子 intermediateBosons 1480H 磁单极子 magneticmonopoles1480J 超对称粒子(包括标量粒子,超粒子和超离子)Supersymmetric particles(inc.scalarparticles,superparticles and superions)1480K 其它(包括快子) others(inc.tachyons)2000 核物理学 NUCLEARPHYSICS 2100 核结构 nuclearstructure2110 核的一般和平均性质;核能级性质(按质量范围分类的具体核的性质见2700)general and average properties of nuclei;properties of nuclear energy levels(for propertiesof specific nuclei listed by mass ranges, see 2700)2110D 结合能和质量binding energy and masses2110F 形状、电荷、半径和形状因子shape, charge, radius and form factor s2110H 自旋、宇称和同位旋spin, parity, and isobaric spin2110J 谱因子 spectroscopicfactors 2110K 电磁矩 electromagneticmoments 2110M 能级密度和结构level density and structure2110P 单粒子能级结构single particle structure in levels2110R 集团能级结构(包括旋转能带) collective structure in levels(inc.rotational bands) 2110S 库仑效应 Coulombeffects2130 核力(1375C核子-核子相互作用) nuclear forces(1375C nucleon-nucleon interactions)2140 少核子系统 Few-nucleonsystems2160 核结构模型与方法(强子的原子和分子见3610)nuclear structure models and methods(forhadronic atoms and molecules, see 3610)2160C 壳层模型 shellmodel2160E 集体模型 collectivemodels 2160F 群论模型models based on group theory2160G 集团模型 clustermodels 2160J 哈特里-福克和随机-相位近似Hartree-Fock and random-phase approximations 2165 核物质 nuclearmatter 2180 超核 hypernuclei 2190 核结构的其它论题other topics in nuclear structure2300 放射性和电磁跃迁(8255放射化学)radioactivity and electromagnetic transitions(8255 radiochemistry)2320 电磁跃迁 electromagnetictransitions 2320C 寿命和跃迁几率lifetimes and transition probabilities2320E 角分布和校正测量angular distribution and correlation measurements2320G 多极混合比率 multipolemixingratios 2320J 多极矩阵元素 multipolematrixelements 2320L γ跃迁和能级gamma transitions and level energies2320N 内转换和核外效应internal conversion and extranuclear effects 2320Q 核共振荧光nuclear resonance fluorescence2340 β衰变;电子与μ子俘获beta decay; electron and muon capture2340B 弱相互作用和β衰变的轻子特性weak interaction and lepton aspects of beta decay2340H 核矩阵元和从β衰变推断核结构nuclear matrix elements and nuclear structure inferred from beta decay2360 α衰变 alphadecay 2390 核衰变和放射性的其它论题other topics in nuclear decay and radioactivity 2400 核反应和散射:总论nuclear reactions and scattering:general2410 核反应和散射模型与方法nuclear reaction and scattering models and methods2410D 耦合道和多体论方法coupled channel and many body theory methods2410F 平面和扭曲波玻恩近似法Plane- and distorted-wave Born approximations 2410H 光学模型和衍射模型optical and diffraction models2430 共振反应与散射resonance reactions and scattering2430C 巨共振 giantresonances 2430F 同位旋相似共振 isobaricanalogresonances 2450 直接反应 directreactions 2460 统计理论和涨落statistical theory and fluctuations2470 反应和散射中的极化polarization in reactions and scattering2475 裂变的一般性质general properties of fission2485 原子核和核形成过程的夸克模型quark models in nuclei and nuclear processes2490 核反应和散射的其它论题:一般问题other topics in nuclear reactions and scattering:general2500 核反应和散射:具体反应nuclear reactions and scattering:specific reactions2510 少核子系统的核反应与散射nuclear reactions and scattering involving few-nucleon systems2520 光致核反应和光子散射 photonuclearreactions and photon scattering 2530 轻子诱发反应与散射Lepton-induced reactions and scattering 2530C 电子和正电子反应与散射electron and positron reactions and scattering 2530E μ介子反应和散射muon reactions and scattering2530G 中微子反应和散射neutrino reactions and scattering。

The Neutrino World - Fermilab Home:中微子的世界-费米实验室的家


(90% SuperK) (MINOS)
14
Is the spectral pattern
or ?
Generically, SO(10) grand unified models predict .
is un-quark-like, and would probably involve a lepton symmetry with no quark analogue.
Stephen Geer <>, Michael Zisman <>
Neutrinoless Double Beta Decay and Direct Searches for Neutrino Mass
Steve Elliott <>, Petr Vogel <>
At NOnA, with a 2nd detector, the determination would be possible for sin2 2q13 almost down to 0.01.
phases of the Uai.
AtmosphericCross-MixingSolar1 U0
0 c23
0 s23
c13 0
0 1
s130eics1122
s12 c12
0 0
0 s23 c23 s13ei 0 c13 0 0 1
3
la (le e, lm m, lt t)
ni
Uai
Detector
U is the Leptonic Mixing Matrix.
4
What Have We Learned?
If LSND is confirmed, there are at least 4 neutrino species.

【doc】高能所2002年发表的专著及在学术刊物上公开发表的论文

高能所2002年发表的专著及在学术刊物上公开发表的论文附录3.发表论文目录141附录3.高能所2002年发表的专着及在学术刊物上公开发表的论文作者(以原序发表干U物名称序号专着或论文题目单位排列)卷号(年)页lFirstMeasurementofthe实验物理J.Z.Baieta1.Phys.Rev. BranchingFractionoftheDecay中心BESCollab.D65(2002)052004v/(2s,Z-+一2MeasurementoftheCrOSSSection实验物理J.Z.Baieta1.Phys.Rev.Lett.f0ree一hadronsat中心BESCollab.88(2002)101802Center-of-massEnergiesfrom2to5GeV3AMeasurementof(2)实验物理J.Z.Baicta1.Phys.Lett.中心BESCollab.B550(2002)24?32ResonanceParamcters4/.3(z7/"一)分支比实验物理BES合作组高能物理与核物理中心26(2002)8?16的测定5Decaysofthe/to∑..实验物理BES合作组高能物理与核物理FinalState中心26(2002)93?996中性和带电D介子单举半轻子实验物理BES合作组高能物理与核物理(电子)衰变分支比的测量中心26(2002)547?5567D和D.介子的遍举实验物理BES合作组高能物理与核物理分支比上限的测定中心26(2002)1093?11028北京谱仪II中性径迹测量误差的实验物理王君等高能物理与核物理确定中心26(2002)116-1219用联合D.和D单双标记测定实验物理荣刚等高能物理与核物理分支比的方法中心26(2002)207-215l0TEX0N0低能中微子实验中的实验物理李金等高能物理与核物理CsI(T1)晶体探测器中心26(2002)393-401l1TELESIS在3y衰变末态实验物理许国发等高能物理与核物理分析中的应用中心26(2002)462?470l2TEX0N0中微子实验屏蔽效果实验物理陈栋梁等高能物理与核物理的MonteCarlo研究中心26(2002)626?631l3在BEPCII/BESIII上寻找r/和实验物理李刚等高能物理与核物理中心26(2002)645-651态的MonteCar1o研究l4EnergyCalibrationofCsI(TI)实验物理岳骞等高能物理与核物理CrystalforQuenchingFactor中心26(2002)728?734 MeasurementinDarkMatterSearchl5最优化的北京谱仪取数时间实验物理苑长征等高能物理与核物理中心26(2002)759?765l42中国科学院高能物理研究所2002年《年报》豁幸●}案}謦謦沓尊l_专蓝l霉1'奄譬,鼍善童警{孳鼍上{点《l,作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页l6MeasurementofQuenchingFactor实验物理岳骞等高能物理与核物理forNuclearRecoilsinCsI(TI)中心26(2002)855—860Crystall7北京谱仪(BESII)的飞行时间计实验物理彭海平等高能物理与核物理数器(1_0F)蒙特卡罗模拟的改进中心26(2002)86l一869l8TEXONO反应堆中微子能谱的实验物理陈栋梁,李金等高能物理与核物理计算中心26(2002)889—894l9R值测量中束流相关本底的扣除实验物理鄢文标等高能物理与核物理方法中心26(2002)998—100320北京谱仪(BESII)的飞行时间计实验物理彭海平等高能物理与核物理数器(TOF)时间和分辨律的修中心26(2002)1078-1086正2lt粲能区物理及对加速器和探测实验物理苑长征等高能物理与核物理器设计的要求中心26(2002)1201—120822BES--III主漂移室输出信号的模实验物理王铮等高能物理与核物理拟中心26(2002)1297—130123高速串行数据通信VME插件的实验物理章平等核电子学与探测技术研制中心22(2002)44—4624BESII快速数据重建实验物理荣刚等核电子学与探测技术中心22(2002)105—11025数字式随机脉冲产生器实验物理富洪玉等核电子学与探测技术中心22(2002)162—16526微阴极条感应室实验物理李金等核电子学与探测技术中心22(2002)193—19927BESIII系统环境的网络监测模型实验物理宋立温等核电子学与探测技术中心22(2002)272—27528CMS阴极条室的张力和丝距测实验物理姜春华等核电子学与探测技术量中心22(2002)335—33729北京谱仪PC机物理分析平台介实验物理刘天容等核电子学与探测技术绍中心22(2002)367—37030新型智能CAMAC机箱控制器实验物理张永吉,赵京伟核电子学与探测技术中心等22(2002)382—3843l基于DSP的多通道波形取样电实验物理王铮核电子学与探测技术路设计中心22(2002)409—41132~(3770)扫描实验中利用快速实验物理郭义庆等核电子学与探测技术重建数据测量数据样本的积分亮中心22(2002)420—423度33基于WEB的BES数据存储系统实验物理叶梅等核电子学与探测技术模型中心22(2002)449—45234StudiesofPrototypeCsI(TI)实验物理Y.Liu(刘延)etNIMA482(2002)125 CrystalScin—tillatorsforLow中心a1.EnergyNeutrinoExperiments鬟一附录3.发表论文目录143作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页35NuclearRecoilMeasurementsin实验物理M.Z.Wang,Phys.Lett.CsI(TbCrystalforColdDark中,J.Li(李金)eta1.B536(2002)203Mat'terDetection36ProbingNeutrinoOscillation实验物理Y.F.Wang(王Phys.ReD65(2002)0730 jointlyinLongandveryLong中心贻芳)etal2lBaselineExperiments37OntheOptimumLongBaseline实验物理Y.F.Wang(王Phys.Rev.D65(2002)0730 f0rtheNextGenerationNeutrino中心贻芳)etaI.06OscillationExperiments38StudyonthePropertyoft天体物理G.M.ChenProceedingsofthethird HadronicDecays中心jointmeetingofChinesephyscistsworldwide,P.185,worldscientific200239Bs.dintechnicolormodel天体物理ZhaohuaPhys.Lett.B546(200)withscalars中心Xiong,JinMin22l-227Y ang40Loopeffectsandnondecoupling天体物理ZhaohuaXiongPhys.Rev.D66, propertyofsupersymmetricQCD中心et.a1.015007(2002)ingb---&gt;tH.4lGreatScintillatingPropertiesofa天体物理GouQuanBuChin.Phys.Lett.V o1.19,Y ALO3:Cecrystal中心et.a1.No.7(2002)92942GreatScintillationgPropertiesofa天体物理苟全朴,李祖物理7期929.930Y A103:CeCrystal中心毫,吕雨生等43非重子暗物质粒子的研究进展天体物理盛祥东,何会物理9期31卷中心林.戴长江577-58044CirX.1的时变性质天体物理屈进禄等河北师大26,1,10中心月45致密星的X射线辐射时延现象天体物理屈进禄,宋黎天文学进展刊物20卷, 中心明,吴枚等第2期143.15546两类长Y暴的里叶功率谱天体物理申荣锋,宋黎明天文43卷第4期中心342-34547L3宇宙线实验触发系统和触发天体物理李忠朝,郁忠高能物理和核物理26. 效率的测量中心强,过雅南等172.17948~掏小型数据获取系统及天体物理何会林,戴长核电子学与探测技术CaF2(Eu)性能的测量中心江,盛祥东22卷第l期27.3049新型"CaF2(Eu)+液闪"复合天体物理盛祥东,戴长高能物理和核物理26 WIMP探测器的实验研究中心江,何会林卷3期273.27850Chandraobservationofsupernova天体物理E.J.Lu.TheAstrophysics568; remnantG54.1+0-3:Aclosecousin中心Q.D.Wang,L49.L52 oftheCRABnebulaL.M.Song,●,●,,,,f,},,};●,,,,,.}●I,I:}::I1,!1,tt●}t{,t,{.^I1.,'l_4l44中国科学院高能物理研究所2002年《年报》作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页5lBlobejectionfrom天体物理Jian?Min,wangTheApjsadvection.dominatedaccretion中心dengl38:249.263flow.H.themultiwavelengthpropertiesoflightcurves52Comptelobservationsofthe天体物理S.ZhangdengAstronomy386,843?853 gamma-rayblazarpks1622?297中心53KilohertzQuasi—periodic天体物理Wenfei.YuTheAstrophysical osciliationfrequency中心deng567;L67-L70anticorrelatedwithmilihertzquasi—periodicoscillationfluxin4u1608.5254TheAccretionratesandspectral天体物理Jian?MinWangTheApjs energydistributionsofbllacetae中心dengobjects55Bs,d+?inTechnicolor天体物理ZhaohuaPhysicslettersb546 modelwithSCalarS中心Xiong,JinMin221.227Jang56Discoveryofa136millisecond天体物理F.J.LudengAstrophysics574:7卜74 radioandX?raypulsarin中心supernovaremnantG54.1+0.357Chandraobsevationofsupemova天体物理FJ.Lu.AstrophysicalremnantG54.1+0.3:aclosecousin中心L..M..song568;L-49一L52 ofthecrabnebula58低轨道空间闪烁探测器异常区开天体物理张承模,梁晓核电子学及探测技术关机设计及控制中心华,徐玉朋等第22卷第6期59Furtheranalysisofdi?gluonfusion理论室DongshengDu,HighEner.Phys.&amp;Nuc1. mechanismforthedecaysofDeshanY angPhys.V.26,1(2002)B—T1'KandGuohuaiZhu60Phenomenologicalanalysisof理论室DongshengDu,Phys.Rev.D65,074001B--,PPdecayswithQCDHaijunGong,(2002)factorizationJunfengSunetal_6lPhenomenologicalanalysisof理论室DongshengDu,Phys.Rev.D65,094025 charmlessdecaysB—}PVwithHaUunGong,(2002),Erratum,ibid. QCDfactorizationJun~ngSunetD66,079904(2002)a1.62D—}7mdecayswithfinalstate理论室MedinaPhys.Lett.B536,34 interactionsAblikim,(2002)DongshengDu,MaozhiYang63CPasymmetryinx-sleptondecay理论室WeiminYang,Phys,Rev.D65,1I5005 intheminimalSUSYstandardDongshengDu(2002)model哮}謦j-1謦1.唾}..专簪■奄枣t鼍t.t蹙垂《l《'譬jj鼍t毒'1.●il-耄羹囊萋:附录3.发表论文目录145EIIEllI重IIIE|IlIEE宦E量III£EIIlIIIlIIIIIlEEIIIIEE譬EElEIElIIE氍EE群匿臀鐾鞋越匪匪暖壁E_曩EI-iiiI-重匿匪髭|曲B量E匡__譬I|l苍I重IIIIIIIII量lIEE,』作者(以原序发表干U物名称序号专着或论文题目单位排列)卷号(年)页64IsthetruncatedSU)理论室QishuY ah,Phys.Rev.D65,105009non-abeliangaugetheoryinextraDongshengDu(2002)dimensionsrenormalizable?65Branefluctuationandelectroweak理论室QishuY ah,Phys.Rev.D65,094034 chirallagrangianDongshengDu(2002)66Thesystematicstudyof理论室Zheng-TaoNuc1.Phys.BB7/"formfactorsinpQCDWei.Mao-Zhi642(2002)263 approachanditsreliabilityY ang67Calculationofpureannihilation理论室C.D.LuEuro.Phys.J.C24, typedecayB-yDsl2I-126(2002)68B一ⅡP.Ⅱ(I)Decaysin理论室C.D.LU.M.-Z.Euro.Phys.J.C23, PerturbativeQCDApproachY ang275-287(2002)69Constraintontheanglealphafrom理论室C.D.Ltt.z.-j.Phys.Rev.D66, theexperimentalmeasurementsofXiao074011(2002) directCPviolationofB0pipi—decay70Determiningthefactorization理论室Zhi-zhongXingHEP&amp;NP26 parameterandstrongphase(2002)100differencesinB—Dzdecays7lFakeCPTviolationin理论室Zhi-zhongXingJ.Phys.G28 disappearanceneutrino(2002)7oscillations72TexturezerosandMajorana理论室Zhi-zhongXingPhys.Lett.B phasesoftheneutrinomassmatrix530(2002)15973Possibleimplicationsofsmallor理论室Zhi-zhongXingHEP&amp;NP26 largeCPviolationinB—jKs(2002)197decays74RephasinginvariantsofCPandT理论室W.L.GUO.Phys.Rev.D violationinthefour-neutrinoZhi-zhongXing65(2002)073020 mixingmodels75Model-independentconstraintson理论室Zhi-zhongXingPhys.Rev.D65 theneutrinomassspectrumfrom(2002)077302theneutrinolessdoublebetadecay76Nearlytri-bimaximalneutrino理论室Zhi-zhongXingPhys.Lett.B mixingandCPviolation533(2002)8577Cantheleptonflavormixing理论室Zhi—zhongXingPhys.Rev.D matrixbesymmetric?65(2002)113010l46中国科学院高能物理研究所2002年《年报》作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页78AfuIldeterminationofthe理论室Zhi-zhongXingPhys.LeR.B neutrinomassspectrumfrom539(2002)85two.zerotexturesoftheneutrinomassmatrix79Possibleeffectsof理论室Z.Chang,Phys.Rev.D66 noncommutativegeometryonZhi-zhongXing(2002)056009 weakCPviolationandunitaritytriangles80Apredictiveansatzforneutrino理论室Zhi-zhongXingPhys.Lett.B mixingandleptogenesis545(2002)3528lNoncommutativityofleptonmass理论室Zhi-zhongXingFortsch.Phys. matrices:flavormixingandCP50(2002)569violation82Hierarchicalneutrinomassesand理论室Zhi-zhongXingPhys.LeR.B largemixinganglesfromthe550(2002)l78 Fritzschtextureofleptonmassmatrices83Unitarityquadranglesoffour理论室W.L.Guo.Phys.Rev.D66neu~inomixingZhi-zhongXing(2002)09730284Poynt!ngVector,EnergyDensity理论室C.-G.Huang,'Phys.Rev.A65 andEnergyV elocityinAnomalousY.Z.Zhang(2002),015802DispersionMedium85ThermodynamicsofdeSitter理论室C.GHuang.Phys.Rev.DuniverseL.Liu,Bobo65(2002),.08350lWang86Negativegroupvelocityand理论室Chao-GuangJ.Optics.A: distortionofpulseinanomalousHuang,PureApp1.Optics.dispersivemediumYuan-ZhongZhang4(2002),263.87Thermodynamicsof理论室Bo-boWang,Class.Quant.Reissner-NordstromblackholesinChao-GuangGray.19(2002),2491.Y ork'SFormalismHuang88Propagationofrectangularpulse理论室Chao-GuangCommun.Theor.Phys.38 inananomalousmediumHuang,(2002),224.Yuan-ZhongZhang89V acuumBlackHoleMass理论室mun.Theor.Phys.38 FormulaisaV anishingNoetherGUO,C.G.(2002),309ChargeHuang,K.Wu90topquarkspincorrelationatlinear理论室Z.H.Lin,Phys.Rev.D65. colliderswithanomalousHan,Huang,0l4008(2002)couplingsJ.X.Wang.X.Zhang,}◆F辱}tF孽.,..'薹髻茎董;耋一附录3.发表论文目录147作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页9lStabilityoftheClassicalSolution理论室YinYu-dongHEP&amp;NP,V26 ofGaugeTheoryHuangTao(2002)28-3492S~ongCouplingsofHeavy理论室Z.H.Li.Phys.Rev.D65 MesonstOaLightV ectorMesonsT.Huang,(2002)076005inQCDJ.Z.Sun.Z.H.Dai93MuonAnomalousMagneticinthe理论室T.Efeng,Commun.111eor. SupersymmetricModelswithandT.Huang,Phys.37(2002)179withoutRi【ght-handedNeutrinosX.Q.LietaI.94SIGMAMESON【NJ/PSI理论室WujunHuo,Phys.Rev.D65 DECAYSXinminZhang,(2002)097505TaoHuang95ImpactoftheSoft-Gluon理论室X.YWu.CPL19(2002)1596 ExchangesonB一&gt;pipiDecaysZ.H.Li,J.Y.Cui,T.Huang96Re-examinedRadiativeDecay理论室Zuo-HongLi,JPhysicsG inLightConeQCDXiang-Y aoWu,28(2002)2583SumRuIeTaoHuang97NewapproachtOconstructingthe理论室Da-QingLiu,HighEnergyPhys.and opermoronthela~icefortheJi-MinWu.Nuc1.Phys.26(2002)222 calculationofglueballmassesYingChen98StudyonthebaryonstateX理论室ShenQixing,Commun.Theor.Phys., producedintheprocessYuHong,Li37(2002)pp189-192J/gP+X.P+PDemin99Onthemassrelationofameson理论室De-MinLi,ModemPhys.Lett., nonetHongYu.17(2002)163-169Qi-XingShenl00Themassrelationbetweenthe理论室De-MinLi,ModemPhys.Lett., pureandphysicalgroundHongYu,17(2002)619-626 pseudoscalarglueballsQi-XingShenl0lNumericalcalculationofenergies理论室BinDUan,Eur,Phys.J.D ofsomeexcitedstatesinaXiao-Y ahGu,19(2002)9-12heliumatomZhong-QiMalO2Non.relativisticLevinson's理论室Shi—HaiDong,Phys.Rev.A65(2002) theoreminSD$dimensionsZhong-QiMa042717(1-6)l03Thehiddensymmetryfora理论室Shi-HaiDong,Am.J.Phys.70 quantumsystemwithaninfinitelyZhong-QiMa(2002)520-52I deepsquare?wellpotentiall04The(2+1)Diracequationwiththe理论室Shi-HaiDong,Found.Phys.Lett. deltapotentialZhong-QiMa15(2002)171-178●●●{'j●●f},,,!l{;.'+.}_.,},●.,●t,t}々jl48中国科学院高能物理研究所2002年《年报》蝣1簟毒Ili手睾每叁鸯夸誊;;:'一作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页l05Quantumthree-bodysysteminD理论室Xiao-Y anGu,J.Math.Phys.43(2002) dimensionsBinDuan,2895-2906Zhong-QiMal06Algebraicapproachtothe理论室Shi-HaiDong,Inter.J.Mod,Phys.E11 pseudoharmonicoscillatorin2DZhong-QiMa(2002)155-160l07ExactsolutionstotheDirac理论室Xiao-Y anGu,Inter,J.Mod.Phys.E11, equationforaCoulombpotentialZhong-QiMa,(2002)335-346inD+ldimensionsShi-HaiDongl08ExactsolutionstoD-dimensional理论室Lu-YaWang,Found.Phys.Lett. SchrodingerequationwithaXiao-Y anGu,15(2002)569-576 pseudoharmonicoscillatorZhong-QiMaeta1.l09ExactsolutionsoftheDirac理论室Shi-HaiDong,Inter,J.Mod.Phys. equationwithXiao-Y anGu,E11(2002)483-489 aCoulombplusscalarpotentialinZhong-QiMa2+ldimensionseta1.l10群论习题精解理论室马中骐着科学出版社(北京)2002年出版l1lStudyofthestructureof理论室R.G.Ping,Phys.Rev.D66,baryonsfromJ/—÷BBbardecaysH.C,Chiang,054020(2002) intheciuarkmodelB.S.ZOUl12TheoreticalformalismandMonte理论室W.H.Liang,J.Phys.G28,333(2002) CarlostudyofpartialwavePN.Shen.analysisforfPP∞J.X.Wang,etal,l13Partondistributionofproton理论室Y.J.Zhang,Phys.Lett.B528, inasimplestatisticalmodelB.S.Zou,228(2002)L,M.Y angl14Commentonprotonium理论室C.Amslereta1.,Phys.Rev.D66:058101, annihilationintopi0pi0atrestinB.S.ZOU2002aliquidHydrogentargetl15i=0.C=-1mesonsfrom理论室A.AnisovichetPhys,Lett.B542:19-28,l940-mevto24l0-meva1..B.S.Zou2002l16Combinedanalysisofmeson理论室A.mnisovichPhys.Lett.B542:8-18, channelswithi=1.C=-1frometa1..B.S.Zou2002l940-mevto2410一mevl17High-EnergyProton-Induced理论室C.GDuan.Chin,Phys.Lett. DimuonProductionfromNucleiH.M.Wang.19(2002)485GL.Lil18~(400-1200)物理本质的探讨理论室李龙,邹冰松,高能物理与核物理厉光烈26(2002)346l19p-ADrell-Y an过程中的核效应理论室乔秀梅,段春高能物理与核物理贵,厉光烈26(2002)1036.附录3.发表论文目录149作者(以原序发表刊物名称序号专着或论文题目单位排列)卷号(年)页l20AGB星演化过程中的核合成理论室厉光烈,张妙静原子核物理评论和张波19(2002)301l2lATwoStepMechanismfor理论室YWYu.PHighEnergyPhys.and FormingDibaryonWang.Z.YNuc1.Phys.26(2002)46(f2f2):O+Zhangeta1.l22Multi-s~angeHypernucleiina理论室P.Wang.HNuc1.Phys.ChiralSU(3)QuarkMeanFieldGuO.Z.YA705(2o02)455 ModelZhangeta1.l23ChiralSymmetryRestorationof理论室EWang,H.J.Phys.G28(2002)2265 NuclearMatterGuO.YB.Dong.Z.YZhangYu124AnAnalysisofQuarkEffectin理论室Z.YZhang.HighEnergyPlays.and TwoBaryonSystemYuNuc1.Phys.26(2002)712125Di..mega(f2f2):0+理论室YWYu.EPhys.Rev.Wang.Z.YC66(2002)015205PriductionCrossSectionZhangeta1.Calculationl26D.NBoundStateinSU(3)Quark理论室YuZ.HighEnergyPhys.and ModelZhang,Q.B.LiNuc1.Phys.26(2002)1041l27Baryon+Baryon理论室YuCommen.Theo~Phys.cross(QQ):0+37(2002)443SectionCalculation128f)f20+DibaryonProducti.ns理论室mun.Theor.Phys.Wang.YWYu38(2002)483inCentralAu+AuCollisionsatRHICEnergy=130GeV129Dynamicalsymmetrybreaking,理论室Z.GWang.S.L.Phys.Lett. confinementwithflat-bottomWanB536(2002)24lPotentiall30Calculationofsomepropertiesof理论室Z.GWangJ.Phys.GNuc1.Part. thevaccuumPhys.28(2002)1l3lMassiveQuarkPropagatorinthe理论室M.Huang,ChinesePhys.Lett.COlO卜supercOnductingPhaseEEZhuang,19(2002)644W.Q.Chaol32AnalyticSolutionofGroundState理论室ZhaoWeiqin,HEP&amp;NP26(2002)299 forCoulombPlusLinearPotentialJuChangsheng,.,口::i-,■■,;,■r■!:,l::;.tt;I:l50中国科学院高能物理研究所2002年《年报》作者(以原序发表千IJ物名称序号专着或论文题目单位排列)卷号(年)页l33MesonEff~ctsonChiral理论室HuangMei,Commun.Theor.Phys. CondensateatFiniteDensityZhuang38(2002)181Peng~i,ChaoWeiqinl34V ariationa1.IterativeSolutionof理论室ZhaoWeiqinCommun.Theor.Phys. GroundStateforCentralPotential38(2002)15l35DifferentV ersionsofPerturbative理论室ZhaoWeiqin,Commun.TheoEPhys. ExpansionBasedontheJuChangsheng38(2002)271Sin?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
in
7
is when the right-handed neutrinos dominate sequentially,
|e2 |, |f 2 |, |ef | |xy | |x′ y ′ | (5) ≫ ≫ Y X X′ where x, y ∈ a, b, c and x′ , y ′ ∈ a′ , b′ , c′ . Assuming SRHND with sequential sub-dominance as in Eq.5, then Eqs.3, 4 give 2 df d2 ab de ac a X + Y X + Y X + Y ef b2 e2 bc (6) mLL ≈ . X + Y X + Y f2 c2 . . + X Y where the contribution from the first right-handed neutrino have been neglected, but the small sub-leading contributions xy/X have been included. If the Dirac mass couplings satisfy the condition d ≪ e ≈ f 5 then the matrix in Eq.6 resembles Eq.1 and furthermore has a naturally small sub-determinant as in Eq.2. The neutrino mass spectrum consists of 2 2 a mass hierarchy m2 1 ≪ m2 ≪ m3 where the heaviest neutrino has mass 2 2 5 m3 ≈ (e + f )/Y . The atmospheric angle is tan θ23 ≈ e/f 5 . Ignoring phases, the solar angle only depends on the sub-dominant couplings and is given by tan θ12 ≈ a/(c23 b − s23 c) 7 . The simple requirement for large solar angle is then a ∼ b − c 7 . Including phases the solar angle is given by an analagous result 8 . A related phase analysis which pointed out the importance of phases for determining the solar angle was given in 9 . One > m2 ∼ 0.1. also obtains the interesting bound on the angle θ13 , 8,9,10,11 θ13 ∼ m3 There is therefore a good chance that this angle could be observed at MINOS or CNGS. The importance of charged lepton contributions to the CHOOZ angle is explicitly discussed in 8 . 3. A String Inspired Supersymmetric Pati-Salam Model The motivation for considering the SUSY Pati-Salam gauge group 12 rather than conventional SUSY GUT theories is two-fold. Firstly it avoids the infamous doublet-triplet splitting problem 13 , and secondly it may be easier to embed the gauge group directly into a string theory 14 . The problem of fermion masses in such string-inspired Pati-Salam models was first considered in 15 , and these ideas were developed in detail in 16 , 17 . The Pati-Salam gauge group 12 , supplemented by a U (1) family symmetry, was first considered in 18 , SU (4)P S ⊗ SU (2)L ⊗ SU (2)R ⊗ U (1)Family (7)
−1 T mLL = mLR MRR mLR
(3)
This is the see-saw mechanism 3,4 . It not only generates Majorana mass terms of the type mLL , but also naturally makes them smaller than the Dirac mass terms by a factor of mLR /MRR ≪ 1. One can think of the heavy right-handed neutrinos as being integrated out to give non-renormalisable Majorana operators suppressed by the heavy mass scale MRR . The goal of see-saw model building is to choose input see-saw matrices mLR and MRR that will give rise to Eq.1. We now show how the input see-saw matrices can be simply chosen to give Eq.1 with a naturally small sub-determinant as in Eq.2 and hence a natural neutrino mass hierarchy using a mechanism first suggested in 5 . The idea was developed in 6 where it was called single right-handed neutrino dominance (SRHND) . SRHND was first successfully applied to the LMA MSW solution in 7 . The most recent discussion of these ideas is in 8 . The SRHND mechanism is most simply described assuming three righthanded neutrinos in the basis where the right-handed neutrino mass matrix is diagonal although it can also be developed in other bases 6,7 . In this basis we write the input see-saw matrices as ′ ′ X 0 0 a ad MRR = 0 X 0 , mLR = b′ b e (4) 0 0 Y c′ c f In 5 it was suggested that one of the right-handed neutrinos may dominante the contribution to mLL if it is lighter than the other right-handed neutrinos. The dominance condition was subsequently generalised to include other cases where the right-handed neutrino may be heavier than the other right-handed neutrinos but dominates due to its larger Dirac mass couplings 6 . In any case the dominant neutrino may be taken to be the third one without loss of generality. It was subsequently shown how to account for the LMA MSW solution with a large solar angle 7 by careful consideration of the sub-dominant contributions. One of the examples considered
arXiv:hep-ph/0208270v1 29 Aug 2002
STRING INSPIRED NEUTRINO MASS MODELS
S. F. KING Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, U.K. E-mail: king@
1. Introduction Recent SNO 1 results when combined with other solar neutrino data especially that of Super-Kamiokande strongly favour the large mixing angle (LMA) MSW solar solution 2 with three active light neutrino states, −5 and θ12 ≈ π/6, ∆m2 eV2 2 . The atmospheric neutrino 21 ≈ 5 × 10 data is consistent with maximal νµ − ντ neutrino mixing θ23 ≈ π/4 with 2 −3 2 |∆m2 32 | ≈ 2.5 × 10 eV and the sign of ∆m32 undetermined. The CHOOZ < experiment limits θ13 ∼ 0.2 over the favoured atmospheric range 2 . The leading order Majorana mass matrix consistent with a neutrino mass hierarchy and bi-large mixing angles is 000 m ∼ 0 1 1 2 011
相关文档
最新文档