快速凝固Al-Si-Cu-Zn-Re粉末钎料的制备及其性能

合集下载

低温钎料种类

低温钎料种类

低温钎料主要有以下几种类型:
1. 银基钎料:以银为主要成分,具有良好的润湿性和扩散性,适用于低温钎焊。

常见的银基钎料有Ag-Cu、Ag-Zn、Ag-Cu-Zn等。

2. 铜基钎料:以铜为主要成分,适用于低温钎焊,具有良好的导电性和导热性。

常见的铜基钎料有Cu-Zn、Cu-Sn、Cu-Ni等。

3. 锡基钎料:以锡为主要成分,适用于低温钎焊,具有良好的润湿性和扩散性。

常见的锡基钎料有Sn-Pb、Sn-Cu、Sn-Zn等。

4. 铝基钎料:以铝为主要成分,适用于低温钎焊,具有良好的抗氧化性和抗腐蚀性。

常见的铝基钎料有Al-Si、Al-Mg、Al-Zn等。

5. 镁基钎料:以镁为主要成分,适用于低温镁合金的钎焊。

常见的镁基钎料有Mg-Al、Mg-Zn、Mg-Cu 等。

6. 其他类型的低温钎料:包括金基、镍基、钴基等,适用于特定场合的低温钎焊。

低温钎料的选择应根据具体的焊接材料和使用环境来确定,以满足焊接强度、耐腐蚀性、导电性等性能要求。

铝铜钎焊用zn-al钎料及其焊接工艺的研究

铝铜钎焊用zn-al钎料及其焊接工艺的研究

铝铜钎焊用zn-al钎料及其焊接工艺的研究铝铜钎焊是一种常见的焊接方式,通常使用铜或银作为钎料。

但是,这些钎料的成本较高,为了减少成本,研究人员开始研究其他的
钎料。

其中,Zn-Al钎料被发现具有良好的焊接性能,成为一种新型的钎料。

Zn-Al钎料的成分为Zn-15%Al,它的熔点约为384℃,比银钎料和铜钎料低得多。

因此,在铝铜钎焊过程中,使用Zn-Al钎料焊接的温
度较低,且焊接区域受热小。

这有利于减少变形和热裂纹,提高焊接
品质。

通过实验研究,发现了适合使用Zn-Al钎料的铝铜钎焊焊接工艺。

首先要注意的是,焊接前应去除铜表面的氧化层,保证焊接面的清洁。

然后,将Zn-Al钎料均匀地涂在铜接头上,使用火焰加热将钎料熔化,再接合铝件,形成焊接结构。

在焊接过程中,需控制焊接温度、焊接
速度和氧气量等因素,以保证焊接质量。

总之,Zn-Al钎料是一种性能优异、成本相对较低的铝铜钎焊钎料。

在焊接过程中,需要注意控制温度和工艺参数,才能获得良好的焊接
质量。

Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能

Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能

Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能李小强;肖晴;李力;屈盛官【摘要】采用自制的Al-Si-Cu-Zn钎料对3003铝合金进行钎焊实验,利用X射线衍射、扫描电镜、能谱仪对接头微观组织和断口进行分析,并研究了钎焊温度对接头组织和性能的影响.结果表明:在540~580℃保温10min工艺下钎焊3003铝合金,均可获得良好的钎焊效果.钎焊接头均由钎缝中心区的α(Al)固溶体、θ(Al2Cu)金属间化合物、细小Si相和AlCuFeMn+ Si相,两侧扩散区的α(Al)固溶体与元素扩散层以及母材组成;钎焊接头室温剪切断裂于扩散区齿状α(Al)/钎缝中心区的交界面,断口主要呈脆性解理断裂特征.随着钎焊温度的升高,扩散区的α(Al)固溶体晶粒长大,接头结合界面犬牙交错;当钎焊温度为560℃,保温10min时,接头的室温抗剪强度达到最大值92.3MPa,约为母材强度的62.7%.【期刊名称】《材料工程》【年(卷),期】2016(044)009【总页数】6页(P32-37)【关键词】铝合金;钎焊;铝基钎料;接头组织【作者】李小强;肖晴;李力;屈盛官【作者单位】华南理工大学国家金属材料近净成形工程技术研究中心,广州510640;华南理工大学国家金属材料近净成形工程技术研究中心,广州510640;华南理工大学国家金属材料近净成形工程技术研究中心,广州510640;华南理工大学国家金属材料近净成形工程技术研究中心,广州510640【正文语种】中文【中图分类】TG454铝合金由于密度小、力学性能良好、成形性能优异等优点,被广泛应用于航空航天、汽车、机械等行业[1,2]。

钎焊作为一种传统的连接技术,可以使被连接件的变形控制在极小的范围内,从而为结构复杂的铝合金制件的连接提供技术支撑。

铝合金目前常用的钎焊方法有火焰钎焊、气体保护钎焊和真空钎焊[3-5]。

火焰钎焊简便灵活,适用于小尺寸构件,但是加热过程中温度不易精确控制,难以保证接头质量,甚至可能烧坏被焊工件。

铝及铝合金钎焊用硬钎料的研究现状与展望

铝及铝合金钎焊用硬钎料的研究现状与展望

铝及铝合金钎焊用硬钎料的研究现状与展望牛志伟;黄继华;许方钊;刘凯凯;陈树海;赵兴科【摘要】铝及铝合金以其优良的特性,在当代工业材料中占有越来越重要的地位.钎焊作为一种可靠连接铝及铝合金结构件的连接方法而被广泛应用.铝及铝合金钎焊用硬钎料的开发一直是国内外学者争相研究的热点,然而,钎料合金熔化温度高、加工成形性差、钎焊接头强度低等因素严重制约着钎料合金的开发应用,实现商业化的钎料甚少.添加合金元素能够降低钎料熔化温度,改善钎料显微组织和性能,这对铝钎焊用硬钎料的发展是一个行之有效的方法.结合国内外对铝及铝合金钎焊用硬钎料的最新研究成果,全面阐述合金元素的添加对钎料熔化温度、加工成形性及钎焊接头组织性能的影响,指明铝及其合金钎焊用硬钎料目前研究中存在的问题及今后的研究方向.【期刊名称】《中国有色金属学报》【年(卷),期】2016(026)001【总页数】11页(P77-87)【关键词】铝合金;硬钎料;加工成形;钎焊接头【作者】牛志伟;黄继华;许方钊;刘凯凯;陈树海;赵兴科【作者单位】北京科技大学材料科学与工程学院,北京100083;北京科技大学材料科学与工程学院,北京100083;北京科技大学材料科学与工程学院,北京100083;北京科技大学材料科学与工程学院,北京100083;北京科技大学材料科学与工程学院,北京100083;北京科技大学材料科学与工程学院,北京100083【正文语种】中文【中图分类】TG425+.2铝及铝合金具有密度小、强度高和耐腐蚀等优点,因而广泛应用于汽车、高速铁路车辆、航空航天和军事工业[1-4]。

不同牌号的铝合金及其过烧温度如图1所示。

对于铝合金的焊接,传统的方法主要以熔化焊接为主,设备复杂,且对焊工的技术要求比较严格[5-7]。

钎焊作为铝合金连接的重要方法,具有钎焊件变形小、尺寸精度高等优点,近年来,在国内外得到广泛的应用[8-10]。

铝及铝合金的软钎焊是不常应用的方法,由于铝及铝合金软钎料主要采用以低熔点金属如锡、锌等为基,使得软钎料的成分、组织及电极电位与铝及铝合金母材相差很大,钎焊接头易引起严重的电化学腐蚀[11-12]。

Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能

Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能
第 44卷
第 9期
2016年 9月 第 32— 37页
材 料 工 程
Journal of M aterials Engineering
Vo1.44 NO.9 Sep. 2016 PP.32— 37
Al-Si—Cu-Zn钎 料 钎 焊 3003铝 合 金 的 接 头 组 织 及 力 学 性 能
value of 92.3M Pa,which iS about 62.7 of the base materia1.
Key words:aluminum alloy;brazing;aluminum based filler metal;j oint microstructure
perature on microstructure and property of the joint were investigated. The results show that good joints are obtained at brazing temperature of 540—580℃ for 10min.The brazed joint consists of(it(A1) solid solution,e(Al2Cu) intermetallic compound,fine silicon phase and A1CuFeM n+ Si phase in the centra1 zone of brazed seam ,and oc(A1) solid solution and element diffusion layers at both the sides of brazed seam ,and the base meta1.The room temperature(RT)shear fracture of the oint occurs at thA1) in the diffusion layer and the center zone of brazed seam ,

热管理用快速凝固Al

热管理用快速凝固Al

Trans.Nonferrous Met.Soc.China31(2021)586−594Mechanical and thermo-physical properties of rapidly solidifiedAl−50Si−Cu(Mg)alloys for thermal management applicationJun FANG,Yong-hui ZHONG,Ming-kuang XIA,Feng-wei ZHANGThe43Research Institute of China Electronic Technology Group Corporation,Hefei230088,ChinaReceived20April2020;accepted30October2020Abstract:Al−high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties.It is found that the addition of1wt.%Cu or1wt.%Mg as strengthening elements significantly improves the tensile strength by27.2%and24.5%,respectively.This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases)in the Al matrix during hot press sintering of the rapidly solidified(gas atomization)powder.The thermal conductivity of the Al−50Si alloys is reduced with the addition of Cu or Mg,by only7.3%and6.8%,respectively.Therefore,the strength of the Al−50Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding1%Cu(Mg).Key words:Al−50Si alloy;rapid solidification;thermal management material;mechanical property;thermo-physical property1IntroductionAl−Si alloys containing high Si contents,also called as Al−high Si alloys or Si p/Al composites, exhibit an excellent combination of thermo-physical properties and mechanical properties,such as low density,excellent thermal conductivity,tailorable coefficient of thermal expansion,and high specific strength[1−4].Additionally,Al−high Si alloys also have good plating ability and laser weldability. There characteristics make Al−high Si alloys attractive for electronic packaging applications in the field of thermal management,especially for chip boxes to protect electronic devices from outdoor environments[5].It is well known that the properties of Al−high Si alloys are determined by the size,shape and distribution of Si phase,including primary Si and eutectic Si phase[6,7].The application of ingot metallurgy(IM)Al−high Si alloys is highly limited by the formation of the coarse and irregular primary Si phase as well as the lager needle-like eutectic Si phase.These microstructural characteristics lead to stress concentration and are detrimental to the mechanical properties and laser weldability. Therefore,a simple and effective route to refine and modify the Si phase is essential to the wide application of Al−high Si alloys.Lots of methods have been employed in the preparation of Al−high Si alloys,such as semi-solid forming[8],melt infiltration[9],ingot metallurgy with modifiers[10,11],powder metallurgy[12], rapid solidification[13]and the recently developed selective laser melting[14,15].According to the literatures,the rapid solidification route is more feasible for mass manufacturing of Al−high Si alloys for thermal management due to the advantages of high efficiency,remarkable refinement effect and ingots with large size.JIA et al[13]reported that the spray deposited Al−50Si alloy can be completely densified by hot isostaticCorresponding author:Jun FANG;Tel:+86-551-65748315;E-mail:******************DOI:10.1016/S1003-6326(21)65521-81003-6326/©2021The Nonferrous Metals Society of China.Published by Elsevier Ltd&Science PressJun FANG,et al/Trans.Nonferrous Met.Soc.China31(2021)586−594587 pressing(HIP)at570°C.Al alloys with Si contentof22%−50%were prepared by gas atomizationfollowed by hot pressing,and near fully densemicrostructure and excellent properties wereobtained[16].Al−30Si alloy prepared by spraydeposition can also be densified by hot pressing,and a continuous network of globular Si phase andan interpenetrating Al matrix were achieved[17].The Al−50Si alloy is widely used as electronicpackaging boxes,which has a high volume fractionof Si and approximately pure Al matrix.However,its strength should be improved in order to expandits application[5].The previous works of Al−highSi alloys for thermal management have beenfocused on the manufacturing technologies,parameters,and the subsequent properties.Generally,the properties of ingot metallurgyAl−high Si alloys can be modified through alloying,such as the A356,A380,and A390alloys[18].BEFFORT et al[19]reported that mechanicalproperties of the squeeze cast60vol.%SiC p/Alcomposites were also highly determined by the Zn,Cu and Mg elements in the Al matrix.However,less attention has been paid to the alloy compositionand the relationship between microstructuralevolution and properties of the Al−50Si alloy.Accordingly,in this work,Al−50Si,Al−50Si−1Cu and Al−50Si−1Mg alloys for electronicpackaging in thermal management weresuccessfully fabricated by rapid solidification(gasatomization)and powder metallurgy(hot pressing)route,and the microstructural characteristics,mechanical properties(tensile and bendingstrength)and thermo-physical properties wereparisons between the effect of Cu andMg addition on the Al−50Si alloys were analyzed based on the microstructural observations and macro-property tests.2ExperimentalPolycrystalline pure Si(99.9%,all the alloy compositions are in mass fraction unless otherwise mentioned)and pure Al(99.95%)were inductively melted at approximately1250°C.Then,Al−50Si pre-alloy powder was fabricated through a nitrogen gas atomization process,and the morphology of the powder particles is shown in Fig.1(a).After mechanical sieving,the Al−50Si pre-alloy powder with particle size less than74μm was mixed with Fig.1SEM morphologies of gas-atomized Al−50Si pre-alloy powder(a),electrolytic Cu powder(b)and inert gas-atomized Mg powder(c)with different shapes 1wt.%electrolytic Cu powder and1wt.%inertgas-atomized Mg powder,respectively.Mechanical mixing was applied for6h in the atmosphere of Ar with the mass ratio of ball to powder of4:1.The Cu and Mg powders having dendritic and spherical shapes are displayed in Figs.1(b)and1(c), respectively.The mixed powder was cold compacted at300MPa and hold for20s,and billets with relative density of approximately78%were obtained.Hot press sintering was employed on the cold compacted billets and held at560°C forJun FANG,et al/Trans.Nonferrous Met.Soc.China31(2021)586−594 58860min at45MPa.Finally,the samples with dimensions of d50mm×10mm were obtained. The hot-pressed alloys were solid solutionized at 500°C for4h and then aged at160°C for24h. Details of the fabrication process is reported in the previous work[16].Chemical compositions of the as-fabricated Al−50Si−X(X=0,Cu,and Mg)alloys were detected using an inductively coupled plasma optical emission spectrometer(IC-OES),and the results are illustrated in Table1.Morphologies of the Al−50Si pre-alloy powders,Cu powder and Mg powder were detected using a scanning electron microscope(SEM,Quanta−200).Hot-pressed samples for microstructural characterization were cut,ground,polished,and etched with Keller’s reagent.Field emission scanning electron microscope(FESEM,Sirion200)equipped with an energy dispersive spectroscopy(EDS)detector was used in the observation of microstructural details. The sizes of Si phase and secondary phases were measured using ImageJ software.The phases present in the Al−high Si alloys were further analyzed using X-ray diffraction(XRD)at a scanning angle of25°−80°.The room temperature tensile and three-point bending tests of samples were carried out on an electronic universal material testing machine (MTS850).The tensile specimens were made into a dumbbell shape according to the standard GB T228—2010with a gauge diameter of6mm. The dimensions of the three-point bending specimen are3mm×10mm×50mm.The tensile fractured surfaces of the specimens were observed using SEM.The Brinell hardness test of the alloy was performed at a load of7.35kN for30s on the polished samples.All the tensile and bending tests were repeated three times to obtain good reproducibility of data.Under the argon atmosphere,coefficient of thermal expansion of the Al−50Si−X alloys was measured in the temperature range of25−300°C using laser flash and calorimetric methods (NETZSCH LFA427/3/G).The sample has a size of 20mm×5mm×5mm and was required to be parallel and smooth at both ends.Thermal conductivity of the three kinds of alloys was performed on cylindrical slice specimens with dimensions of d10mm×3mm using NETZSCH DIL402C.Density of the alloys was measured by Archimedes method using a balance with the accuracy of0.1mg.3Results3.1Microstructural characteristicsTypical microstructures of the as-atomized Al−50Si pre-alloy powder and the hot-pressed Al−50Si−X alloys are shown in Fig.2.It can be seen from Fig.2(a)that the primary Si phase is highly refined to have a block-like morphology due to the large solidification rate and undercooling nature of gas atomization.The eutectic Si phase is also refined remarkably and its shape changes from needle-like with large aspect ratio in the as-cast alloy to bar-like with a low aspect ratio in the as-atomized powder.However,the primary Si seems to distribute mostly at the periphery of powder particles owing to the solidification sequence[20].After hot press,the gas-atomized Al−50Si pre-alloy powder is well densified and a pore-free microstructure is obtained,as shown in Figs.2(b−d). High density of defects,such as pores and cracks were observed in the Al−50Si alloy prepared by ingot metallurgy[21].Consequently,the measured density of the hot-pressed samples is near to the theoretical value.As the density of Cu(8.9g/cm3) is higher than that of Al(2.7g/cm3)while the density of Mg(1.7g/cm3)is lower than that of Al, the addition of Cu or Mg leads to a slight variation of density in the Al−50Si−X alloys.Table1Compositions of rapidly solidified(gas-atomized)and hot-pressed Al−50Si−X alloys measured by ICP-OES (wt.%)Material Si Mg Cu Zn Fe Mn Ti AlAl−50Si50.5<0.01<0.01<0.010.040.02<0.01Bal.Al−50Si−1Cu50.30.05 1.03<0.010.030.01<0.01Bal.Al−50Si−1Mg49.7 1.030.02<0.010.050.01<0.01Bal.Jun FANG,et al/Trans.Nonferrous Met.Soc.China31(2021)586−594589 Fig.2SEM morphologies of gas-atomized Al−50Si pre-alloy powder(a)and as-fabricated Al−50Si alloy(b),Al−50Si−1Cu alloy(c)and Al−50Si−1Mg alloy(d)having similar characteristics of Si phaseIt is seen that a semi-continuous networkstructure with smooth surface of the Si phase isformed in the Al matrix,as seen in Figs.2(b−d).The distribution of Si phase is quite homogeneousas compared with that of the as-atomized powder.Such characteristics of Si phase are highly differentfrom those of the as-cast Al−high Si alloys whichhave coarse and irregular(bar-like,plate-like,star-like,etc)primary Si with sharp corners as wellas needle-like eutectic Si with a large aspectratio[11,21].Furthermore,it is interesting to findthat the eutectic Si is completely absent in thehot-pressed samples due to the diffusion-controlled growth of Si phase and the Si−Si phase clustering in the solid-state sintering.There is no obvious change of the Si phase in the fabricated Al−50Si alloys with and without Cu(Mg)addition besides a little lower degree of the semi-continuous structure.X-ray diffractions were performed to detect the phases presented in the hot-pressed Al−50Si−X alloys,and the results are displayed in Fig.3.It is seen that the diffraction peaks ofα(Al)and Si phase are clearly observed in the samples.With the addition of Cu or Mg,small amounts of Al2Cu and Fig.3XRD patterns of as-fabricated Al−50Si−X alloys showing Al2Cu and Mg2Si secondary phases formed in Al−50Si−Cu/(Mg)alloys:(a)Al−50Si;(b)Al−50Si−1Cu;(c)Al−50Si−1MgMg2Si secondary phases are formed in the Al−50Si−Cu(Mg)alloys.It is noted that,different from the Al−50Si−1Cu alloy,no AlMg secondary phases are formed in the Al−50Si−1Mg alloy. However,as the content of Cu or Mg is only1%, the diffraction peaks of the Al2Cu and Mg2Si phases are not remarkable.Jun FANG,et al/Trans.Nonferrous Met.Soc.China 31(2021)586−594590To further investigate the secondary phases formed in the Al−50Si−Cu(Mg)alloys,magnified SEM observations were conducted and the results are shown in Fig.4.Other than the large Si particles,small needle-like Al 2Cu phase and bar-like Mg 2Si phase are present in the Al−50Si−Cu(Mg)alloys.This result is in consistent with the XRD patterns presented in Fig.3.Although the average sizes of the Al 2Cu and Mg 2Si secondary phases are less than 1μm,most of the Mg 2Si phase is larger than the Al 2Cu phase.Additionally,most of the Al 2Cu phases are dispersed in the center of the Al matrix.However,the Mg 2Si phase seems to distribute mostly near the surface of Si particles.This phenomenon can be attributed to the larger diffusion rate and supersaturation of Mg than those of Si in the Almatrix.Fig.4SEM morphologies and distribution of Al 2Cu (a)and Mg 2Si (b)secondary phases present in Al−50Si−Cu(Mg)alloys3.2Mechanical propertiesThe room temperature tensile tests were performed on the hot-pressed Al−50Si alloys with and without Cu(Mg)addition,and the tensile curves are depicted in Fig.5.The stress−strain response of the Al−50Si alloy is different from that containing Cu and Mg.A very slight plastic deformation of approximately 0.5%strain isobserved in the Al−50Si alloy.Remarkably enhanced ultimate tensile strength (UTS)is achieved in the Al−50Si−1Cu and Al−50Si−1Mg alloys.The plastic behavior is less evident,approximately 0.3%strain to fracture,with the addition of Cu or Mg.This phenomenon indicates that the addition of Cu(Mg)is beneficial to improving the strength of Al−50Si alloy but detrimental to the plasticity of the alloy.Additionally,the slope of the tensile stress−strain response of the Cu(Mg)-contained alloys becomes flatter and higher than that of the Al−50Si alloy,suggesting that the addition of Cu(Mg)also enhances the elastic modulus of thealloy.Fig.5Tensile stress−strain response of rapidly solidified Al−50Si−X alloys at room temperatureAverage values of the tensile strength,bending strength and hardness of the Al−50Si−X alloys were obtained from five parallel tests,and the results are shown in Fig.6.The strength of the Al−50Si alloy is significantly improved with the addition of Cu(Mg).Compared with the reference sample,the addition of 1%Cu raises the tensile and bending strength from 185.7and 288.6MPa to 236.2and 390.5MPa,with increments of 27.2%and 35.3%,respectively.Similarly,the addition of 1%Mg results in an enhancement of tensile and bending strength by 24.5%and 29.0%,respectively.At the same time,the addition of alloying elements also increases the hardness of the Al matrix.From Fig.6,it is also found that the strengthening effect of Cu is slightly higher than that of Mg.This phenomenon can be attributed to the fine and homogeneous distribution of the Al 2Cu secondary phase at the center of the Al matrix.Additionally,according to the image analysis from SEM results,the average size of Al 2Cu phase is a little smallerJun FANG,et al/Trans.Nonferrous Met.Soc.China31(2021)586−594591Fig.6Tensile strength,bending strength and hardness of rapidly solidified Al−50Si−X alloysthan that of the Mg2Si phase,which may also contribute to the higher strength of the Al−50Si−1Cu alloy.Tensile fractured morphologies of Al−50Si−X alloys are displayed in Fig.7.All samples show a clear brittle fracture feature.It is seen that the fracture planes of the alloys are vertical to the tensile direction and no visible macro-ductility fracture is observed.As seen from Fig.7(a),the crack source of the alloy with rather flat morphology is clearly observed.The crack progresses rapidly in a linear way through the sample when external pressure is applied.Figures 7(b−d)show that the Al matrix fractures by ductile rupture with tearing ridge while the Si phase fractures by cleavage surface.As there is a high volume fracture of Si phase(approximately53.7%) with semi-continuous structure,the Si particle dominated brittle fracture is the main mode of the Al−50Si alloys.The previous observation suggests that the crack tip moves through brittle fracture of the Si particles and finishes by ductile fracture of the Al matrix[22].Generally,metal matrix composites(MMCs)reinforced with high volume of reinforcement fracture in such particle dominatedFig.7Low magnification micrograph showing crack source of Al−50Si alloy(a)and high magnification micrographs of Al−50Si alloy(b),Al−50Si−1Cu alloy(c)and Al−50Si−1Mg alloy(d)Jun FANG,et al/Trans.Nonferrous Met.Soc.China 31(2021)586−594592mode [23,24].Additionally,dimples with small size are observed in the alloys due to the refined microstructure as a result of rapid solidification and solid-state sintering.However,three kinds of alloys show typical brittle fracture,and the difference among fractured morphologies is less visible.3.3Thermo-physical propertiesVariations of coefficient of thermal expansion (CTE)of the Al−50Si−X alloys as a function of temperature in the range of 25−300°C are shown in Fig.8.It is observed that the coefficient of thermal expansion increases linearly with the increase of testing temperature.The Al−high Si alloys can be regarded as Si particle reinforced Al matrix composites (Si p /Al)and the coefficient of thermal expansion of the alloy is mainly determined by the properties of the Al matrix and Si phase and the volume fraction of the Si phase according to the rule of mixture (ROM).As seen from Fig.2,there is little deviation of the volume fraction,size,and morphology of Si phase.Consequently,the coefficients of thermal expansion of the Al−50Si−X alloys are determined mainly by the properties of Al matrix.Owing to the presence of Al 2Cu and Mg 2Si secondary phase having lower coefficient of thermal expansion,the total thermal expansion of Al−50Si alloys is reduced.JIA et al [13]reported that no plastic deformation occurs in the Al matrix at low temperatures.The expansion of the alloys is caused by the combined expansion of the Al matrix and Si phase and results in the linearly increased coefficient of thermal expansion with increasingtemperature.Fig.8Coefficient of thermal expansion of rapidly solidified Al−50Si−X alloys in temperature range of 25−300°CThermal conductivity of the Al−50Si−X alloys is illustrated in Fig.9.Owing to the rapid solidification nature of gas atomization and the diffusion-controlled growth of Si phase during hot pressing,the Si phase has a semi-continuous structure with smooth surface,which contributes to the excellent thermal conductivity of the Al−50Si alloy,146.2W·m −1·K −1.At the same time,Si has low solid solubility in the Al matrix with equilibrium state,and a near pure Al matrix after hot pressing may also help for achieving high thermal conductivity of the alloy.However,the formation of the Al 2Cu and Mg 2Si secondary phases in the Al−50Si−Cu(Mg)alloys has a scattering effect on the free electron motion and hinders the thermal conduction [25].Consequently,the thermal conductivities of the Al−50Si alloy containing 1%Cu and 1%Mg are reduced by 7.3%and 6.8%,respectively.In comparison with the exceptionally improved strength of the Al−50Si alloy,this reduction of thermal conductivity is within the acceptable limit (≥120W·m −1·K −1).Fig.9Thermal conductivity of rapidly solidified and hot-pressed Al−50Si−X alloys at room temperature4Conclusions(1)Gas atomization endows the pre-alloyed Al−50Si alloy powder with highly refined primary and eutectic Si phase,and in combination with the subsequent solid-state hot-pressing,the Si phase with semi-continuous network structure is obtained.By adding 1%Cu or 1%Mg,Al 2Cu or Mg 2Si secondary phases are observed,respectively,but the influence on the Si phase characteristics is limited.(2)Tensile strength,bending strength and hardness of the Al−50Si alloys are significantlyJun FANG,et al/Trans.Nonferrous Met.Soc.China31(2021)586−594593improved with the addition of Cu or Mg, respectively,which is attributed to the strengthening effect of the fine secondary phases.The effect of Cu on mechanical properties is more remarkable compared with that of Mg.All the Al−50Si−X alloys show typical brittle fracture features having a clear cleavage surface.(3)The addition of Cu(Mg)is helpful for reducing the coefficient of thermal expansion of the Al−50Si−X alloys,but detrimental to the thermal conductivity.However,negligible difference in thermo-physical properties is observed in the Al−50Si−Cu(Mg)alloys.References[1]HOGG S C,LAMBOURNE A,OGILVY A,GRANT P S,Microstructural characterisation of spray formed Si−30Al for thermal management applications[J].Scripta Materialia, 2006,55(1):111−114.[2]KIMURA T,NAKAMOTO T,MIZUNO M,ARAKI H.Effect of silicon content on densification,mechanical and thermal properties of Al−x Si binary alloys fabricated using selective laser melting[J].Materials Science and Engineering A,2017,682:593−602.[3]ZHANG Wen-long,DING Dong-yan,GAO Ping.Highvolume fraction Si particle-reinforced aluminium matrix composites fabricated by a filtration squeeze casting route[J].Materials&Design,2016,90:834−838.[4]WANG Qian,ZHU Lin,CHEN Xiao-guang,YAN Jiu-chun,XIE Rui-shan,LI Pei-hao,WANG Zhi-hua,WANG Zhi-qi, LI Yun-tao,ZHOU Xiao-yu.Si particulate-reinforced ZnAl based composites joints of hypereutectic Al50Si alloys byultrasonic-assisted soldering[J].Materials&Design,2016, 107:41−46.[5]MAUDUIT D,DUSSERRE G,CUTARD T.Probabilisticrupture analysis of a brittle spray deposited Si−Al alloy under thermal gradient:Characterization and thermoelastic sizing guidelines[J].Materials&Design,2016,95:414−421.[6]CHEN Xu,ZHONG Yun-bo,ZHENG Tian-xiang,SHENZhe,WANG Jiang,FAN Li-jun,ZHAI Yong,PENG Ming-hu,ZHOU Bang-fei,REN Wei-li,LEI Zuo-sheng, REN Zhong-ming,HE Qiong.Refinement of primary Si in the bulk solidified Al−20wt.%Si alloy assisting by high static magnetic field and phosphorus addition[J].Journal of Alloysand Compounds,2017,714:39−46.[7]WANKHEDE D M,NARKHEDE B E,MAHAJAN S K,CHOUDHARI C M.Influence of pouring temperature and external chills on mechanical properties of aluminum silicon alloy castings[J].Materials Today:Proceedings,2018,5(9): 17627−17635.[8]WARD P J,ATKINSON H V,ANDERSON P R G,ELIAS LG,GARCIA B,KAHLEN L,RODRIGUEZ-IBABE J M.Semi-solid processing of novel MMCs based onhypereutectic aluminium-silicon alloys[J].Acta Materialia,1996,44(5):1717−1727.[9]CHEN Yu-yong,CHUNG D D L.Silicon-aluminiumnetwork composites fabricated by liquid metal infiltration[J].Journal of Materials Science,1994,29(23):6069−6075. [10]RAGHUKIRAN N,KUMAR R.Effect of scandium additionon the microstructure,mechanical and wear properties of the spray formed hypereutectic aluminum−silicon alloys[J].Materials Science and Engineering A,2015,641:138−147.[11]YU Wen-hui,ZHANG Yong,YAN Ting-liang,LIU Yue,JIANG Ao-lei,ZHENG Hong-liang,TIAN Xue-lei.Enhanced nucleation of primary silicon in Al−20wt.%Si alloy with Ni−Si inoculation[J].Journal of Alloys and Compounds,2017,693:303−307.[12]LIU Y Q,WEI S H,FAN J Z,MA Z L,ZUO T.Mechanicalproperties of a low thermal-expansion aluminum/siliconcomposite produced by powder metallurgy[J].Journal ofMaterials Science&Technology,2014,30(4):417−422. [13]JIA Yan-dong,CAO Fu-yang,SCUDINO S,MA Pan,LIHai-chao,YU Lei,ECKERT J,SUN Jian-fei.Microstructure and thermal expansion behavior of spray-deposited Al−50Si[J].Materials&Design,2014,57:585−591.[14]JIA Qing-bo,ROMETSCH P,KURNSTINER P,CHAO Qi,HUANG Ai-jun,WEYLAND M,BOURGEOIS L,WU Xin-hua.Selective laser melting of a high strengthAl−Mn−Sc alloy:Alloy design and strengtheningmechanisms[J].Acta Materialia,2019,171:108−118. [15]KANG Nan,CODDET P,LIAO Han-lin,CODDET C.Macrosegregation mechanism of primary silicon phase in selective laser melting hypereutectic Al−high Si alloy[J].Journal of Alloys and Compounds,2016,662:259−262. [16]CAI Zhi-yong,ZHANG Chun,WANG Ri-chu,PENGChao-qun,QIU Ke,FENG Yan.Preparation of Al−Si alloys by a rapid solidification and powder metallurgy route[J].Materials&Design,2015,87:996−1002.[17]WANG Feng,XIONG Bai-qing,ZHANG Yong-an,ZHUBao-hong,LIU Hong-wei,WEI Yan-guang.Microstructure, thermo-physical and mechanical properties of spray-deposited Si−30Al alloy for electronic packaging application [J].Materials Characterization,2018,59(10):1455−1457. [18]DAMAV ANDI E,NOUROUZI S,RABIEE S M,JAMAATIR.Effect of ECAP on microstructure and tensile properties of A390aluminum alloy[J].Transactions of NonferrousMetals Society of China,2019,29(5):931−940.[19]BEFFORT O,LONG Si-yuan,CAYRON C,KUEBLER J,BUFFAT P A.Alloying effects on microstructure and mechanical properties of high volume fraction SiC particle reinforced Al-MMCs made by squeeze casting infiltration[J].Composites Science and Technology,2007,67(3):737−745.[20]KALAY Y E,CHUMBLEY L S,ANDERSON I E,NAPOLITANO R E.Characterization of hypereutectic Al−Si powders solidified under far-from equilibrium conditions[J].Metallurgical and Materials Transactions A,2007,38(7): 1452−1457.[21]CAO Fu-yang,JIA Yan-dong,PRASHANTH K G,MA Pan,LIU Jing-shun,SCUDINO S,HUANG Feng,ECKERT J, SUN Jian-fei.Evolution of microstructure and mechanical properties of as-cast Al−50Si alloy due to heat treatment and P modifier content[J].Materials&Design,2015,74: 150−156.Jun FANG,et al/Trans.Nonferrous Met.Soc.China31(2021)586−594 594[22]CAI Zhi-yong,ZHANG Chun,WANG Ri-chu,PENGChao-qun,WU Xiang.Effect of copper content on microstructure and mechanical properties of Al/Si p composites consolidated by liquid phase hot pressing[J].Materials&Design,2016,110:10−17.[23]ZHANG Qi-guo,ZHANG Hong-xiang,GU Ming-yuan,JINYan-ping.Studies on the fracture and flexural strength of Al/Si p composite[J].Materials Letters,2004,58: 3545−3550.[24]BUFFIERE J Y,MAIRE E,VERDU C,CLOETENS P,PATEYRON M,PEIX G,BARUCHEL J.Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography[J].Materials Science and Engineering A,1997,234−236: 633−635.[25]BLANK M,SCHNEIDER G,ORDONEZ-MIRANDA J,WEBER L.Role of the electron-phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers[J].Journal of Applied Physics, 2019,126:165302.热管理用快速凝固Al−50Si−Cu(Mg)合金的力学和热物理性能方军,钟永辉,夏明旷,张凤伟中国电子科技集团第四十三所,合肥230088摘要:通过加入Cu或Mg合金元素提高高硅铝合金的力学性能。

6061铝合金钎焊用钎料的研究

6061铝合金钎焊用钎料的研究
(2) 钎料熔化特性的测定: 采用差示扫描量热 (DSC) 方法测定。 所用仪器为德国耐驰 STA409PC 差示扫描量热仪。 升温速率 20 K/min,吹扫气体为高 纯氮气。
(3) 焊接和钎焊强度测试: 铝合金试板尺寸为 60 mm × 20 mm × 2 mm,采 用 搭 接 方 式 ,于 预 先 升 温 至钎焊温度的箱式电阻炉中实施焊接。 钎剂为 CsF-AlF3,钎焊 温 度 为 570℃,焊 接 加 热 时 间 5 min。 焊后水冷实现固溶处理, 再进行 175 ℃× 8 h 时效处 理。 用 GP-TS2000/100KW 万能拉伸机测试接头 的 剪切强度,拉伸速度为 1 mm/min。
金属铸锻焊技术 Casting·Forging·Welding
2012 年 06 月
6061 铝合金钎焊用钎料的研究
刘正林, 杨凯珍, 王 凯, 刘凤美 (广州有色金属研究院, 广东 广州 510650)
摘 要:研究了 Biblioteka 061 铝合金钎焊用中温钎料 Al-Si-Cu-Ni 钎料的熔化特性、钎焊强度、钎料和接头抗腐蚀性能。 结
2012 年 06 月
表 4 各钎料钎焊接头腐蚀前后的剪切强度 Tab.4 The shearing strength of brazed joints with various
brazing feller metals before and after corrosion
钎料
接头腐蚀前强度 /MPa 接头腐蚀后强度 /MPa
果 表 明 ,Al-Si-Cu-Ni 钎 料 熔 化 温 度 与 Al-Si-Cu 钎 料 HL401 接 近 , 钎 焊 强 度 、 钎 料 和 接 头 抗 腐 蚀 性 能 均 优 于 HL401;

快速凝固AlCuSi钎料薄带脆性的研究

快速凝固AlCuSi钎料薄带脆性的研究

a s o. lt vue u c 6riq n i bzg w t n o W i h om oC ilk " u cn ri s s d n he l f s , p e hg n h h e a ad a o e tg e aet a ei. " q n i bzg h hhh m o h s f h n a gh1ad cn ri wi h t i vue u n s e l t ri u hg n h a e o t r n n e p e a c s g l
以而 1,个高枯犬h"研制急需的新材料开辟了一条新的道路。据统计。世界 曰P 1- i i i 口、j _i 一' -j - , A i。 J H u j . 5 t l . 二, 大二-}37t- 、、WHU, , 4 ' IN7 Lw C d , . F J i1 J A + J ) u- I j : , Jf -. :
关键词:快速凝固 快冷钎料 脆性 亚稳态转变 CA,0相 ul ) (
兰州 理 工 人学 硕 i
位 论 文
Ab ta t ,r c
Abs r c ta t
Te I l u i s i rbn r r ad h e o o ad A- - si b zg o a p p e b t mt d r i h 1 1 C S ee r n i s e r y h f # " 一 r a b e e p
兰 州 理 工 大 学 硕 }学 位 论 文
丫 64 。 50 0 86
摘要
本文利用快速凝固的方法制备了 ! I -uS 系列快冷钎料薄带, ' 1 lC-: - ' A 利用差示 扫描量热仪 (S) 扫描电镜 (H) X DC , SM, 衍射 (R ) XD 等手段, 对快冷钎料薄带的脆 性进行了深入研究。研究结果表明:虽然快冷 A-uS lC-i钎料薄带的韧性要好于同 成分的普通钎料,但是由于金属间化合物 CA, 。 ul 〔 )相的本质脆性,使得快冷钎 料仍有一定的脆性;随养 C 。含量的增加,快冷钎料中。 相的含量也在增加,快冷 钎料的脆性增大。硬脆 e 相的分布、形态及体积分数都会影响 A-uS 1 -i系列钎料 C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合 金具有 强 度高 、 本低 和耐蚀 性 好等优 点 , 成 被广 泛 应用 于航 空 、 汽车 等 工业 结构 中。铝 合金 具 有优 良的热传 导性 , 因此在 热交 换器 的生 产 中被广 泛 采用 。ASⅢ uZ :R 钎 料 的熔 点较 低 , 动性 、 IiC n。 e 流 润湿性好 , 同时具 有较 好 的耐热 性 , 广 泛 应 用 于锻 造 铝合 金 的钎 焊 _ 】 可 I 。但 由于成 份 接 近共 晶点 , 。 所 以有粗大 的共 晶硅 及初 晶硅 析 出 ; 和锌 的存 在虽 然增 加 了合 金 的流 动性及 耐热性 , 铜 但也 存在严 重 的偏 析, 使该钎 料 的钎 焊接 头强度 较 低。采 用超 音速雾 化 技术 制 备粉末 , 晶粒 结 构 细小 均匀 , 可消 除合 金 中 硅粗 大及铜 和锌 偏析 的问题 , 能提 高钎 焊接 头的强 度 ¨ 】 3 。本文 利用超 音速 气体雾 化技 术制 备 了 AS。 Ii 。 C n。 e uZ 2 粉末 快速凝 固钎 料 , R 并研究 了其 焊接性 , 以解决 AS。 uZ 2R 钎料 硅 、 IiC n。 e 。 铜和锌 的偏析 , 降低
பைடு நூலகம்

喷嘴兰
金 届 劣 化 粉 木
润湿性试验的试样为 5 n ×5 m×4m 铝板 , 0r a 0m n m 将普通
钎 料和粉 末钎料 分别放 在处 理过 的试 样 上 观察 其 润 湿性 , 试件 的尺 寸 和钎料 的放置位 置如 图 2所 示 。
图 l 超 音速 雾 化 装 置 利用 J A80扫描电子显微镜观察粉末钎料 的形貌 ; X。 4 把粉末用 树脂 粘结凝 固成试 样 , 0 0 %的 HF水 溶液 腐 蚀 合金 铸 态 试 样 及 .. 1 DVe f p xfa0 用 .5 Fg ec i jwt1 . i o m d i i1 "
第3 卷 O
钎焊后用 MO E 50 D L5 10电子万能试验机在室温下 以 10r r n的速度施加拉力 , . m/ i a a 拉断后计算 接头的抗剪强度。钎焊接头剪切强度试样尺寸如图 3 所示。
图 2 润湿性试验示意 图。 l in n
Fi 2 S h mai o p ed bly t t g. c e t f ra a it e c s i s
V0 . 0 No 1 J3 .
Fe . 2 0 b ,0 7
快速 凝 固 Al i uZ — e粉 末 钎 料 — — —nR SC 的制 备 及 其性 能
吕 楠 袁 晓光 盛立远 , ,
(. 1辽宁科技大学 科技同 , 辽宁 鞍1 1 4 5 ;. 【 10 1 2 沈阳工业大学 . J 辽宁 沈阳 10 0 ; .{国科学院金属研究所 , 10 0 3 I 1 辽宁 沈阳 10 0 10 0)
粉末试样, 用光学显微镜及 50 7 扫描电子显微镜 ( M) 观察其显微组织结构。
收稿 日期 :06 1.2 20 .20 。
作者 简 介 : 柏 (9 9一)女 . 17 . 辽宁 鞍 山 人 ,
维普资讯

l 2・
鞍 山 科 技 大 学 学 报
摘 要 : 采用快凝技术制备 了粒度 5 —9 m的亚共晶 A— —u nR 快凝粉末钎料, 0 0” I c — .e s Z 对其性能进行 了分
析。实验结果表明 , 快凝钎料 液相线降低 了 5 : 。与普通 钎料相 比, 快凝 A一 一nR 粉末钎料 润 湿角提 I 一 z e 高了2 5 抗剪强度提 高了 2 %。快凝钎料组 织细 小均 匀无偏析现 象, .. 8 在钎 焊过程 中与母材扩散性能好 . 有利
图 3 钎 焊接 头剪 切 试 样 示 意 图 ,3l nl l
F g 3 S h ma i fsm pe b a e i . c e t o a l r z d c
2 试验 结 果 分析
2 1 快凝粉 末钎 料与 普通钎 料微观 组织 . 图 4所 示的 是 AS。 uZ mR 钎 料 的微观 形貌 , 图 4中可 以看 出 , IiC n e 。 从 利用 超音 速雾 化设 备所 制备
于提 高润湿性和接 头抗拉强度 。采 用快速凝 固方法制备粉 末钎料 , 不仅 工 艺简单 , 储存 、 用方便 , 使 且可获 得 性能更优 良的钎料 , 并可用于开发新型钎 料。
关键词 : 快速凝固: s c —nR 粉末钎料; 一i u —e — Z 钎焊
中图分 类号 : G 2 . 文献标 识码 : 文章 编号 :62 40 20 )1 0 1 4 T 45 1 A 1 — 1(070— 1 0 74 0
钎料 的熔点 。
1 试 验 方 法
试验采用超音速气体雾化装置 , 主要 由熔炼保温 、 气体雾化及粉末收集三部分组 成, 如图 l 所示。
制备 A.i uZ 。 e 1 . .nR 粉末 纤 料 的具 体 工 艺 为 : 化 保 护 气 体 为 N , SC 雾 雾化压 力为 15 a雾 化 温度 为 8 0—8 0℃ 。利 用 沉 降法 选 . —2MP , 0 3 取2 4~20目筛 子选粉 末 , 取其 中粒度 5 —9 m 的粉 末 为钎 料 。 6 选 0 0b t 将 所得 到 的粉 末钎 料 在 差热 分 析 仪 ( A) , 1 DT 上 以 0℃ / n的加 热 mi 速 率 , 保护下 从室 温加 热到 90℃ , 氩气 0 测定粉 末钎 料 的熔 点。
维普资讯
第3 0卷 第 l 期
20 0 7年 2月
鞍 山 科 技 大 学 学 报
J u n l fAn h nUnv ri f ce c n c n lg o r a o s a iest o i ea dTeh oo y y S n
相关文档
最新文档