2.3变量之间的相关关系(必修3优秀课件)

合集下载

变量之间的相关关系(必修优秀课件)_图文

变量之间的相关关系(必修优秀课件)_图文

x
年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
距离之和:
越小越好 年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
点到直线距离的平方和:
年龄
求出回归直线的方程为:
Y^ =-2.352x+147.767
(4)当x=2时,y=143.063,因此,这天大约可以卖出143 杯热饮。
练习:
实验测得四组(x,y)的值如下表所示:
x
1
2
3
4
y
2
3
4
5
则y与x之间的回归直线方程为(海南理)对变量x,y观测数据(xi,yi)(i=1,2,...,10),得 散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,...,10),得散点图2,
2112 2110.6
3、求和
解:1、设回归方程 2、求平均数
3、求和 4、代入公式求
的值
5、写出回归直线的回归方程
用“最小二乘法”求回归直线方程的步骤
1、设回归方程 2、求平均数 3、求和
4、代入公式求
的值
5、写出回归直线的方程
三、利用线性回归方程对总体进行估计
例:有一个同学家开了一个小卖部,他为了研究气 温对热饮销售的影响,经过统计,得到一个卖出的 热饮杯数与当天气温的对比表:

必修三2.3-变量间的相关关系1(实用)-课件

必修三2.3-变量间的相关关系1(实用)-课件
15
2.线性相关 (1)定义:如果两个变量散点图中点的分布从整体上看大 致在一条 直线 附近,我们就称这两个变量之间具有线性相 关关系,这条直线叫做 回归直线. (2)最小二乘法:求线性回归直线方程 ^y = b^ x+ a^ 时,使得 样本数据的点到它的 距离的平方和 最小的方法叫做最小二 乘法,其中a,b的值由以下公式给出:
16
其中,b^是回归方程的 斜率 ,a^是回归方程在y轴上的 截距.
17
下列有关回归方程^y=b^x+a^的叙述正确的是( )
①反映^y与x之间的函数关系;
②反映y与x之间的函数关系;
③表示^y与x之间的不确定关系;
④表示最接近y与x之间真实关系的一条直线.
A.①②
B.②③
C.③④
D.①④
[答案] D
x2 4 5 6 8 y 30 40 60 50 70
根据上表提供的数据得到回归方程^y =b^x+a^中的b^=6.5,预测销售额为 115
15 万元时约需________万元广告费.
28
[解析] -x =2+4+55+6+8=5, -y =30+40+650+50+70=50. ∵回归方程过样本中心(5,50),代入 ^y =6.5x+ a^ 得 a^ = 17.5, ∴^y=6.5x+17.5,当^y=115时,x=15.
9
(2)两类特殊的相关关系:如果散点图中点的分布是从 左下 角到 右上 角的区域,那么这两个变量的相关关系称 为正相关,如果散点图中点的分布是从 左上 角到 右下 角 的区域,那么这两个变量的相关关系称为负相关.
10
[归纳总结] 两个变量间的关系分为三类:一类是确定 性的函数关系,如正方形的边长与面积的关系;另一类是变 量间确实存在关系,但又不具备函数关系所要求的确定性, 它们的关系是带有随机性的,这种关系就是相关关系,例 如,某位同学的“物理成绩”与“数学成绩”之间的关系, 我们称它们为相关关系;再一类是不相关,即两个变量间没 有任何关系.

人教版高中数学必修三课件:2.3 变量间的相关关系(共39张PPT)

人教版高中数学必修三课件:2.3 变量间的相关关系(共39张PPT)
第二章 统计
2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关
三维目标
【知识与技能】 (1)在两个变量具有线性相关关系时,会在散点图中作出回归直线,会用线 性回归方程进行预测. (2)知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回 归方程系数公式建立线性回归方程,了解(线性)相关系数的定义.
预习探究 [讨论] 相关关系与函数关系的区别和联系是什么?
解:相同点:两者均是指两个变量间的关系. 不同点:(1)函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系;相关 关系是一种非确定的关系,如一块农田的水稻产量与施肥量之间的关系. (2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如, 有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系,然而学会新词并不 能使脚变大,而是涉及第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高, 而且由于长大脚也变大.
形象思维有机地结合起来解决问题的一种方法,它能使抽象问题具体化,复杂问题简 单化.本章的数形结合思想的应用是利用散点图判断相关关系.
备课素材 [例] 一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间有一组 数据如下表所示: x 1.08 1.12 1.19 1.28 1.36 1.48 1.59 1.68 1.80 1.87 1.98 2.07 y 2.25 2.37 2.40 2.55 2.64 2.75 2.92 3.03 3.14 3.26 3.36 3.50
[解析] (1)Δ=b2-4ac是一种确定 的关系,即为函数关系.
考点类析 例1 (2)如图2-3-1所示的是具有相关关系的 两个变量的一组数据的散点图和回归直线, 若去掉一个点后,剩下的5个点的线性相关 关系最强,则应去掉( C ) A.D点 B.E点 C.F点 D.A点

高中数学必修三课件-2.3变量间的相关关系 (共28张PPT)

高中数学必修三课件-2.3变量间的相关关系 (共28张PPT)

不是相关关系
不是函数关系, 也不是相关关系 相关关系
(2)下表是某地的年降雨量与年平均气温,判断两者是相关关系 吗?求回归直线方程有意义吗? 年平均气温(℃) 12.51 12.74 12.74 13.69 13.33 12.84 13.05 年降雨量(mm) 748 542 507 813 574 701 432
^ i=1 b=
- - ∑(x i- x )( yi- y ) - 2 ∑(x i- x )
i=1 n

i
i
i =1 = n

2 - x- n x 2 i
i=1 ^ - ^ - ^ 斜率 ,^ a = y - b x 其中, b 是回归方程的______ a 是回归方程在 y 轴 截距 . 上的_______
前面我们学习了两个量之间的关系有哪些? 相等关系、不等关系; 两个量之间的函数关系;
思考:在学校里,老师对学生经常这样说:“如果你的数学 成绩好,那么你的物理学习就不会有什么大问题”.按照 这种说法,似乎学生的物理成绩与数学成绩之间存在着 一种相关关系,这种说法有没有根据?
教材导航?
1.问题导航 (1)什么叫散点图? (2)相关关系分为哪两种? (3)什么叫回归直线?求回归直线的方法及 步骤是什么?
1.两个变量之间的关系与其对应的散点图特征: (1)两个变量间的关系是函数关系时,数据点位于某曲线上. (2)两个变量间的关系是相关关系时, 数据点位于某曲线附近. (3)两个变量间的关系是线性相关时,数据点位于某直线附近. 2.对回归直线与回归方程的理解 (1)回归方程被样本数据唯一确定,各样本点大致分布在回归直 线附近.对同一个总体,不同的样本数据对应不同的回归直线, 所以回归直线也具有随机性. (2)对于任意一组样本数据,利用最小二乘法公式都可以求得 “回归方程”,如果这组数据不具有线性相关关系,即不存在 回归直线,那么所得的“回归方程”是没有实际意义的. 因此,对一组样本数据,应先作散点图,在具有线性相关关系 的前提下再求回归方程.

【人教A版】高中数学必修三:2.3《变量间的相关关系》ppt课件

【人教A版】高中数学必修三:2.3《变量间的相关关系》ppt课件

x
0
0 50
05
5 年龄
像这样如果散点图 中的点的分布从整 体上看大致在一条 直线附近我们就称 这两个变量之间具 有线性相关关系, 这 条直线叫做回归直 线, 这条直线的方程 叫做回归方程
y
脂 肪 含 量 40
35 30 25 20 15 10
5
0 20 25 30 35 40 45 50 55 60 65
A. y x 1
i 1
i 1
B. y x 2
C. y 2x 1
D. y x 1
总结提升:
基础知识框图表解 变量间关系
函数关系 相关关系
散点图 线性相关 线性回归方程
课堂检测:
1、对变量x,y观测数据(xi,yi)(i=1,2,...,10),得散点图1;对变量 u,v有观测数据(ui,vi)(i=1,2,...,10),得散点图2,由这两个散点图可
思考1:年龄与脂肪含量有没有关系?依据是什么? 思考2:有没有更加定量的分析方法,进行定量研究?
三、散点图
脂肪含量
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
在平面直角坐标系 中,表示具有相关 关系的两个变量的 一组数据图形,称 为散点图
销售杯数之间关系的一般规律;
2、求回归方程;
(已知:x 15.364, y 111.636
11
11
xi2 4335, xi yi 14778 )
i 1
i 1
3、如果某天的气温是2摄氏度, 预测这天卖出的热饮杯数。
解:
1、各点散布在从左上角到由下角的区域里,因此, 气温与热饮销售杯数之间成负相关,即气温越高, 卖出去的热饮杯数越少。

高中数学必修三:《变量之间的相关关系》优质课件

高中数学必修三:《变量之间的相关关系》优质课件

-11
0
19 28
2.3 变量间的相关关系
记 u=y-257, t =x-2010
t
-4
-2
0
2
4
u
-21
-11
0
19
29
t 0 ,u 3.2
5
(ti t )(ui u )
b i1 5
6.5
(ti t )2
i 1
a u a t 3.2
所以y关于t的回归方程为:
y 257 6.5(x 2010) 3.2
0.95 万元。
课 时 小 结
2.3 变量间的相关关系
阅读与思考
相关关系的强与弱
两个变量 x 与 y 正(负)相关时,它们就有相同(反) 的变化趋势,即当 x 由小变大时,相应的 y 有由小(大)变 大(小)的趋势。如何描述 x 和 y 之间这种线性关系的强弱 呢?
用相关系数 r 来衡量两个变量之间线性关系的强弱
2.3 变量间的相关关系
2.3 变量间的相关关系
很弱 一般
较弱
一般 很强
-1
-0.75 -0.30 -0.25 0.25 0.30 0.75
1r
负相关
正相关
2.3 变量间的相关关系
本节课结束 同学们,再见!
观察散点图的大致趋势, 两个变量的散点图中点 的分布的位置是从左下角到右上角的区域,我们称这 种相关关系为正相关。
如果两个变量成负相关,从整体上看这两个变量的变化 趋势是:散点图中的点散布在从左上角到右下角的区域.
脂肪含量 40 35
30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65

高中数学【人教A版必修】三第二章2.3变量间的相关关系课件

高中数学【人教A版必修】三第二章2.3变量间的相关关系课件

高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
3
4
2.5
3
5
6
4
4.5
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出 的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少 吨标准煤?
我们在生活中,碰到很多相关关系的问题:
我们还可以举出现实生活中存在的许多相关关系的问题.例如:
➢商品销售收入与广告支出经费之间的关系.
商品销售收入与广告支出 经费之间有着密切的联系, 但商品收入不仅与广告支出 多少有关,还与商品质量、 居民收入等因素有关.
➢ 粮食产量与施肥量之间的关系.
在一定范围内,施肥量越 大,粮食产量就越高.但是,施 肥量并不是决定粮食产量的唯 一因素,因为粮食产量还要受 到土壤质量、降雨量、田间管 理水平等因素的影响.
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
1.了解变量之间的相关关系; 2.会区分变量间的函数关系与相关关系; 3.会作散点图,并由此对变量间的正相关或负相关作出直观 的判断; 4.会求线性回归方程,并会利用回归方程进行预测.
➢ 人体内脂肪含量与年龄之间的关系.
在一定年龄段内,随着年 龄的增长,人体内的脂肪含量 会增加,但人体内的脂肪含量 还与饮食习惯、体育锻炼等有 关,可能还与个人的先天体质 有关.
上面的几个例子都反映了:两个变量之间是一种不确 定的关系.产生这种关系的原因是受到许多不确定的随机因 素的影响.

人教版高中数学必修三2.3变量间的相关关系ppt课件

人教版高中数学必修三2.3变量间的相关关系ppt课件
1.社会上流传“喜鹊叫喜,乌鸦叫丧”,你认为二者是否具有相关性? 提示:“喜鹊叫喜,乌鸦叫丧”是封建迷信的说法,是人们夸大了两者之间的关系, 毫无科学道理,它们之间是不相关的. 2.散点图只描述具有相关关系的两变量所对应点的图形吗? 提示:不是.不论具备还是不具备相关关系,两个变量统计数据所对应的点表示的图 形都叫散点图.所以,可以利用散点图直观地判断两变量之间有无相关关系.
1.(5分)(2010·湖南高考)某商品销售量y(件)与销售价格x(元/件)负相关,则
其回归方程可能是( )
(A) =yˆ-10x+200
(B) =10x+200 yˆ
(C) =yˆ-10x-200
(D) =10x-200 yˆ
【解析】选A.∵商品销售量y(件)与销售价格x(元/件)负相关,∴a<0,排除B,D.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之间的回归直线方程为 =250+4x,当广告费用为50万元yˆ 时,预计汽车销售量约为 ______辆.
根据统计资料,居民家庭年平均收入的中位数是 ______,家庭年平均收入与年平 均支出有 ______的线性相关关系.(填“正相关”、“负相关”)
【解题提示】按大小排列出收入数据的顺序,找出中间的那个数据. 【解析】收入数据按大小排列为:11.5、12.1、13、13.5、15,所以中位数为13. 答案:13 正相关
【解析】(1)画出散点图如图: 由图可见两者之间是线性相关的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关系.
2. 下列两个变量之间的关系哪个不是函数关系
(D)
A.角度和它的余弦值 B. 正方形边长和面积 C.正n边形的边数和它的内角和 D. 人的年龄和身高
2.3.2 两个变量的线性相关关系
.
探究:
年龄 23 27 39 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
. 方案2、在图中选两点作直线,使直线
两侧的点的个数基本相同。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再 求出这些直线的斜率和截距的平均值作为回归直 线的斜率和截距。而得回归方程。
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5
年龄 60 61
脂肪 35.2 34.6
40
35
从散点图发现:年 30
龄越大,体内脂肪 25 含量越高,点的位 20 置散布在从左下角 15
10
到右上角的区域。 5
称它们成正相关
间具有线性相关关系,这条直线叫做回归直线,
该直线叫回归方程。 脂肪含量
40
那么,我们该
35
怎样来求出这个
30
回归方程?请同
25
学们展开讨论,
20
15
能得出哪些具体
10
的方案?
5
年龄
0 20 25 30 35 40 45 50 55 60 65
.
方案1、先画出一条直线,测量出各点与 它的距离,再移动直线,到达一个使距离的和 最小时,测出它的斜率和截距,得回归方程。
人体内脂肪含量与年龄之间有怎样的关系?
下面我们以年龄为横轴, 脂肪含量为纵轴建立直角坐标系,
作出各个点, 称该图为散点图。
y
年 龄
23
27
39
41
45
49
50
53
54
56
57
58
60
61
脂 肪
9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 35.2 34.6
15 10
Bxi,bxi a
q iyi (b xia )yi b xi a
5
0 20 25 30 35 40 45 50 55 60 65
x
年龄
y
脂 肪 含 量 40
35 30 25 20 15 10
5
设回归方程为
A xi , yi
Bxi,bxi a
y bxa
q iyi (b xia )yi b xi a
0 20 25 30 35 40 45 50 55 60 65
x
距q 离 之q 1 和:q 2qn 越小越好 年龄
y1bx1ay2bx2aynbxna
y
脂 肪 含 量 40
35 30 25 20 15 10
5
设回归方程为 ybxa
A xi , yi
Bxi,bxi a
q iyi (b xia )yi b xi a
我们还可以举出现实生活中存在的许多相关 关系的问题。例如:
1〉商品销售收入与广告支出经费之间的关系。 2〉粮食产量与施肥量之间的关系。
3〉人体内脂肪含量与年龄之间的关系。
即学即用
1.下列关系中,是带有随机性相关关系的是
②③④
.
①正方形的边长与面积的关系;②水稻产量与施肥量之间的关系;
③人的身高与年龄之间的关系;④降雪量与交通事故发生之间的
O
脂肪含量 20 25 30 35 40
年龄 45 50 55 60 65
如高原含氧量与海拔高 度的相关关系,海平面以上, 海拔高度越高,含氧量越少。
作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.
O
观察散点图可以发现散点图中的点大致分布在一 条直线附近,像这样,如果散点图中点的分布从整体 上看大致在一条直线附近,我们就称这两个变量之
年龄 60 61
脂肪 35.2 34.6
40
35
将各数据在平面 30
坐标系中的对应 25
点画出来,得到 20 表示两个变量的 15
10
一组数据的图形, 5
这样的图形叫做
散点图。
O
脂肪含量 20 25 30 35 40
年龄 45 50 55 60 65
探究
年龄 23 27 39 41 45 49 50 53 54 56 57 58
2.3.1 变量间的相关关系
问题提出
1.函数是研究两个变量之间的依存关系 的一种数量形式.对于两个变量,如果 当一个变量的取值一定时,另一个变量 的取值被惟一确定,则这两个变量之间 的关系就是一个函数关系.
2.在中学校园里,有这样一种说法: “如果你的数学成绩好,那么你的物理 学习就不会有什么大问题.”按照这种说 法,似乎学生的物理成绩与数学成绩之 间存在着某种关系,我们把数学成绩和 物理成绩看成是两个变量,那么这两个 变量之间的关系是函数关系吗?
脂 40 肪 35 含 30 量 25
20 15 10
5
0 20 25 30 35 40 45 50 55 60 65
x
年龄
探究
年龄 23 27 39 41 45 49 50 53 54 56 57 58
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5
计算回归方程的较为科学的方法:
y



设回归方程为 ybxa
量 40
35
30 25
20
15 10
5
0 2 25 30 35 40 45 50 55 6,已经找到了
计算回归方程的较为科学的方法:
y



设回归方程为 ybxa
量 40
35
30
25 20
A xi , yi
0 20 25 30 35 40 45 50 55 60 65
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
我们上面给出的几种方案可靠性都不是很强
y
脂 肪 含 量 40
35 30 25 20 15 10
5
0 20 25 30 35 40 45 50 55 60 65
x
年龄
人们经过长期的实践与研究,已经找到了
相关文档
最新文档