2.3变量间的相关关系
2.3.1(2.3.2)变量之间的相关关系和线性关系

2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想.课时安排2课时教学过程第1课时导入新课思路1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?推进新课新知探究提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.(1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系. 课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业习题2.3A组3、4(1).设计感想本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度和学习方法,树立时间观,培养勤奋、刻苦耐劳的精神.备课资料数学家关肇直关肇直(1919.2.13—1982.11.12),中国科学院院士,是中国数学家,生于北京.原籍广东省南海县.父亲关葆麟早年留学德国,回国后任铁道工程师多年,于1932年故世;母亲陆绍馨,是北平女子师范大学的毕业生,曾从教于北京师范大学.关葆麟去世后,母亲以微薄的收入艰难地抚育关肇直及其弟妹多人.全国解放后,关肇直尽心亲侍慈母,直至1967年去世.关肇直于1959年1月与刘翠娥结婚,他们有两个女儿.刘翠娥系中国科学院工程物理研究所研究人员.关肇直于1927年进入北京培华中学附属小学学习.1931年入英国人办的崇德中学学习.学校对英文要求十分严格,加上关肇直自小就由父母习以英文、德文,为日后掌握英文、德文、法文、西班牙文和俄文奠定了良好基础.1936年高中毕业后考入清华大学土木工程系,后于1938年转入燕京大学数学系学习.毕业后在燕京大学(后迁成都)任教.参加成都教授联谊会,担任学生进步组织的导师,积极支持抗日救国学生运动.1946年春从成都返回北平(北京),不久从燕京大学转到北京大学数学系任教.1947年通过考试成为国民政府派遣的中法交换生赴法国留学.名义上去瑞士学哲学,实际上去了巴黎大学庞加莱研究所研究数学,导师是著名数学家、一般拓朴与泛函分析的创始人弗雷歇(M.R.F rechetl),1948年参加革命团体“中国科学工作者协会”,是该会旅法分会的创办人之一.1949年10月,新中国诞生,他毅然决定放弃获得博士学位的机会.于12月回到祖国,满腔热情地参加了新中国的建设.他立即参加了组建中国科学院的工作.他和其他同志一起,协助郭沫若院长筹划建院事宜,确定科学院的方向、任务、体制等,组建科学院图书馆,担任图书管理处处长,编译局处长.1952年参加筹建中国科学院数学研究所的工作,并在数学研究所从事数学研究,历任副研究员、研究员、研究室主任、副所长、学术委员会副主任.他还是中国科学院声学研究所学术委员会委员及原子能研究所学术委员会委员.从1952年起,兼任北京师范大学、北京大学、中国人民大学和中国科技大学等校教授以及华南工学院名誉教授;并兼任过中国科学院成都分院学术顾问、该院数理科学研究室主任、中国科学院武汉数学物理研究所顾问、研究员.他还是国家科委数学学科组副组长、自动化学科组成员;曾担任北京数学会理事长,中国数学会秘书长,国际自动控制联合会理论委员会成员及《中国科学》《科学通报》《数学学报》和《系统科学与数学》等杂志的编委或主编等职.1980年,他与其他科学家一起创建中国科学院系统科学研究所,担任研究所所长.他还担任中国自动化学会副理事长、中国系统工程学会理事长.1980年当选为中国科学院数理学部委员.关肇直长期从事泛函分析、数学物理、现代控制理论等领域的研究,成绩卓著,为我国的社会主义现代化建设作出了重大贡献,1978年获全国科学大会奖,1980年获国防科委、国工办科研奖十几项,1982年获国家自然科学二等奖;关肇直参与主持的项目《尖兵一号返回型卫星和东方红一号》获1985年国家科技进步特等奖,他本人获“科技进步”奖章.关肇直从事泛函分析、数学物理和现代控制理论研究方面,取得水平很高的成果.主要成果有以下几个方面.(一)最速下降法与单调算子思想关肇直于《数学学报》第6卷第4期(1956)发表了学术论文“解非线性函数方程的最速下降法”,第一次把梯度法(又称最速下降法)由有限维空间推广到无限维空间,而且和线性问题相仿,其收敛速度是依照等比级数的.这种方法可以用来解某些非线性积分方程以及某些非线性微分方程边值问题.并在文中首先提出了单调算子的思想,比外国学者早四五年.国外关于单调算子的概念,最早见于1960年扎朗顿尼罗和闵梯(E.H.Z afantonello,G.J.M inty)的工作.单调算子是非线性泛函分析中很基本的概念之一,单调算子理论已成为泛函分析中的一个重要分支,在处理力学、物理学中的许多非线性问题中被广泛地应用.(二)激光问题的数学理论在数学物理方面,关肇直也进行了深入的研究.他在《中国科学》第14卷第7期(1956)上用法文发表了学术论文“关于…激光理论‟中积分方程的非零本征值的存在性”在论文中他利用泛函分析工具,在很弱的假设下,用极为简短的方式证明了激光理论中一般形式的具有非对称核的线性积分方程非零本征值的存在.这一结果受到国际上的重视.被国外书刊广泛引用,如M agraw H ill图书公司1972年出版的柯克朗(J.A.C ochran)著的《线性积分方程分析》一书就曾详细地引用过.(三)中子迁移理论关肇直在数学物理方面的另一个创造,就是关于中子迁移理论的研究.1963年他用希尔伯特空间与不定规度空间的算子谱理论解决了平板几何情形的中子迁移的本征函数问题,著有“关于一类本征值问题”(当时未发表).这比国外罕日布鲁克(H angelbrook)1973年的同类工作早10年.卡帕(H.G.K aper)和兹维贝尔(P.F.Z weibel)在1975年举行的国际迁移理论第四次会议上的报告(载于期刊《T ranspost T heory and S tatistical P hysiss》V ol.4,N o.3,第105—123页,1975)中,在“迁移理论中有什么创新”标题下,把罕日布鲁克的方法称为求解方程的新方法;但是,罕氏著作中所解决的问题,在关肇直的文章中是早已解决了的.关肇直于1963年完成的这篇论文直到他去世后于1984年发表在《数学物理学报》上,国外同行当得知他在60年代就作出了如此高水平的工作时都深表惊异.(四)飞行器弹性控制理论关肇直在《中国科学》1974年第4期上发表了“弹性振动的镇定问题”,首先提出了用线性算子紧扰动理论解决飞行器弹性振动的镇定问题.在这之前,美国的著名控制论专家鲁塞尔(D.L.R ussell)曾用别的方法讨论过此类问题,但他自己认为他所得的结果“当然并非完全满意”,“增益系数的增大应能改进系统的稳定性,但这样整体性结果没有得到……”他甚至认为:显然他所用的方法“带来必须小的缺陷,……,但很怀疑这里定理所表述的结果的确切化用任何别的技术来实现.”可是,与鲁塞尔的怀疑相反,关肇直用了算子紧扰动方法技巧,此方法与鲁塞方法有本质的区别,它确实摆脱了放大系数很小的限制,得出了工程意义更合理的结果.这项成果已经应用到我国的国防尖端技术设计上,成为导弹运载火箭所必不可少的一个设计理论.(五)几本主要著作1.《泛函分析讲义》1958年高等教育出版社出版了关肇直的《泛函分析讲义》.该书吸取了当时国际上几部有名的介绍泛函分析概要的书的长处,内容适中,很具特色,便于自学.这是国内第一部包括当时泛函分析各分支的较全面的专著,国内当时这类书很少;国内除此之外,迄今也仍只有一些教科书性质的出版物,还没有别的书代替它.关肇直曾使用这部著作在1956年和1957年分别为中国科学院数学研究所一批青年同志和北京大学第一届泛函分析专门化学生讲授过《泛函分析》课程,培养了一批从事泛函分析等方面的中青年骨干教师和科研人员.此书至今仍有重大参考价值.2.《拓扑空间榻论》科学出版社于1958年出版了关肇直教授的这本书.本书是为了数学分析方面的青年数学工作者的需要而写的.目的是使读者获得关于拓扑空间理论的基础知识.本书在当时是这方面较系统的也是较早的一部专著.作者是按照自己的观点来写的,书中许多定理的证明都是作者给出的,他尽可能地遵循一般实变函数论中的叙述问题的方式,因而有自己的特色.这是为了使读者感到新知识与原有知识有联系,对新的抽象概念不至感到突然,同时又帮助读者直达科学研究的前沿.根据研究概率论方面的读者反映,对他们研究极限定理一类工作颇有帮助.3.《高等数学教程》人民教育出版社于1959年出版.本书是关肇直在中国科技大学开办应用数学专业讲授高等数学课程而编写的教材,特点是:材料比较丰富,注意理论联系实际.4.《线性泛函分析入门》上海科技出版社于1979年出版.关肇直同他的学生张恭庆、冯德兴合著.著书的目的是为了满足多方面科学研究工作者的需要,因为当时线性泛函分析已成为许多从事科学技术研究的人所渴望了解和应用的一门数学学科.此书的特点是:尽可能从一些问题提炼出泛函分析中的基本概念,让读者透过叙述方法了解到研究的过程.5.《现代控制系统理论小丛书》这是由关肇直主编的,包括线性系统理论、非线性系统理论、极值控制理论、系统辨识、最优控制与随机控制理论、分布参数系统理论及其他有关内容,共分十几分册,由科学出版社从1975年开始陆续出版.这套丛书介绍了现代控制系统理论的各个部分,并着重说明这种理论怎样由工程实践的需要而产生,又怎样用来解决工程设计中的实际问题.此丛书主要是为从事控制理论研究的科学工作者和工程技术人员而撰写的.此丛书的出版,对于促进我国的控制理论和控制技术的发展起到了很好的作用.。
2.3变量间的相关关系拓展学案

2.3变量间的相互关系 编号:SX-02-132.3《变量间的相互关系》拓展学案主备: 审核: 高二数学组 时间:班级: 组别: 姓名: ( )1、下列两变量具有相关关系的是A 正方体的体积与边长B 人的身高与体重C 匀速行驶车辆的行驶距离与时间D 球的半径与体积 ( )2、下列说法中不正确的是A 回归分析中,变量x 和y 都是普通变量B 变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定C 回归系数可能是正的也可能是负的D 如果回归系数是负的,y 的值随x 的增大而减小( )3.设有一个回归方程为y ^=2-1.5x ,则变量x 增加一个单位时A .y 平均增加1.5个单位B .y 平均增加2个单位C .y 平均减少1.5个单位D .y 平均减少2个单位( )4.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到回归直线方程a x b y+=,下面说法不正确的是A .直线a x b y +=a 必经过点(x -,y -)B .直线a x b y+=至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线a x b y+=的斜率为∑i=1nx i y i -n x - y-∑i =1nx 2i -n x-2。
D .直线a x b y +=和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑i =1n[i y -(a bx i +)]2是该坐标平面上所有直线与这些点的偏差中最小的直线.( )5.以下关于线性回归的判断,正确的有________个. ①若散点图中所有点都在一条直线附近,则这条直线为回归直线②散点图中的绝大多数点都线性相关,个别特殊点不影响线性回归,如图中的A ,B ,C 点.③已知回归直线方程为y ^=0.50x -0.81,则x =25时,y 的估计值为11.69④回归直线方程的意义是它反映了样本整体的变化趋势 A .0个 B .1个 C .2个 D .3个( )6.回归直线方程的系数a ,b 的最小二乘估计ˆˆ,ab ,使函数Q(a ,b )最小,Q 函数指( ) A 、21()niii y a bx =--∑ B 、1||niii y a bx =--∑ C 、 2()iiy a bx -- D 、 ||i i y a bx --( )7.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t .那么下列说法正确的是( )A .直线l 1和l 2有交点(s ,t )B .直线l 1和l 2相交,但是交点未必是点(s ,t )C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合 8、由一组观测数据(x 1, y 1),(x 2, y 2),……,(x 12n , y 12)得x =1.542,y =2.8475,2129.808n i i x ==∑, 21ni i y =∑=99.208,154.243ni ii x y==∑,则回归直线方程是 .9.下列关系:(1)炼钢时钢水的含碳量与冶炼时间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)柑橘的产量与气温之间的关系;(4)森林的同一种树木,其横断面直径与高度之间的关系.其中具有相关关系的是________. 10、对于回归方程25775.4ˆ+=x y,当x=28时,y 的估计值是 . 11.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.12.改革开放以来,我国高等教育事业迅速发展,对某省1990~2000年考大学升学百分比按城市、县镇、农村进行统计,将1990~2000年依次编号为0~10,回归分析之后得到每年考入大学的百分比y 与年份x 的关系为:城市:y ^=2.84x +9.50;县镇:y ^=2.32x +6.67;农村:y ^=0.42x +1.80.根据以上回归直线方程,城市、县镇、农村三个组中,______的大学入学率增长最快.按同样的增长速度,可预测2010年,农村考入大学的百分比为_____%. 13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm .14已知∑i =17x 2i =280,∑i =17y 2i =45209,∑i =17x i y i =3487. (1)画出散点图; (2)从散点图中判断销售金额与广告费支出成什么样的关系? (3)求x -,y -; (4)求回归方程.。
2.3 变量间的相关关系

则������ =
^
66.5-4×4.5×3.5
^
������ = ������ − ������ ������ =3.5-0.7×4.5=0.35, 故线性回归方程为������ =0.7x+0.35. (3)根据线性回归方程的预测,现在生产 100 吨产品消耗的标准 煤的数量为 0.7×100+0.35=70.35, 故消耗能源减少了 90-70.35=19.65(吨).
2.3
变量间的相关关系
知识能力目标引航 1.了解相关关系、线性相关、回归直线、最小二乘法的定义. 2.会作散点图,能判断两个变量之间是否具有相关关系. 3.会求回归直线方程,并能用回归直线方程解决有关问题.
1.相关关系 (1)定义:如果两个变量中一个变量的取值一定时,另一个变量的 取值带有一定的随机性,那么这两个变量之间的关系,叫做相关关系. (2)两类特殊的相关关系:如果散点图中点的分布是从左下角到 右上角的区域,那么这两个变量的相关关系称为正相关,如果散点图 中点的分布是从左上角到右下角的区域,那么这两个变量的相关关 系称为负相关.
③代入公式计算������ , ������ 的值. ④写出回归直线方程. (2)求回归直线方程时应注意的问题:
^^
①用公式计算������ , ������ 的值时,要先算出������ ,然后才能算出������ . ②使用计算器能大大简化手工的计算,迅速得出正确的结果,但输入数 据时要细心,不能出任何差错;不同计算器的按键方式可能不同,可参考 计算器的使用说明书进行相关的计算.
^
86-4×4.5
2
=
66.5-63 =0.7, 86-81
^
利用回归方程,可以对总体进行估计,如回归方程为������ = ������ x+������ . 当 x=x0 时估计值为������0 = ������ x0+������ .
高中数学必修3第二章:统计2.3变量间的相关关系

Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y
2014年人教A版必修三课件 2.3 变量间的相关关系

两个变量相互间有一定影响, 我们就说这两个变 量之间存在着一定的相关关系. 两个变量之间, 除了像函数这样有确定的关系外, 在现实生活中, 存在着许多不确定的相关关系的问题. 如: (1) 商品销售收入与广告支出经费之间的关系.
(2) 粮食产量与施肥量的关系.
(3) 开发一项产品的投入与产出的关系. (4) 个人的教育投资与收入的关系.
练习: (课本85页) 1. 有关法律规定, 香烟盒上必须印上 “吸烟有 害健康” 的警示语. 吸烟是否一定会引起健康问题? 你认为 “健康问题不一定是由吸烟引起的, 所以可以 吸烟” 的说法对吗? 答: 经医学研究, 吸烟对身体有害. 但吸烟不一定会引起健康问题. 因为人的身体健康有很多不确定因素, 所以有些 人吸烟不一定会引起健康问题. 如注射青霉素药物前 要做皮试, 以防药物过敏, 但不是都会产生过敏. 虽然健康问题不一定是由吸烟引起的, 但吸烟与 健康存在相关关系, 虽然有不确定因素, 但有可能引 起健康问题, 所以 “可以吸烟” 的说法是不对的.
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
年龄 脂肪
23 9.5
27 39 41 45 49 50 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
【本章内容】
2.1 随机抽样 2.2 用样本估计总体 2.3 变量间的相关关系
第二章 小结
2.3 变量间的相关关系
2.3.1 变量之间的相关关系 (2.3.2)两个变量的线性相关
2.3.2 两个变量的线性相关
2014高中数学 2.3 变量间的相关关系课件(2)新人教A版必修3

诱思探究1
一组样本数据的平均数是样本数据的中心,那 么散点图中样本点的中心如何确定?它一定是散点 图中的点吗?
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
样本点的中心的 坐标为样本数据 的平均数; 它不一定是散点 图中的点。
n
i
nx y nx
2
ˆx ˆ y b a
( x x)
x
i 1
2
i
2 ˆ Q ( y y ) i i 为最小,这样就得到了 时,总体偏差 i 1
回归方程,这种求回归方程的方法叫做最小二乘 ˆx a 法.回归方程 y ˆ b ˆ ˆ 分别表示回归方程的斜率,截距。 中,a ˆ, b
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
在直角坐标系中,任何一条直线都有相应的方程, 回归直线的方程称为回归方程.对一组具有线性相关 关系的样本数据,如果能够求出它的回归方程,那么 我们就可以比较具体、清楚地了解两个相关变量的内 在联系,并根据回归方程对总体进行估计.
1 1 (5 0 36) 169 15.367 11 11
xi (5)2 02 362 4335
2 i 1
11
11
x y
i 1 i
11
i
5 156 0 150 36 54 14828
i i
ˆ b
x y 11x y
温故知新
一.变量之间的相关关系: 1.变量间相关关系的定义:自变量取值一定时,因变 量的取值带有一定随机性的两个变量之间的关系,叫 做相关关系. 2.相关关系与函数关系的异同点: (1)相同点:两者均是指两个变量间的关系。 (2)不同点:①函数关系是一种确定的关系;相关关系 是一种非确定的关系. 函数关系是两个非随机变量的 关系,而相关关系是非随机变量与随机变量间的关系. ②函数关系是一种因果关系,而相关关系不一定是因果 关系,也可能是伴随关系.
2.3变量间的相关关系

20.9%
20 25 30 35 40 45 50 55 60 65
若某人65岁,可预测他体内脂肪含量在37.1% (0.577×65-0.448= 37.1%)附近的可能性比较 大。 但不能说他体内脂肪含量一定是37.1%
原因:线性回归方程中的截距和斜率都是通过样
思考3:如果两个变量成负相关,从整体上看这两 个变量的变化趋势如何? 散点图中的点散布在从左上角到右下角的区域.
运鱼车的单位时间与存活比例
存活比例
1.5 1 0.5 0 0 0.2 单位时间 0.4 0.6
散点图说明
1)如果所有的样本点都落在某一函数曲线上, 就用该函数来描述变量之间的关系,即变量之 间具有函数关系. 2)如果所有的样本点都落在某一函数曲线附近, 变量之间就有相关关系。
其中各年龄对应的脂肪数据是这个年龄人群 脂肪含量的样本平均数.
根据上述数据,人体的脂肪含量与年龄之间 有怎样的关系?
年龄 23
脂肪 9.5 年龄 53
27
54
39
56
41
57
45
58
49
60
50
61
17.8 21.2 25.9 27.5 26.3 28.2
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:上图叫做散点图,你能描述一下散 点图的含义吗? 在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
观察散点图的大致趋势, 两个变量的散点图中 点的分布的位置是从左下角到右上角的区域, 我们称这种相关关系为正相关。
2.3 变量间的相关关系

配人教版 数学 必修3
【示例】PM2.5是指空气中直径小于或等于2.5微米的颗粒 物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否 相关,现采集到某城市周一至周五某一时间段车流量与PM2.5 的数据如表:
时间
周一 周二 周三 周四 周五
车流量x/万辆
50 51 54 57 58
PM2.5的浓度y/ (微克·立方米-1) 69 70 74 78 79
配人教版 数学 必修3
2.3 变量间的相关关系
配人教版 数学 必修3
目标定位
重点难点
1.理解两个变量的相 重点:通过收集现实问题中两个有关联 关关系的概念. 变 量 的 数 据 直 观 认 识 变 量 间 的 相 关 关
2.会作散点图,并 系;利用散点图直观认识两个变量之间 利用散点图判断两 的线性关系;根据给出的线性回归方程
配人教版 数学 必修3
【分析】(1)利用描点法可得数据的散点图; (2)根据公式求出b^,a^,可写出线性回归方程; (3)根据(2)的线性回归方程,将 x=25 代入,求出 PM2.5 的浓度.
配人教版 数学 必修3 【解析】(1)散点图如图所示.
配人教版 数学 必修3
(2) x =50+51+554+57+58=54, -y =69+70+754+78+79=74,
A.①②
B.②③
C.③④
D.①④
配人教版 数学 必修3
【答案】D 【解析】y^=b^x+a^表示y^与 x 之间的函数关系,而不是 y 与 x 之间的函数关系.但它所反映的关系最接近 y 与 x 之间的真 实关系.故选 D.
配人教版 数学 必修3
4.如果在一次试验中,测得(x,y)的四组数值分别是 x 16 17 18 19 y 50 34 41 31
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 变量间的相关关系
一、选择题
1、下列两个变量之间的关系哪个不是函数关系?( )
A 、角度和它的余弦值
B 、正方形边长和面积
C 、正n 边形的边数和顶点角度之和
D 、人的年龄和身高
2、下列变量之间的关系是函数关系的是( )
A 、已知二次函数,2
c bx ax y ++=其中a,c 是已知常数,取b 为自变量,自变量和这个函数的判别式ac b 42-=∆
B 、光照时间和果树亩产量
C 、降雪量和交通事故发生率
D 、每亩施用肥料量和粮食亩产量
3、近十年来,某市社会商品零售总额与职工工资总额数据如下(单位:亿元):
建立社会商品零售总额y 与职工工资总额x 的线性回归方程是( )
A 、y=2.7991x —23.5494
B 、y=2.7992x —23.5493
C 、y=2.6962x —23.7493
D 、y=2.8992x —23.7494
4、对于回归分析,下列说法错误的是( )
A 、在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定
B 、线性相关系数可以是正的或负的
C 、回归分析中,如果2r =1或2r =±1,说明x 与y 之间完全线性相关
D 、样本相关系数r ∈(-1,+1)
5、有一组观测值有22组,则与显著性水平0、05相应的相关系数临界值为( )
A 、0、404
B 、0、515
C 、0、423
D 、0、537
6、下列说法中正确的是( )
A .任何两个变量都具有相关关系
B .人的知识与其年龄具有相关关系
C .散点图中的各点是分散的没有规律
D .根据散点图求得的回归直线方程都是有意义的
7、变量y与x之间的回归方程()
A.表示y与x之间的函数关系
B.表示y和x之间的不确定关系
C.反映y和x之间真实关系的形式
D.反映y与x之间的真实关系达到最大限度的吻合
8、若用水量x与某种产品的产量y的回归直线方程是ˆy=2x+1250,若用水量为50kg
时,预计的某种产品的产量是()
A.1350 kg B.大于1350 kg C.小于1350kg D.以上都不对
9、“回归”一词是在研究子女身高与父母的身高之间的遗传关系时,由高尔顿提出的,他的研究结果是子代的平均身高向中心回归.根据他的结论,在儿子的身高y与父亲的身高
x的回归大程ˆy=a+bx中,b(C)
(A)在(-1,0)内(B)等于0
(C)在(0,1)内(D)在[1,+∞)内
二、填空题
10、自变量取值一定时,因变量的取值两个变量之间的关系叫做相关关系。
与函数关系,相关关系是一种。
11、对具有的两个变量进行统计分析的方法叫回归分析。
12、表示具有相关关系的两个变量的一组数据的图形叫做。
13、现有一个有身高预测体重的回归方程:体重预测值=4(磅/英村)×身高-130磅.其中体重与身高分别以磅和英寸为单位.如果换算为公制(1英寸≈2.5cm,1磅≈0.45kg),回归方程应该为
三、解答题
14、为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:
(1)在同一张图上画散点图,直线ˆy(1)=24+2.5x,ˆy(2)=60
2
x
x
;
(2)比较所画直线与曲线,哪一条更能表现这组数据之间的关系?
(3)分别计算用直线方程与曲线方程得到在5个x点处的销售额预测值、预测值与实际预测之间的误差,最后比较两个误差绝对值之和的大小。
15、下面是一周内某地申领结婚证的新郎与新娘的年龄,记作(新郎年龄y,新娘年龄x):(37,30),(30,27),(65,56),(45,40),(32,30),(28,26),(45,31),(29,24),(26,23),(28,25),(42,29),(36,33),(32,29),(24,22),(32,33),(ZI,29),(37,46),(28,25),(33,34),(21,23),(24,23),(49,44),(28,29),(30,30),(24,25),(22,23),(68,60),(25,25),(32,27),(42,37),(24,24),(24,22),(28,27),(36,31),(23,24),(30,26)
以下考虑y关于x的回归问题:
(1)如果每个新郎和新娘都同岁,穿过这些点的回归直线的斜率和截距等于什么?
(2)如果每个新郎比他的新娘大5岁,穿过这些点的回归直线的斜率和截距等于什么?
(3)如果每个新郎比他的新娘大10%,穿过这些点的回归直线的斜率和截距等于什么?
(4)对于上面的实际年龄作出回归直线;
(5)从这条回归直线,你对新娘和新郎的年龄模型可得出什么结论?
参考答案
一、选择题
1、D ;
2、A ;
3、A ;
4、D ;
5、C ;
6、B ;
7、D ;
8、A ;
9、C
二、填空题
10、带有一定随机性的 不同 非确定性关系
11、相关关系
12、散点图
13、体重预测值=0.72(kg/cm)×身高-58.5kg
三、解答题
14、解:(1)所求图形如右图.
(2)从图形上看,曲线ˆy (2)=602x x
+比直线ˆy
(1)=24+2.5x 更能表现出这组数据之间的关系. (3)列表略:用直线ˆy
(1)=24+2.5x 近似数据时,误差绝对值的和为27.5. 用曲线ˆy (2)=602x x
+近似数据时,误差绝对值的和为12.5,比前者小得多. 15、解(1)斜率为1,截距为0;(2)斜率为1,截距为5;(3)斜率为1.1,截距为0;
(4)回归直线为:新郎年龄=-1.133+1.118×新娘年龄(x =30.3333,l xx =2804,y =32.7778,
l xy =3134.67,1
ˆβ=1.118,2ˆβ=-1.133). (5)从(4)的回归方程可见,新郎的年龄一般比新娘大,尤其是在大龄夫妇中.。