D1_2数列的极限

合集下载

第1-2极限四则运算法则和两个重要极限_2023年学习资料

第1-2极限四则运算法则和两个重要极限_2023年学习资料
3.初等函数-由基本初等函数经过有限次四则运算或有限次函数-复合而成,且仅用一个式子表示的函数称为初等函数 否则称为非初等函数-如y=arccos+12为初等函数-又t如y=ln1+√1+x2,y=arctan-1 sinx-sin x-也为初等函数:-人民卫生出版社-PEOPLE'S MEDICAL PUBLISHIN HOUSE-e0①⑨8
2.函数极限的运算法则-1四则运算法则设1imfx=A且limgx=B,则-1im[fx±gx=limfx limgx=A±B-lim[fxgx]=lim fxx lim gx=AB-特别地1im[fx]=klim x=kA-n为正整数,-推论1°1im[fx]”=[limfx]'-当n为偶数时-推论2°limfx】=√ imfx-A≥0-lim fxA-B≠0-8x-人民卫生出版社-PEOPLE'S MEDICAL PUBL SHING HOUSE-e0C①8
x。-冷邻域:以x,为中心,28为长度的开区间-x。-6,x0+δ =Uxo,δ -注:①fx→A一fx-A→ x→月-2函数极限值imfx与x,有无定义无关-x→X0-考察函数y=x+1x∈R,当x→1时,极限y→2 考察函数y=1,-X一-当x→1(但不等于1时,-人民卫生虫版社-PEOPLE'S MEDICAL PUB ISHING HOUSE
例6.求下列函数的极限-x2+3x-4-1im-xx-2-2lim-x2x2-1-x1x2-5x+4-li xlim x-2-解:lim-X→2x→2-2×0-=0-imx2-1-2四-5x+4-x+4x-1-x 4x-1-x1x-4-二3-人民卫生敛版社-PEOPLE'S MEDICAL PUBLISHING HOU E-e0C⊙8

数列的极限与收敛性

数列的极限与收敛性

数列的极限与收敛性数列是指按一定规律排列并组成序列的一组数的集合。

数列的极限和收敛性是数学中关于数列的重要概念,对于数学分析和应用都具有重要意义。

本文将重点论述数列的极限和收敛性的定义、性质,并给出相关例子以帮助读者更好地理解。

一、数列的极限定义及性质数列的极限是指当数列中的每一项都无限接近某个确定的数时,这个数就是该数列的极限。

下面给出数列极限的正式定义:定义1:数列{an}的极限为L,表示为lim(n→∞) an = L,当且仅当对于任意给定的ε > 0,存在正整数N,使得当n > N时,有|an - L| < ε。

性质1:数列的极限是唯一的。

即对于一个数列只能有一个极限存在。

性质2:如果数列{an}的极限为L,则对于任意给定的ε > 0,存在正整数N,使得当n > N时,有|an| < |L| + ε。

二、数列的收敛性定义及性质数列的收敛性是指数列是否有极限存在的性质。

收敛性有以下两个定义:定义2:数列{an}是收敛的,当且仅当它有有限的极限。

定义3:数列{an}是无界的,当且仅当它没有极限。

性质3:一个数列要么是收敛的,要么是发散的。

性质4:如果数列{an}是收敛的,则其一定是有界的。

三、数列极限的计算方法计算数列的极限是数学分析中的重要内容,常见的计算方法有以下几种:1. 利用数列的性质和定义直接进行计算。

通过逐步逼近,找寻数列中随着n增大而无限接近的数。

2. 利用基本数列的极限性质进行计算。

许多数列的极限可以通过已知的基本数列的极限性质推导出来。

3. 利用数列的递推公式进行计算。

对于一些特殊的数列,可以通过递推公式进行极限计算。

4. 利用数列的特殊性质和方法进行计算。

例如使用夹逼定理、单调有界原理等。

四、数列极限的应用1. 在数学分析中,数列的极限广泛应用于函数的极限、连续性和一致收敛性的研究中。

2. 在物理学中,数列的极限和收敛性在物体运动、力学等领域都有重要的应用。

高考高等数学备考指南数列极限计算

高考高等数学备考指南数列极限计算

高考高等数学备考指南数列极限计算在高考高等数学中,数列极限计算是一个重要且具有一定难度的考点。

掌握好数列极限的计算方法,对于在高考中取得优异的数学成绩至关重要。

本文将为大家详细介绍数列极限计算的相关知识和备考策略。

一、数列极限的基本概念首先,我们需要明确数列极限的定义。

对于数列{aₙ},如果当 n 无限增大时,aₙ 无限趋近于一个常数 A,那么我们就说数列{aₙ}的极限是 A,记作lim(n→∞) aₙ = A。

理解数列极限的概念是进行计算的基础。

要注意,数列极限反映的是数列的变化趋势,而不是数列的某一项的值。

二、常见数列极限的类型1、常数数列如果数列{aₙ}的每一项都等于常数 C,那么lim(n→∞) aₙ = C。

2、等差数列对于等差数列{aₙ},其通项公式为 aₙ = a₁+(n 1)d,当 d = 0 时,数列是常数列,极限为 a₁;当d ≠ 0 时,数列的极限不存在。

3、等比数列对于等比数列{aₙ},其通项公式为 aₙ = a₁qⁿ⁻¹。

当|q| < 1 时,lim(n→∞) aₙ = 0;当 q = 1 时,数列是常数列,极限为 a₁;当|q| > 1 时,数列的极限不存在。

三、数列极限的计算方法1、利用定义计算直接根据数列极限的定义,通过分析数列的变化趋势来确定极限。

但这种方法往往比较复杂,在实际解题中不常用。

2、利用四则运算法则如果lim(n→∞) aₙ = A,lim(n→∞) bₙ = B,那么:(1)lim(n→∞)(aₙ ± bₙ) = A ± B(2)lim(n→∞)(aₙ × bₙ) = A × B(3)lim(n→∞)(aₙ / bₙ) = A / B (B ≠ 0)在使用四则运算法则时,要注意先判断极限是否存在。

3、利用重要极限(1)lim(n→∞)(1 +1/n)ⁿ = e(2)lim(n→∞)(1 +x/n)ⁿ =eˣ (x 为常数)这些重要极限在解题中经常会用到,需要牢记。

数列极限与数列极限的判别法

数列极限与数列极限的判别法

数列极限与数列极限的判别法数列极限是数学中非常重要的概念,它可以用来描述数列的趋势和收敛性质。

数列的极限是指当数列中的元素无限逼近某个常数时,该常数即为数列的极限。

在数学分析中,为了判断一个数列是否有极限,我们需要通过一些判别法来进行推导和验证。

一、数列的有界性判别法数列的有界性是判定数列极限的重要条件之一。

如果一个数列有上界和下界,那么我们可以推断出该数列必有极限。

下面我们使用数列{an} 作为示例来说明这一判别法:{an} 是一个数列,如果存在实数 M,使得对于所有的 n∈N,都有an ≤ M 成立,那么数列 {an} 就是有界的。

进一步,如果 {an} 是单调递增的有界数列,那么它一定有极限,并且极限是该数列的上确界。

二、夹逼定理夹逼定理是另一种常用的数列极限判别法。

它基于一个简单的思想:如果一个数列在两个其他数列之间夹逼住,那么它们的极限应该相同。

下面我们通过一个例子来说明夹逼定理:{an} 是一个数列,{bn} 和 {cn} 是两个数列,假设对于所有的 n∈N,都有bn ≤ an ≤ cn 成立,并且 {bn} 和 {cn} 的极限都等于 L。

那么根据夹逼定理,数列 {an} 的极限也等于 L。

三、单调有界数列的极限对于单调有界数列,它的极限可以通过单调性和有界性来判定。

单调有界数列包括单调递增数列和单调递减数列,它们分别具有上界和下界。

下面我们分别说明这两种情况:1. 单调递增数列的极限:如果数列 {an} 是一个单调递增的有界数列,则它的极限等于该数列的上确界。

2. 单调递减数列的极限:如果数列 {an} 是一个单调递减的有界数列,则它的极限等于该数列的下确界。

综上所述,数列极限与数列极限的判别法涉及到有界性、夹逼定理、单调有界数列等概念和定理。

在实际应用中,我们可以根据数列的特点和已知条件选择合适的判别法来判定数列的极限。

总结:数列极限是数学中重要的概念,通过判别法可以判定数列是否有极限。

数列的极限

数列的极限

数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim(a n ·b n )=a ·b ; ∞→n limnnb a =ba (b ≠0).●点击双基1.下列极限正确的个数是 ①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0③∞→n limnnn n 3232+-=-1 ④∞→n lim C =C (C 为常数)D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]等于 解析: ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim22+n n=2. 答案:C ●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (nn +2-n );(3)∞→n lim (22n +24n +…+22nn ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因nn +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nn n +++=52.(2)∞→n lim (nn +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21.(3)原式=∞→n lim22642n n++++ =∞→n lim2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n 2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误: ①∞→n lim (nn +2-n )=∞→n limnn +2-∞→n lim n =∞-∞=0;②原式=∞→n limnn +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim 22n +∞→n lim24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ; (2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim nnn n c c 323211+---.①当c =2时,原式=-41;②当c>2时,原式=∞→n lim ccc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim11)2(32)2(31--⋅+-n n cc c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim22||||CD AB .剖析:要求∞→n lim22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n .又r =1,∴|AB |2=4(1-d 2)=218n n +.设点C (x 1,y 1), D (x 2,y 2),由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0, ∴x 1+x 2=nn 12+, x 1·x 2=1.∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-nx 2)2=414nn +,∴|CD |2=(x 1-x 2)2+(y 1-y 2)2 =41n (4n +1)(n 2+1).∴∞→n lim22||||CD AB =∞→n lim225)1)(14(8++n n n =∞→n lim2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =nn a a 2+=nn cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴nn b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c ,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3.解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0.故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础 1.已知a 、b 、c是实常数,且∞→n lim cbn can ++=2, ∞→n lim bcn cbn --22=3,则∞→n limacn can ++22的值是 C.21解析:由∞→n limcbn c an ++=2,得a =2b .由∞→n lim bcn cbn --22=3,得b =3c ,∴c =31b .∴ca =6.∴∞→n lim a cn c an ++22=∞→n lim 22nac n ca ++=ca =6.答案:D 2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411B.2417C.2419D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…). ∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(na ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得na -1-n a =3 (n ≥2).∴{n a }是公差为3的等差数列,1a =3.∴na =3+(n -1)·3=3n .∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_________________.解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim(a 1+a 2+…+a n )等于 A.52 B.72 C.41D.254 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n . ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0. 答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *).(1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1).∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2. (2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim[311⨯+421⨯+…+)1)(1(1+-n n ]=41∞→n lim[1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limnn b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2. 又∞→n limnn b a =∞→n lim21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1,∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴nn b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S .解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n--+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n n S S =p .当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qbp a q bp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2. ∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点:(1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算.2.熟练掌握如下几个常用极限:(1) ∞→n lim C =C (C 为常数); (2) ∞→n lim (n1)p =0(p >0); (3) ∞→n lim dcn b an k k ++=c a (k ∈N *,a 、b 、c 、d ∈R 且c ≠0); (4) ∞→n lim q n =0(|q |<1).●教师下载中心教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围. 解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1. 当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.。

高等数学数列极限

高等数学数列极限

n
n
证 ① 先设a 1 则n a 1
记hn n a 1 hn 0
由n a 1 hn得
a
(1
hn )n
1
nhn
n(n 2!
1)
hn2
nhn
0
hn
a n
由极限定义知
(整体和大于部分和)
lim
n
hn
0
lim n a 1
n
若a 1,记a 1 则b 1 b
l i mn
n
a
1 lim b n n
2. 已知 x1 1, xn1 1 2xn (n 1, 2,), 求 lim xn
n
时, 下述作法是否正确? 说明理由.
设 lim xn a , 由递推式两边取极限得
n
a 1 2a
a 1
不对! 此处 lim xn
2011.9
n D1_(2-5)
79-27
三、数列的极限
2, 1 , 4 ,, n (1)n1 ,;
n (1)n1
{
}
23
n
n
3, 3 3,, 3 3 3 ,
注意: 1.数列对应着数轴上一个点列.可看作一
动点在数轴上依次取 x1 , x2 ,, xn ,.
x3 x1 x2 x4 xn 2.数列是整标函数 xn f (n).
三、数列的极限
观察数列
xn (a ,a )
在a的任一ε邻域内聚集着xn中的无穷多个点,而在 该邻域之外至多有xn中的有限个点
(
)(
)
a
b

用反证法Biblioteka 设limn
xn
a, 又 lim n
xn

高中数学中的数列极限知识点总结

高中数学中的数列极限知识点总结

高中数学中的数列极限知识点总结数列是高中数学中的重要概念,而数列的极限是数学分析的核心内容之一。

我们在学习数列时,需要理解和掌握数列极限的相关概念和性质,以提升数学思维和解题能力。

本文将对高中数学中的数列极限知识点进行总结,并提供一些例题进行讲解。

1. 数列与数列极限的基本概念数列是由一列数按照一定规律排列而成的,可以用数学公式表示为 {an},其中n表示序号,an表示第n项。

对于数列来说,我们常常关注的是数列的极限。

数列极限是指数列在无限项情况下逐渐接近的数值,可以用极限符号lim表示。

当数列的极限存在时,我们可以通过计算极限值来求解相关问题。

2. 数列极限的性质数列极限具有以下性质:(1) 唯一性:数列的极限值唯一,即一个数列只有唯一一个极限值。

(2) 有界性:如果数列有极限,那么它一定是有界的,即数列的项在某一范围内。

(3) 保号性:如果数列的极限值大于0(或小于0),那么数列的部分项也大于0(或小于0),反之亦然。

(4) 夹逼性:如果数列的每一项都被两个趋于相同极限的数列夹逼,那么它们的极限也相同。

3. 数列极限的计算方法在实际运用中,我们常常需要计算数列的极限。

对于一些简单的数列,我们可以通过常用的计算方法求解。

(1) 常数数列的极限等于该数列的常数项。

例如:数列 {an} = {2, 2, 2, ...} 的极限等于2。

(2) 等差数列的极限等于首项(a1)。

例如:数列 {an} = {1, 3, 5, ...} 的极限等于1。

(3) 等比数列的极限在一定条件下存在,存在时等于首项乘以公比( |r| < 1)。

例如:数列 {an} = {2, 1, 0.5, ...} 的极限等于0。

4. 数列极限的收敛与发散数列极限可以分为收敛和发散两种情况。

(1) 收敛:如果数列的极限存在,我们称数列是收敛的。

(2) 发散:如果数列的极限不存在,我们称数列是发散的。

例如:数列 {an} = {1, -1, 1, -1, ...} 是发散的,因为其极限不存在。

数列与级数的极限与判定

数列与级数的极限与判定
零点定理等
感谢观看
汇报人:XX
单调性与连续性
单调性:数列或级数的单调性决定了其极限的存在性 连续性:数列或级数的连续性是判定其极限的重要依据 单调性与连续性的关系:单调性可以推导出连续性,反之亦然 应用场景:单调性与连续性在解决实际问题中的应用
连续函数的性质
函数在某点连续的定义
连续函数的基本性质
连续函数的极限性质
连续函数的可微性
否存在
单调有界定理
定义:如果数列 在某区间内单调 递增(或递减), 且存在上界(或 下界),则该数 列收敛。
应用场景:判断 数列的收敛性
定理证明:利用 反证法,假设数 列无界,则存在 一个子列无上界 或无下界,与单 调递增或递减矛 盾。
举例说明:如等 比数列、等差数 列等。
柯西收敛准则
添加标题
定义:一个数列如果满足对于任意给定的正数ε,存在一个正整数N,使得对于所有 的正整数n>N,数列的相邻两项之差都小于ε,则称这个数列收敛。
极限的运算性质
极限的四则运算性质:加减乘除的极限运算规则 极限的复合函数性质:复合函数的极限运算规则 极限的幂函数性质:幂函数的极限运算规则 极限的指数函数性质:指数函数的极限运算规则
04
数列与级数的连续性
连续的定义
添加 标题
连续的定义:如果数列或级数的极限存在, 且极限值等于该项的值,则称该数列或级数 是连续的。
极限的唯一性:对于任意数列,其极限值是唯一的。
添加标题 添加标题
极限的保序性:若数列${a_n}$和${b_n}$满足$a_n \leq b_n$,且$\lim_{n \to \infty} a_n = L$和$\lim_{n \to \infty} b_n = M$,则有$L \leq M$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录 上页 下页 返回 结束
2. 收敛数列一定有界. 证: 设

1 , 则 N , 当 n N 时, 有
xn a a 1 a
xn a 1, 从而有
取 则有
M max x1 , x2 , , xN , 1 a xn M ( n 1 , 2 , ) .
返回
结束
4. 收敛数列的任一子数列收敛于同一极限 .
证: 设数列 若 是数列
的任一子数列 .
时, 有
则 0 , N , 当
现取正整数 K , 使
于是当 k K 时, 有
nk
N
*********************
xN
N
从而有 x n a , 由此证明 lim x nk a . k
n
b 从而 xn a 2
取 N max N1 , N 2 , 则当 n > N 时, xn 满足的不等式 a x b b aa bb x x a b b a a 3 3b a b a n nn 2 2 2 2 2 22 矛盾, 故假设不真 ! 因此收敛数列的极限必唯一 .
a
N 1
N 2
a
目录
上页
下页
返回
结束
1 2 3 n , 例如, , , , , 2 3 4 n 1 n xn 1 ( n ) n 1
收 敛
n (1) n1 xn 1 ( n ) n 2 , 4 , 8 , , 2n , xn 2n (n ) 发
(1) yn xn zn ( n 1, 2 , )
(2) lim yn lim z n a
n n
n
lim xn a
证: 由条件 (2) , 0 , N1 , N 2 ,


时, 时,
令 N max N1 , N 2 , 则当 n N 时, 有
(1) n 1 0 故 lim xn lim x 0 也可由 2 n n n ( n 1) ( n 1) 2 说明: N 与 有关, 但不唯一. 取 N 1 1 不一定取最小的 N . 1] 故也可取 N [
目录 上页 下页 返回 结束

k
目录 上页 下页 返回 结束
说明: 由此性质可知 , 若数列有两个子数列收敛于不同的极
限 , 则原数列一定发散 .
例如, 发散 !
k
lim x 2 k 1
三、极限存在准则
夹逼准则; 单调有界准则; *柯西审敛准则 .
目录 上页 下页 返回 结束
1. 夹逼准则 (准则1) (P50)
例3. 设 q 1 , 证明等比数列 的极限为0 . 证:
xn 0
欲使 只要 即
ln . 亦即 n 1 ln q ln 因此 , 取 N 1 , 则当 n > N 时, 就有 ln q
q n1 0

n
lim q n1 0
An S
刘徽 目录 上页 下页 返回 结束
定义: 自变量取正整数的函数称为数列, 记作 或 称为通项(一般项) . 及常数 a 有下列关系 :
若数列
当 n > N 时, 总有
则称该数列
n
的极限为 a , 记作 lim xn a 或 xn a (n )
a x a n 此时也称数列收敛 , 否则称数列发散 . (n N ) 几何解释 : 即 xn U ( a , ) ) ( (n N ) x x
第二节 数列的极限
一、数列极限的定义
第一章
二 、收敛数列的性质
三 、极限存在准则
目录
上页
下页
返回
结束
一 、数列极限的定义
引例. 设有半径为 r 的圆, 用其内接正 n 边形的面积 逼近圆面积 S . 如图所示 , 可知
π n
r
无限逼近 S . (刘徽割圆术)
当 n 无限增大时,
数学语言描述: 0 , 正整数 N , 当 n > N 时, 总有

n (1) n lim xn lim 1 n n n
目录 上页 下页 返回 结束
例2. 已知
证明
1 1 证: xn 0 2 (n 1) n 1 1 1 只要 (0 ,1) , 欲使 , 即 n 1. n 1 1 取 N [ 1] , 则当 n N 时, 就有 xn 0 ,
目录 上页 下页 返回 结束
例4. 证明数列 证: 用反证法. 假设数列
是发散的.
收敛 , 则有唯一极限 a 存在 .
取 1 , 则存在 N , 使当 n > N 时, 有 2
1 a1 x a n 2 2
但因 xn 交替取值 1 与-1 , 而此二数不可能同时落在
1 ) 内, 因此该数列发散 . , a 长度为 1 的开区间 ( a 1 2 2
目录 上页 下页 返回 结束
பைடு நூலகம்
二、收敛数列的性质
1. 收敛数列的极限唯一. 证: 用反证法. 假设 取
n

且 a b.
因 lim xn a , 故存在 N1 , 使当 n > N1 时,
b 从而 xn a 2
同理, 因 lim xn b , 故存在 N2 , 使当 n > N2 时, 有

由此证明收敛数列必有界.
说明: 此性质反过来不一定成立. 例如, 数列 (1 )n1 虽有界但不收敛 .
目录 上页 下页 返回 结束


3. 收敛数列具有保号性. 若 且
( 0)

( 0)
证: 对 a > 0 , 取
推论: 若数列从某项起
( 0)
(用反证法证明)
目录 上页 下页
( 0) .
xn (1) n1 趋势不定
目录 上页

下页 返回 结束
例1. 已知
证明数列
的极限为1.
证:
n (1) n 1 xn 1 n
1 只要 n 即 0 , 欲使 1 因此 , 取 N [ ] , 则当 n N 时, 就有 n n (1) 1 n
相关文档
最新文档