集合的含义与表示课件

合集下载

集合的含义与表示 课件

集合的含义与表示  课件

利用描述法表示集合应该注意以下五点: (1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}. (2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式 就不符合要求,需将 k∈Z 也写进花括号内,即{x∈Z|x=2k,k∈Z}. (3)不能出现未被说明的字母. (4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如, 方程 x2-2x+1=0 的实数解集可表示为{x∈R|x2-2x+1=0},也可写成 {x|x2-2x+1=0}. (5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.
2.设不等式 3-2x<0 的解集为 M,下列正确的是( )
A.0∈M,2∈M
B.0∉M,2∈M
C.0∈M,2∉M 答案:B
D.0∉M,2∉M
探究三 用列举法表示集合 [典例 3] 用列举法表示下列集合. (1)不大于 10 的非负偶数组成的集合; (2)方程 x2=x 的所有实数解组成的集合; (3)直线 y=2x+1 与 y 轴的交点所组成的集合; (4)方程组xx+ -yy= =1-,1 的解.
3.用列举法表示下列集合: (1)小于 10 的所有自然数组成的集合; (2)由 1~20 以内的所有质数组成的集合.
解析:(1)设小于 10 的所有自然数组成的集合为 A,那么 A={0,1,2,3,4,5,6,7,8,9}. (2)设由 1~20 以内的所有质数组成的集合为 C,那么 C={2,3,5,7,11,13,17,19}.
1.下列各项中,不可以组成集合的是( )
A.所有的正数
B.等于 2 的数
C.接近于 0 的数
D.不等于 0 的偶数

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

高一数学必修一课件1.1.1集合的含义与表示

高一数学必修一课件1.1.1集合的含义与表示

教材习题答案
1.(1) ,,,;(2) ; (3) ;(4) ,; 2.(1){-3, 3};(2){2, 3, 5, 7}; (3){(1, 4)};(4){x x < 2}.
注意
例7中的集都不 ( 1 )在不致混淆的情况下,可以省去竖线及 可以用列表法吗? 左边部分. 显然不是,那么何 如:{直角三角形 }、{大于104的实数}. 时用列举法,何时 用描述法更容易一 (2)错误表示法:{实数集}、{全体实数}. 些呢?
知识要 点
有些集合的公共属性不明显,难以概 括,不便用描述法表示,只能用列举法. 有些集合的元素不能无遗漏地一一列 举出来,或者不便于、不需要一一列举出 来,常用描述法.
(2)设不超过30的非负偶数为x,且满足
x 2n且0 x 30 用描述法表示为
A = {x x = 2n且0 x 30,n Z}.
(3)设方程 2x +1 = 9 的实数根为x,且满 足条件 2x2 +1 = 9,用描述法表示为
2
A = {x R 2x + 1 = 9}.
课堂练习
1.用符号“∊”或∉Байду номын сангаас填空:
(1)设 A为所有亚洲国家组成的集合,则中国 __ A. ∊ A;英国__ ∊ A;美国__ ∉A;印度__ ∉ (2)若A={方程x² =1的解}则 1__A ∊ ; (3)若B={方程x² +x-6=0的解}则2__B ∊ ; (4)若C={满足1≤x≤10的自然数}则8 __ ∊ C; 9.5 __ ∉ C.
4.{(x, y) | x + y = 6, x N, y N}
用列举法表示为
{(0,6),(1,5),(2,4),(3,3),(6,0),(5,1),(4,2)}

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为

4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;

ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c

集合的含义及表示ppt课件.ppt

集合的含义及表示ppt课件.ppt

思考3:我们用符号“ A B”表示集合A与B的 并集,并读作“A并B”,那么如何用描述法 表示集合A B? A B { x |x A ,或 x B }
思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合A B的关系如何? A B与B A的关系如何?
AA B BA B ABBA
理论迁移
例1 写出满足 { 1 ,2 } A { 1 ,2 ,3 ,4 }的所有集 合A.
{1,2},{1,2,3},{1,2,4},{1,2,3,4}
例2 已知集合 A{y|y(x1 )2,x0 }, B {y|yx2x 1 ,x R },试确定集合A与 B的关系.
A B
例3 设集合 A {2, a2} ,B{1,2,a},若 A B , 求实数 a 的值. -1或0
1.1.1 集合的含义与表示
第二课时 集合的表示
问题提出
1.集合中的元素有哪些特征?
确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的, 如“在平面直角坐标系中以原点为圆心,2 为半 径的圆周上的点”组成的集合,那么,我们可以 用什么方式表示集合呢?
称集合A是集合B的真子集.
思考4:如果集合A是集合B的真子集,我们怎 样用符号表示?
AB或 B A
思考5:若集合A是集合B的子集,则集合A一 定是集合B的真子集吗?若集合A是集合B的 真子集,则集合A一定是集合B的子集吗?
知识探究(二)
考察下列集合: (1){x|x是边长相等的直角三角形}; (2){xR|x210} ; (3){xR||x|20}.
思考1:上述三个集合有何共同特点? 集合中没有元素

集合的含义与表示 课件

集合的含义与表示  课件
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c ,…表示集合中的元素.
问题:如何理解“把一些元素组成的总体叫做 集合”,这些集合里的元素必须具备什么特性?
二、集合中元素的特性
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合? 能
①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
解:(1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
(2)设方程 x2=x 的所有实数根组成的集合为B, 则 B={0,1}
(3)设所求集合为C, 则 C={6,12,18}
你能用列举法表示不等式 x -7< 3 的解集吗?
无限集
(3)描述法:用集合所含元素的共同特征表示集合的 方法称为描述法。
用花括号“{ }”括起来的表示集合的方法叫做列举法.
{2, 3, 5, 7,11,13,17,19}
(3)描述法: 用集合所含元素的共同特征表示集合的 方法称为描述法。
{x R | x 7 3}
例2 用描述法和列举法描述下列集合
(1)方程 x2-2=0 的所有实数根组成的集合 A={x R | x2 2=0 } 或A { 2, 2}
2、用适当的方法表示下列集合: (1)方程组 23xx32yy184的解集;

人教版高中必修一 111 《集合的含义与表示》 课件

人教版高中必修一 111 《集合的含义与表示》 课件

新知探索
例题讲解
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x²=x的所有实数根组成的集合; (3 ) 小于100的所有奇数.
注意:由于元素具有无序性, 集合A还有其它列举方法哦,
动手试一试吧!
【解析】(1)设小于10的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}.
为__-_1_. (3)若A= {x²+x-6=0},则3___∉_____A.
巩固练习
3、判断下列说法是否正确:
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2} .
(2) 若4x=3,则 x N. (3) 若x Q,则 x R .
(4)若X∈N,则x∈N+.
( √) (√ ) (×) (× )
巩固练习
4、已知集合A={x | ax2+4x+4=0,x∈R,a∈R}只有一个元素, 求a的值和这个元素.
解析:当a=0时,x=-1; 当a≠ 0 时,由于集合只有一个元素,所以 =0,则x=-2.
拓展应用
5、设A是由满足不等式x<6的自然数组成的集合,a∈A且3a∈A,求a的值.
解析:因为a∈A且3a∈A, a<6,
合是不么定义呢的?那概你么念能,,举集数一合学些的家有很含难关义回集是答合什。 一的天例,子他吗看到?牧民正在向羊圈里赶羊,
等到牧民把羊全赶进羊圈并关好门,数学家 突然灵机一动,兴奋地告诉牧民:“这就是 集合”。
新知探索
探究1 集合的含义
观察下面例子,它们有什么共同特征? (1)1~20以内的所有偶数; (2)我国古代四大发明 (3)所有的长方形; (4)到直线的距离等于定长d的所有的点; (5)方程x²+3x-2=0的所有实数根; (6)我国从2001~2018年的15年内所发射的所有卫星。

集合的概念ppt课件

集合的概念ppt课件
A.中央电视台著名节目主持人
B.我市跑得快的汽车
C.上海市所有的中学生
D.香港的高楼
(
)
C
)
3.若以方程x2-3x+2=0和x2-5x+6=0的所有解为元素组成集合A,则A中元素的
个数为
(
A.1
B.2
C.3
D.4
C )
解析: 方程x2 - 3x +2=0的解为1,2,方程x2 -5x+6=0的解为2,3由于两方程有相
借助判别式的符号求解.
素养形成
典例 已知集合A是由方程ax2+2x+1=0(a∈R)的实数解作为元素构成的集合.
(1)1是A中的一个元素,求集合A中的其他元素;
(2)若A中有且仅有一个元素,求a的值组成的集合B中元素的个数;
(3)若A中至多有一个元素,试求a的值.
【规范答题】
解 (1)若1是A中的一个元素,则只需a+2+1=0,
于不确定的概念,因此“2020年高考数学难题”不能构成集合;由于任意给一
个数都能判断是否为有理数,故能构成集合;小于π的正整数分别为1,2,3,能
够组成集合.故选B.
探究二
元素与集合的关系
例2. (1)已知不等式2x-5<0的解集为M,则以下表示方法正确的是(
A.0∈M,3∈M
B.0∉M,3∈M

可能只含有一个元素.
素养形成
利用分类讨论思想求解一类关于x的方程ax2+bx+c=0的解集
一般地,形如ax2+bx+c=0是关于x的方程,当a≠0时,该方程是关于x的一元
二次方程,当a=0,b≠0时是关于x的一元一次方程,求解此类方程的解集问题,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、有限集:含有有限个元素的集合. 例如:A={中国古代四大发明}
2、无限集:含有无限个元素的集合. 例如:B={直角坐标平面内第一象限内的点}
3、空 集:不含任何元素的集合.记作Ø . 例如:方程x2+2x+3=0的实数解
拓展提升
1、下面四个集合是否相同?为什么? A={1,5} ; B={(1,5)}; C={5,1}; D={(5,1)}.
一、历史背景
德国数学家, 1874年提
出了著名的集合论.
集合论的出现从根本上改
造了数学的结构,促进了数
学中许多新的分支的建立和
康托
发展,集合论已成为现代数
(Georg Cantor,1845-1918) 学的基础.
提出问题
集合是日常生活中的一个常用词, 现代汉语解释为:
许多的人或物聚集在一起.
我们怎样理解数学中的“集合”呢?
R
Q
Z
N
N*或N+
一路下来,我们结识了 面对困难, 很多新知识,也有了很多的 勇于挑战! 新的想法.那么你能谈谈自 相信自己, 己的收获吗?说一说,跟大 一定能行! 家一起分享.
八、布置作业
必做题:P6习题1 -1 A组 1、2、3 题; 选做题:P6习题1 -1 B组 1、2 题.
谢谢大家!
我们把集合中的元素一一列举出来写在大括号内的 方法叫做列举法. 一般形式为{…,…,…}.
注意:1.元素之间用“,”隔开;
2.元素不重复不遗漏.
实战演练
例3、用列举法表示下列集合 1、一年之中的四个季节组成的集合; 2、由大于3小于10的整数组成的集合; 3、绝对值等于8的实数的集合; 4、方程x2-5x=0 在实数内解的全体组成的集合; 5、所有小于20的素数组成的集合; 6、由大于3的整数组成的集合.
我们通常用大写拉丁字母 A,B,C,… 表示集合, 用小写拉丁字母a,b,c… 表示集合中的元素.
对于一个给定的集
合A,那么元素a与
集合A有哪几种可能 关系?
探索新知
(1)如果a是集合A的元素,就说a属于A,
记作aA,读作“a属于A”;
(2)如果a不是集合A的元素,就说a不属于A,
记作aA,读作“a不属于 A”.
学以致用
例4 、用描述法表示下列集合
(1)小于10 的所有有理数组成的集合; (2)所有偶数组成的集合; (3)绝对值等于8的实数组成的集合; (4)方程x2-5x=0 的实数解组成的集合; (5)直角坐标平面内第一象限内的点的集合; (6)由大于3的整数组成的集合.
六、集合的分类 根据集合中元素个数的多少, 我们将集合分为以下三类:
探索新知
三、常用数集及其记法(2分钟记忆时间)
数集 实数集 有理数集 整数集 自然数集 正整数集
记法
R 比一比Q,看谁 记得既快又准 确,你Z 有什么 好办N法吗?
N或N+
例1:用“ ”或“ ”符号填空(抢答)
(1) 0___N (2) 9___Z
(3) 2___Q (4) ___R
(5) 0___N+ (6) ( 5)_2__N
1、地球上的四大洋?
2、中国古代四大发明? 3、中国“新四大发明”?
探索新知
1、地球上的四大洋;
2、中国古代四大发明;
3、中国“新四大发明”.
(1)指定的对象;
你能发现它们 的共同特征吗?
(2)聚集在一起.
探索新知
一般地,我们把指定的某些对象的全体称为 集合,集合中的每个对象叫作这个集合的元素.
2、设集合A={2,4,6},若aA,6-aA, 求a的值.
3、用列.举法表示集合:
GLeabharlann xxa a
b b
ab ab
分类讨论
图示法 列举法
描述法
有限集
集合的分类
无限集
空集:Ø
集数合量的 表示积方的法
五条
集合的 概念
性质
集合的含
义与表示
集合元素 基本特征
集合与元
素的关系
常见数集 及其记法
分类讨论 思想
思考:能否用列举法表示不等式 x 7 3的解集?
我们可以把这个集合表示为 D x R x 10
3、描述法 用确定的条件表示某些对象属于一个集合并写在
大括号内的方法称为描述法.
描述法的一般 形式为:
p(x)表示该集合 中的元素x所具 有的共同属性
{ x | p(x) }
X为该集合的 代表元素
称这两个集合是相等的.
学以致用
例2、判断以下对象的全体是否能组成集合. 1 、小于 5 的所有自然数; 2、中国著名的数学家; 3、咱们班身高不低于1.7米的男生; 4、咱们班比较漂亮的女生.
探索新知 五、集合的表示方法
1、图示法(Venn图)
2,4,6,8
2、列举法
我们可以把中国“新四大发明”组成的集合表示为: {高铁,支付宝,共享单车,网购}
探索新知 四、 集合中元素的特征 集合中的元素
问题1:咱们班高个子的男生能否构有成什集么合特? 征?
1.确定性 构成集合的元素必须是确定的.
问题2:咱们班全体同学组成的集合中,是否有两个
相同的元素?
2.互异性 为了区分集合中的各个元素,一个给 定集合中的元素是互不相同的.
问题3:咱们班全体同学组成的集合,调整座位后这个 集合有没有变化? 3.无序性 只要构成两个集合的元素是一样的,我们就
相关文档
最新文档