固体润滑材料
固体润滑材料

固体润滑材料Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第四章: 固体润滑二、固体润滑材料固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。
固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。
固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。
1、常见固体润滑剂的种类:①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。
②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。
2、固体润剂的基本性能与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。
①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
二维层状固体润滑剂

二维层状固体润滑剂二维层状固体润滑剂是一种具有独特结构的固体材料,广泛应用于各种摩擦表面的润滑。
本文将介绍二维层状固体润滑剂的特点、应用领域以及未来的发展方向。
首先,二维层状固体润滑剂具有优异的润滑性能。
它由多层平面结构的片状材料组成,具有高度规则的晶格结构和大量的表面活性位点。
这些特点使得二维层状固体润滑剂具有低摩擦系数、高抗磨性能以及优良的耐高温性能。
相比于传统的润滑剂,二维层状固体润滑剂不易挥发、不易氧化,具有更长的使用寿命。
其次,二维层状固体润滑剂在多个领域有着广泛的应用。
首先是机械制造领域,二维层状固体润滑剂可以应用于各种机械设备的摩擦副,如轴承、齿轮等。
其优异的润滑性能可以显著降低机械设备的能耗,延长设备的使用寿命。
其次是航空航天领域,二维层状固体润滑剂可以应用于飞机、火箭等高速运动的摩擦副。
其低摩擦系数可以减小能耗,提高运动的效率。
此外,二维层状固体润滑剂还可以应用于电子器件、能源储存等领域,为各种设备的性能提升提供支持。
随着科学技术的不断进步,二维层状固体润滑剂的研究也在不断深入。
首先,研究人员正在开发新的二维层状固体润滑剂材料。
目前已知的二维层状固体润滑剂材料有石墨烯、二硫化钼等,但仍有很多材料有待探索。
研究人员希望能够开发出更多性能优异的二维层状固体润滑剂,以满足不同领域的需求。
其次,研究人员正在研究二维层状固体润滑剂的润滑机理。
通过深入理解润滑机理,可以进一步优化润滑剂的性能,提高其润滑效果。
最后,研究人员还在探索二维层状固体润滑剂与其他材料的复合应用。
通过将二维层状固体润滑剂与其他材料复合使用,可以进一步提升润滑剂的性能,实现更广泛的应用。
综上所述,二维层状固体润滑剂具有优异的润滑性能,广泛应用于各个领域。
随着科学技术的不断进步,二维层状固体润滑剂的研究也在不断深入。
相信未来会有更多的突破,为各个领域的润滑问题提供更好的解决方案。
固体润滑剂

固体润滑剂固体润滑剂就是在两个有载荷作用的相互滑动面间,用以降低摩擦和磨损的固体状态的物质。
要求:剪切抗力低,与被润滑表面有较好的亲和力,不腐蚀被润滑表面、耐高温、耐低温等特点。
包括金属材料,无机非金属材料和有机材料等。
可分为固体粉末润滑材料、粘结或喷涂固体润滑膜、自润滑复合材料。
固体润滑材料的适应范围比较广,以1000℃以上的白热高温到液体氢的深冷低温;严重腐蚀气体环境中工作的化工机械,是受到强辐射的宇航机械上(如月球表面的工作机械),在原子能工业、宇航和国防工业、电子工业、化学工业、机械工业、交通运输、食品工业、纺织印染等轻工业部门都已经得到了应用。
固体润滑剂主要用在高温、低温、高真空、放射线高辐射场、腐蚀性大、挥发性低、不易测定条件润滑、不容许受润滑油、脂沾污等场合和机件上。
一、固体润滑三种机理1、形成固体润滑膜,它的润滑机理与边界润滑机理相似;2、软金属固体润滑剂,它利用软金属抗剪切强度低的特点来起润滑作用;3、层状结构的特点起润滑作用。
图6—8为石墨的品体结构,由图6—8可知石墨具有层状,在层与层之间的接合力较弱,所以剪切抗力低。
一般常用的固体润滑剂有:二硫化钼、石墨、云母、二硫化钨、滑石粉、氮化硼;塑料包括聚四氟乙烯、聚胺脂、聚乙烯、浇铸尼龙—6等以及某些金属如铅、锌、锡、银等低熔点金属及其合金。
二、固体润滑剂的优点1)免除了油脂的污染及滴漏。
如在空气压缩机实现固体润滑(包括轴承、密封、活塞环)后,可以提供不被油污染的空气;又如在纺织机械、食品加工机械、造纸机械、印刷机械采用固体润滑后,能避免油污,提高产品质量;2)取消了供油脂所用的润滑油站及油路系统,节省了投资、降低了维修费用;3)适应比较广泛的温度范围。
它可用于特殊的工况条件(如在具有放射性条件下能抗辐射、耐高真空、抗腐蚀)以及不适宜使用润滑油脂的场合。
4)增强了防锈蚀能力。
这对于潮湿气候的南方具有重要意义。
5)固体润滑剂分散悬浮在液体润滑剂中,既可以发挥固体润滑剂本身的性能,弥补固体润滑剂的摩擦系数大和导热性能不良的缺点。
固体润滑二硫化钼(MoS2)材料的应用

一、固体润滑二硫化钼(MoS2)材料的应用固体润滑二硫化钼(MoS2)材料的应用可归纳为以下诸多方两:1.负荷高的滑动部件,如重型机械、拉丝机械等;2.高速运动的滑动部件,如弹丸与枪膛之间的滑动面;3.速度低的滑动部件,如机床导轨等;4.温高的滑动部件,如炼钢机械、汽轮机等;上海亿霖润滑材料有限公司:132 **** ****5. 度低的滑动部件。
如致冷机械、液氧、液氨输送机械等:;6. 高真空条件下的滑动部件,如原子宇航器上的机械等;7. 接受强辐射的滑动部件,如原子能发电站的某些机械;8.耐腐蚀的滑动部件,如处于强酸、强碱和海水中的活动部件;9. 需防止压配装时损坏的部件,如果某些紧固件等;10.长需期搁置、一旦启动就要求运转很好的部件,如安全装置、汽车驾驶盘的保险装置、导弹防卫系统等;11. 安装能再接近的部件,如原子能机械、航犬机械等;12. 安装后不能冉拆卸的部件。
如桥梁支承、航天器的密封部件等;13. 电性良好的滑动部件,如可变电阻触点、电机电刷等;14. 有微振动的滑动部件,如汽车、飞机等有不平衡件的自动工具等;15. 不能使用油泵油路系统润滑二硫化钼(MoS2)的机械,如宇宙飞船、人造卫星上的滑动部件等;16. 环境条件很清洁的滑动部件,如办公机械、食品机械、精密仪表、家用电器和电子计算机等;17. 耐磨粒磨损的运动部件,如钻探机械、农业耕作机械等;18. 环境条件很恶劣的运动部件,如矿山机械、建筑机械、潜水机械等。
还可以列出一些固体润滑二硫化钼(MoS2)材料的垃用范畴。
每一类间体润滑二硫化钼(MoS2)材料可以在多个领域、多种工业或多种工况条件下得到应用。
而每一个领域、每一种工业或每一种工况条件下也可以成用多种类型的固体润滑二硫化钼(MoS2)材料。
其中涉及到固体润滑二硫化钼(MoS2)材料的设计、制备工艺方法和应用技术等,下面仅举几方面得到成功应用的范例。
固体润滑材料的优缺点

采用固体润滑材料有何优缺点?
采用固体润滑材料的优点是:(1)可在极高负荷下工作,能减少粘着危险。
(2)可在很低速度下工作,能减少爬行。
(3)有较宽的使用温度范围,极高极低温度都适用。
(4)不粘着尘屑,能减少硬粒磨损。
(5)能简化润滑装置,节约使用位置。
(6)便于长期储存,不致老化变质。
(7)和空气、燃料、溶剂不起反应。
(8)摩擦随负荷增加而降低,起动摩擦极低。
(9)无滴落,浸渍、沾污产品和环境的危险。
(10)有较好的真空性能和抗辐射能力。
采用固体润滑材料的缺点:(1)一般摩擦系数较高于润滑油、脂。
(2)用量受限,难以补充。
(3)散热困难。
(4)无法排屑。
(5)防锈性较差。
(6)使用时较复杂,须严防沾污。
固体润滑剂

固体润滑剂固体润滑剂就是在两个有载荷作用的相互滑动面间,用以降低摩擦和磨损的固体状态的物质。
要求:剪切抗力低,与被润滑表面有较好的亲和力,不腐蚀被润滑表面、耐高温、耐低温等特点。
包括金属材料,无机非金属材料和有机材料等。
可分为固体粉末润滑材料、粘结或喷涂固体润滑膜、自润滑复合材料。
固体润滑材料的适应范围比较广,以1000C以上的白热高温到液体氢的深冷低温;严重腐蚀气体环境中工作的化工机械,是受到强辐射的宇航机械上(如月球表面的工作机械),在原子能工业、宇航和国防工业、电子工业、化学工业、机械工业、交通运输、食品工业、纺织印染等轻工业部门都已经得到了应用。
固体润滑剂主要用在高温、低温、高真空、放射线高辐射场、腐蚀性大、挥发性低、不易测定条件润滑、不容许受润滑油、脂沾污等场合和机件上。
一、固体润滑三种机理1、形成固体润滑膜,它的润滑机理与边界润滑机理相似;2、软金属固体润滑剂,它利用软金属抗剪切强度低的特点来起润滑作用;3、层状结构的特点起润滑作用。
图6—8为石墨的品体结构,由图6—8可知石墨具有层状,在层与层之间的接合力较弱,所以剪切抗力低。
尹盲体润滑剂滑移面作为固体润滑剂的滑移模2般常用的固体润滑剂有:二硫化钼、石墨、云母、二硫化钨、滑石粉、氮化硼;塑料包括聚四氟乙烯、聚胺脂、聚乙烯、浇铸尼龙—6 等以及某些金属如铅、锌、锡、银等低熔点金属及其合金。
二、固体润滑剂的优点1)免除了油脂的污染及滴漏。
如在空气压缩机实现固体润滑(包括轴承、密封、活塞环)后,可以提供不被油污染的空气;又如在纺织机械、食品加工机械、造纸机械、印刷机械采用固体润滑后,能避免油污,提高产品质量;2)取消了供油脂所用的润滑油站及油路系统,节省了投资、降低了维修费用;3)适应比较广泛的温度范围。
它可用于特殊的工况条件(如在具有放射性条件下能抗辐射、耐高真空、抗腐蚀)以及不适宜使用润滑油脂的场合。
4)增强了防锈蚀能力。
这对于潮湿气候的南方具有重要意义。
固体润滑材料的应用

固体润滑材料的应用引言固体润滑材料是一种能够减少摩擦和磨损的材料,具有广泛的应用领域。
本文将介绍固体润滑材料的定义、分类以及在各个领域中的应用。
一、固体润滑材料的定义和分类固体润滑材料是指在摩擦表面之间形成一层固体薄膜,以减少摩擦系数和磨损的材料。
根据其成分和结构,固体润滑材料可以分为以下几类:1. 石墨:石墨是一种具有层状结构的固体润滑材料,具有良好的润滑性能。
它可以用于高温、高压和高速的摩擦条件下,如航空航天、汽车发动机和轴承等领域。
2. 二硫化钼:二硫化钼是一种黑色固体润滑材料,具有良好的耐磨性和润滑性能。
它广泛应用于润滑脂、润滑油和润滑涂层等领域。
3. 铜粉:铜粉是一种金属固体润滑材料,具有良好的导热性和耐磨性。
它常用于高温摩擦条件下的润滑,如发动机活塞环和轴承等领域。
4. 润滑脂:润滑脂是一种由固体润滑材料和基础油组成的黏稠液体,具有良好的黏附性和润滑性能。
它广泛应用于机械设备和工业生产中,如轴承、齿轮和链条等部件的润滑。
二、固体润滑材料的应用领域1. 汽车工业:固体润滑材料在汽车工业中具有重要的应用。
例如,石墨润滑膜可以用于汽车发动机活塞环和曲轴轴承的润滑,以减少摩擦和磨损。
此外,二硫化钼和铜粉也可以用于汽车零部件的润滑,如齿轮、制动系统和转向系统等。
2. 航空航天工业:固体润滑材料在航空航天工业中具有广泛的应用。
例如,石墨润滑膜可以用于航空发动机的润滑,以减少高温和高压条件下的摩擦和磨损。
此外,润滑脂也可以用于飞机的润滑,如舵机、起落架和飞机发动机的滚动轴承等。
3. 机械制造业:固体润滑材料在机械制造业中应用广泛。
例如,石墨和二硫化钼可以用于机械设备的润滑,如轴承、滑轨和导轨等。
此外,润滑脂也可以用于机械设备的润滑,以减少运动部件之间的摩擦和磨损。
4. 电子设备:固体润滑材料在电子设备中也有应用。
例如,石墨和二硫化钼可以用于电子器件的润滑,如电子开关和连接器等。
此外,润滑脂也可以用于电子设备的润滑,以减少电子器件之间的摩擦和磨损。
润滑材料知识点总结

润滑材料知识点总结一、润滑材料的定义及作用润滑材料是指用于减少摩擦、保护摩擦表面和改善摩擦副性能的材料,它可以分为固体润滑材料和液体润滑材料。
固体润滑材料有润滑增强剂,液体润滑材料由基础油和添加剂组成。
润滑材料的作用主要有减少摩擦力、保护机械零件、冷却和密封效果。
二、润滑材料的分类根据形态的不同,润滑材料可以分为固体润滑材料和液体润滑材料。
固体润滑材料包括石墨、润滑脂和固体润滑膜,它们在氧化环境下具有良好的润滑效果。
液体润滑材料则主要有机油、合成润滑油和添加剂等,它们适用于大部分工业和机械设备。
三、固体润滑材料的特点和应用1. 石墨:具有良好的导电性和热导率,适用于高温高压下的摩擦副润滑。
常见应用于齿轮、滑动轴承和摩擦材料等领域。
2. 润滑脂:主要由基础油和稠化剂组成,具有较好的粘附性和耐高温性。
广泛应用于汽车、机床、航空航天等领域。
3. 固体润滑膜:常见的有钼、钨、石墨和二硫化钼等,它们具有较好的耐高温性和抗腐蚀性。
主要应用于高速机械设备、精密仪器和汽车发动机等。
四、液体润滑材料的特点和应用1. 有机油:主要由矿物油和添加剂组成,具有良好的黏度和流动性。
适用于汽车、机床、船舶等领域。
2. 合成润滑油:由合成基础油和添加剂组成,具有良好的热稳定性和抗氧化性。
适用于高速机械设备、航空航天和化工设备等。
3. 添加剂:包括抗磨剂、抗氧化剂、抗腐蚀剂等,可以提高润滑油的性能和降低摩擦系数。
五、润滑材料的性能评价指标1. 黏度:润滑材料的黏度越大,摩擦副的润滑效果越好。
2. 热稳定性:润滑材料在高温下的稳定性越好,摩擦系数和磨损率越低。
3. 抗氧化性:润滑材料的抗氧化性能越强,在氧化环境下的使用寿命越长。
4. 抗腐蚀性:润滑材料的抗腐蚀性能好,可以保护摩擦表面不受腐蚀和损坏。
六、润滑材料的应用领域和发展趋势1. 汽车工业:润滑材料在汽车发动机、变速箱、悬架等部件上的应用越来越广泛,以提高燃油经济性和延长零件的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体润滑材料 The latest revision on November 22, 2020第四章: 固体润滑二、固体润滑材料固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。
固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。
固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。
1、常见固体润滑剂的种类:①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。
②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。
2、固体润剂的基本性能与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。
①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
要求固体润滑剂有较高的承载能力:因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
3、固体润滑剂的使用方法1)作成整体零件使用:某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
2)作成各种覆盖膜来使用:通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。
成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。
市面上已出现了无润滑轴承及采用纳料技术的固体润滑剂。
3)制成复合或组合材料使用:所谓复合(组合)材料,是指由两种或两种以上的材料组合或复合起来使用的材料系统。
这些材料的物理、化学性质以及形状都是不同的,而且是互不可溶的。
组合或复合的最终目的是要获得一种性能更优越的新材料,一般都称为复合材料。
4)作为固体润滑粉末使用:将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边界润滑状态等,如MoS2油剂、MoS2 油膏、MoS2润滑脂及MoS2水剂等。
4、几种常用固体润滑剂的润滑作用及性能1)胶体石墨粉:石墨在摩擦状态下,能沿着晶体层间滑移,并沿着摩擦方向定向。
石墨与钢、铬和橡胶等的表面有良好的粘附能力,因此,在一般条件下,石墨是一种优良的润滑剂。
但是,当吸附膜解吸后,石墨的摩擦磨损性能会变坏。
所以,一般倾向于在氧化的钢或铜的表面上以石墨作润滑剂。
2)氟化石墨:与石墨或二硫化钼相比,它的耐磨性好,这是由于氟碳键的结合能较强所致。
层与层之间的距离比石墨大得多,因此更容易在层间发生剪切。
由于氟的引入,使它在高温、高速、高负荷条件下的性能优于石墨或二硫化钼,改善了石墨在没有水气条件下的润滑性能。
3) 二硫化钨粉剂:不溶于水、油、醇、脂及其他有机溶剂,除氧化性很强的硝酸、氢氟酸、硝酸与盐酸的混合酸以外,对一般的酸、碱溶液也不溶。
在大气中分解温度为510℃,593℃氧化迅速,在425℃以下可以常期润滑,4)二硫化钼齿轮润滑油膏: 由极压抗磨的二硫化钼粉剂再调制高粘度矿油的油膏中,并添加增粘剂制成。
具有很强的抗水性、粘着性、抗极压性(PB值为1200N),抗磨减摩性,以良好的润滑性、机械安定性和胶体安定性。
适合中、轻型齿轮设备、各类型的推土机、通井机的齿轮及开式齿轮。
使用前,先将齿轮洗干净,然后在齿面上涂上一层油膏。
不要过厚。
但要均匀无空白。
5)聚四氟乙烯:聚四氟乙烯有很好的化学安定性和热稳定性。
在高温下与浓酸、浓碱、强氧化剂均不发生反应,即使在王水中煮沸,其重量及性能都没有变化。
而且它在很宽的温度范围和几乎所有的环境气氛下,都能保持良好化学安定性、热稳定性以及润滑性。
聚四氟乙烯具有各向异性的特性,在滑动摩擦条件下,也能发生良好的定向。
它的摩擦系数比石墨、MoS2都低。
一般聚四氟乙烯对钢的摩擦系数常引用为在高负荷条件下,摩擦系数会降低到.6)尼龙:尼龙的摩擦系数随负荷的增加而降低,在高负荷条件下,摩擦系数可以降至~左右;在摩擦表面存在有油或水时,摩擦系数有更大的下降趋势。
尼龙的摩擦系数还随着速度的增加或表面温度的升高而下降。
尼龙的耐磨损性好,特别是在有大量尘土、泥砂的环境中,它所表现出来的耐磨损性是其他塑料无法与之相比的。
在摩擦表面上有泥砂、尘土或其他硬质类材料存在时,尼龙的耐磨性比轴承钢、铸铁甚至比经淬火表面镀铭的碳钢还要好。
在应用尼龙材料时,要特别注意选择与其相互对摩的材料。
在摩擦界面有硬质微粒存在时,尼龙的耐磨损性是一般钢材不能与之相比的。
如用尼龙轴瓦代替表铜轴瓦时,被磨损的是轴,轴是不易更换零件,它被磨损后会带来严重后果。
尼龙的缺点是:吸潮性强、吸水性大、尺寸稳定性差,这在铸型尼龙表现得更为突出。
尼龙的热传导系数小,热膨胀系数大,加之摩擦系数也不算低,因此最好用于有油至少是少油润滑和有特殊冷却装置的条件下。
7)聚甲醛:聚甲醛是一种不透明乳白色的结晶性线型聚合物,具有良好的综合性和差色性的高熔点、高结晶性的热塑性工程塑料,是塑料中力学性能与金属较为接近的品种之一,它的尺寸稳定性好,耐水、耐冲击、耐油、耐化学药品及耐磨性等都非常优良。
它的摩擦系数和磨耗量较低,适用于长期经受摩擦滑动的部件,如机床导轨。
在运动部件中使用时不需使用润滑剂,具有优良的自润滑作用。
8)聚酰亚胺:均苯型聚酰亚胺的长期使用温度为260℃,具有优良的耐摩擦、耐磨损性能和尺寸稳定性。
它具有优良的耐油和耐有机溶剂性,能耐一般的酸,但在浓硫酸和发烟硝酸等强氧化剂作用下会发生氧化降解,在高温下仍具有优良的介电性能。
但它不耐碱,成本也较高。
它在惰性介质中,在高负荷和高速下的磨损量极小。
9)聚对羟基苯甲酸酯:聚对羟基苯甲酸酯是全芳香族的聚酯树脂。
分子结构是直链状的线性分子,但结晶度很高(大于90%),使它难以熔融流动,因而具有热固性树脂的成型特性。
它与金属的性能接近,是目前塑料中热导率和空气中的热稳定性最高的品种,在高温下还呈现与金属相似的非粘性流动。
它是一种摩擦系数极低的自润滑材料,摩擦系数可达到,甚至比用润滑油、脂润滑时的还低。
它可作为耐腐蚀泵、超音速飞机外壳钛合金的涂层材料。
但其热塑成型较为因难,需用高速高能锻造成直接经济损失成型,或是采用等离子喷涂及一般金属加工方法加工。
10)软金属:金、银、锡、铅、镁、铟等软金属可作为固体润滑剂使用。
软金属可以单独或是和其他润滑剂一起使用。
其应用方法有二种,一是以薄膜的形式应用,既将铅、锌、锡等低熔点软金属、合金作为干膜那样使用,铜和青铜等虽然并非低熔点,有时也可这样使用。
另一种使用方法是将软金属添加到合金或粉末合金中作为润滑成分以利用其润滑效果,如一般的白色合金(轴承合金)、油膜轴承合金(Kelmet)等就含有铅、锑、锌、锡、铟等软金属,又如烧结合金摩擦材料与电刷材料集流环和触点等也可使用含软金属如银、金等成分。
软金属的摩擦系数较大,但与润滑油并用时,可降低其摩擦系数及磨损,膜厚对软金属的润滑影响较大,如烟膜厚度小于m时,则润滑膜易于破环,厚于时则摩擦系数增大,故应有适当的厚度。
5、二硫化钼粉剂:①、二硫化钼的理化性质;二硫化钼(MoS2)是由钼矿化学加工制得的一种主要的钼化合物。
黑色粉末,有金属光泽,属六方晶系,有类似石墨的滑腻感。
熔点高达1185℃,密度克/厘米3(14℃),莫氏硬度~。
1370℃开始分解,1600℃分解为金属钼和硫。
在空气中加热至450℃开始升华。
摩擦系数较低(~),并且高温下仍保持低摩擦系数。
有反磁性,化学稳定性和热稳定性能好。
不溶于水,不易受酸、碱的侵蚀。
二硫化钼是辉钼矿的主要含钼组分,工业上采用辉钼矿提纯法和合成法来制取。
①提纯法:用盐酸和氢氟酸加热处理辉钼矿,除去对润滑不利的硅、铁等杂质,再用热水洗涤,在 110℃下干燥得二硫化钼产品,纯度约98%。
此法需使用毒性大的氢氟酸,但收率高、流程短、经济效果好。
②合成法:将钼酸铵溶液送入硫化器,用硫化氢硫化,生成硫代钼酸铵,用盐酸酸化成三硫化钼,再进行热分解得到二硫化钼,其反应如下:(NH4)2MoO4+4H2S─→(NH4)2MoS4+4H2O(NH4)2MoS4+2HCl─→MoS3+2NH4Cl+H2SMoS3─→MoS2+S此法所得产品纯度可达99%,但流程长、收率低。
②、二硫化钼的用途:它也被被誉为“高级固体润滑油王”。
二硫化钼是由天然钼精矿粉经化学提纯后改变分子结构而制成的固体粉剂。
黑色稍带银灰色,有金属光泽,触之有滑腻感,溶于水。
产品具有分散性好,不粘结的优点,可添加在各种油脂里,形成绝不粘结的胶体状态,能增加油脂的润滑性和极压性。
也适用于高温、高压、高转速高负荷的机械工作状态,延长设备寿命。
二硫化钼用于摩擦材料主要功能是低温时减摩,高温时增摩,烧失量小,在摩擦材料中易挥发;主要用于制润滑脂、固体润滑膜添加剂、尼龙等填充剂、催化剂。
③、二硫化钼的特性;减摩:由超音速气流粉碎加工而成的二硫化钼粒度达到325-2500目,微颗粒硬度,摩擦系数,所以它用于摩擦材料中可起到减摩作用;增摩:二硫化钼不导电,存在二硫化钼、三硫化钼和三氧化钼的共聚物。
当摩擦材料因摩擦而温度急剧升高时,共聚物中的三氧化钼颗粒随着升温而膨胀,起到了增摩作用;防氧化:二硫化钼是经过化学提纯综合反应而得,其PH值为7-8,略显碱性。