增韧理论

合集下载

增韧理论

增韧理论

增韧理论塑料共混改性的一个重要内容是提高一种塑料的韧性,使其满足使用场合和环境对材料韧性的要求。

比较成熟的是橡胶(弹性体)增韧塑料技术,但近几年也发展了非弹性体增韧技术,如无机刚性粒子增韧塑料等。

(1) 弹性体增韧机理弹性体直接吸收能量,当试样受到冲击时会产生微裂纹,这时橡胶颗粒跨越裂纹两岸,裂纹要发展就必须拉伸橡胶,橡胶形变过程中要吸收大量能量,从而提高了塑料的冲击强度。

(2) 屈服理论橡胶增韧塑料高冲击强度主要来源于基体树脂发生了很大的屈服形变,基体树脂产生很大屈服形变的原因,是橡胶的热膨胀系数和泊松比均大于塑料的,在成型过程中冷却阶段的热收缩和形变过程中的横向收缩对周围基体产生静水张应力,使基体树脂的自由体积增加,降低其玻璃化转变温度,易于产生塑性形变而提高韧性。

另一方面是橡胶粒子的应力集中效应引起的(3)裂纹核心理论橡胶颗粒充作应力集中点,产生了大量小裂纹而不是少量大裂纹,扩展众多的小裂纹比扩展少数大裂纹需要较多的能量。

同时,大量小裂纹的应力场相互干扰,减弱了裂纹发展的前沿应力,从而,会减缓裂纹发展并导致裂纹的终止。

(4)多重银纹理论由于增韧塑料中橡胶粒子数目极多,大量的应力集中物引发大量银纹,由此可以耗散大量能量。

橡胶粒子还是银纹终止剂,小粒子不能终止银纹。

(5)银纹-剪切带理论这是业内普遍接受的一个重要理论。

大量实验表明,聚合物形变机理包括两个过程:一是剪切形变过程,二是银纹化过程。

剪切过程包括弥散性的剪切屈服形变和形成局部剪切带两种情况。

剪切形变只是物体形状的改变,分子间的内聚能和物体的密度基本不变。

银纹化过程则使物体的密度大大下降。

一方面,银纹体中有空洞,说明银纹化造成了材料一定的损伤,是亚微观断裂破坏的先兆;另一方面,银纹在形成、生长过程中消耗了大量能量,约束了裂纹的扩展,使材料的韧性提高,是聚合物增韧的力学机制之一。

所以,正确认识银纹化现象,是认识高分子材料变形和断裂过程的核心,是进行共混改性塑料,尤其是增韧塑料设计的关键之一。

塑料增韧机理

塑料增韧机理
24
25
③弹性体增韧剂玻璃化转变温度的影响
一般而言,弹性体的Tg越低,增韧效果越好,见表。 这是由于在高速冲击载荷作用下,橡胶相的Tg会有显
著提高。 对于在室温下使用的增韧塑料,橡胶的Tg要比室温低
40~60℃才会产生显著的增韧效应。/
26
④增韧剂与基体树脂界面的影响
对于弹性体增韧塑料,界面粘接强度对增韧效果的影 响,不同的体系趋势不同。
13
不足之处
未能提供银纹终止详细机理 橡胶颗粒引发多重银纹缺乏严格数学处

14
5.2.3影响增韧效果的因素
可以从三个方面考虑: 基体树脂的特性, 增韧剂的特性和用量, 两相间的结合力。/
15
(1)基体树脂的特性
¾许多研究表明,提高基体树脂的韧性有利于提高增韧塑 料增韧效果。 ¾提高基体树脂韧性的主要方法有3种。
银纹支化理论 1971年 ,
Wu氏理论等。
提出了增韧塑料脆韧转变的临界 粒间距普适判据的概念,对热塑 性聚合物基体进行了科学分类。5
弹性体直接吸收能量理论 1956年
试样收到冲击→裂纹 橡胶颗粒横跨裂纹,裂纹发展必须拉伸橡
胶颗粒→吸收大量能量→冲击强度提高
不足: 所吸收能量不足冲击能 的1/10 气泡及小玻璃珠之类的 分散有时有增韧效应
有些增韧体系,界面粘接强度大,可有效减小分散相 粒径,在增韧剂含量相同的情况下,分散相粒子数增 多,减少了基体层厚度,有利于增韧。
例如: PVC与聚丁二烯共混,由于二者完全不相容,界面粘
接极弱,冲击强度很低;/
27
对于PVC/NBR共混体系,随着 NBR 中 AN 含 量 增 加 , NBR 与PVC 的相容性增加,

聚合物的增韧

聚合物的增韧

聚合物的增韧摘要:本文是一篇关于聚合物实现既增韧的综述,方法及其机理,并讨论了聚台物实现增韧的条件。

介绍几近年来增韧的几种材料。

聚合物作为结构材料,强度和韧性是两个重要的力学性能。

塑料改性中增韧一直是高分子材料科学研究的重要内容,但一般情况下,增韧和增强往往是相互矛盾。

增韧塑料其韧性、冲击性能提高,但材料的强度和刚度下降;而在增强塑料中,又通常导致韧性、冲击强度的降低。

因此,如何获得既增强又增韧的综合性能优良的高分子材料,是高分子材料科学研究中的热门课题。

1. 弹性体(增韧)和填料(增强)的共同作用早在上世纪初,人们就发现用橡胶类弹性体作为增韧剂以适当的方式分散于塑料基体中达到增韧目的,如环氧、尼龙、聚丙烯等的橡胶增韧。

过去几十年来,人们在橡胶增韧塑料的机理方面做了大量的研究工作,并提出了许多理论。

早期,Merz等人认为橡胶促使脆性材料韧性提高的原因是当材料在应变中产生裂纹时,有些橡胶粒子横跨于裂纹两端产生伸长变形,阻止裂纹扩展并吸收能量。

后来Newman、Schmit、Bucknall等人发现橡胶增韧脆性材料的机理不在于橡胶微粒本身吸收能量,而主要是橡胶微粒在在塑料基体中作为应力集中体引发基体的剪切屈服和银纹化,从而因塑料基体本身吸收能量而使材料的韧性得到提高。

但是橡胶类弹性体增韧塑料往往导致材料的强度、刚度、抗蠕变性、热变形温度等性能降低。

如何保持既提高材料的强度、刚性争眭能的基础上,提高共混材料的韧性,便是目前塑料改性的方向之一。

而在填充、纤维增强聚合物复合材料中,填料的浓度、形态、尺寸、粒度分布、表面积、堆砌方式和纤维含量、分布、表面化学性质等对材料性能影响很大。

在填充和纤维复合增强聚合物中,材料的性能除了取决于各组分的性能外,两组分间的界面的相互作用也是影响增强聚合物复合材料的重要因素之一。

有关增强复合材料界面作用机理,现已提出了许多理论,其中比较重要的有:物理吸附或表面浸润理论,化学键理论,可形变层理论,束缚层理论和互穿网络理论。

聚合物增韧机理

聚合物增韧机理

聚合物增韧机理嘿,朋友们!今天咱们来聊聊聚合物增韧那点事儿,就像探秘一个超级有趣的魔法世界一样。

首先呢,银纹 - 剪切带增韧机理就像是聚合物里的“太极高手”。

聚合物受到外力的时候,会产生银纹,这银纹就像是聚合物表面出现的一道道小裂痕,不过可别小瞧它们,这就像是练武之人表面的肌肉纹理,看似有破绽,实则是一种缓冲。

同时呢,剪切带也会出现,这就好比是太极的阴阳两极,银纹和剪切带相互配合,把外界施加的力像打太极一样,巧妙地分散开,让聚合物不至于一下子就被外力给弄散架了。

还有微裂纹增韧机理,这就像是聚合物内部的“小间谍”。

当外力作用时,在聚合物内部产生很多微小的裂纹,这些小裂纹就像是一个个小小的间谍,它们分散在各处。

敌人(外力)来的时候,这些小间谍把敌人的力量分散开,不让外力集中在一个地方猛攻,就像间谍打乱敌人的作战计划一样,从而使聚合物变得更坚韧。

相界面诱导增韧机理就像是聚合物的“外交使者”。

在多相聚合物体系里,不同相之间的界面就像是各个国家之间的边境。

这个相界面就像外交使者一样,巧妙地协调着各相之间的关系。

当外力来袭时,相界面就会发挥作用,把力在不同相之间进行合理的传递和分配,就像外交使者在各国之间协调资源分配一样,使得聚合物整体的韧性得到提高。

橡胶粒子增韧机理可有趣啦,橡胶粒子就像是聚合物里的“小弹簧”。

你想啊,聚合物里分散着这些橡胶粒子,当外力压下来的时候,橡胶粒子就像一个个小弹簧一样被压缩,把力给吸收一部分,然后又弹回去,就像弹簧床一样,你在上面跳,它不会一下子就塌下去,而是把你的冲击力给化解了,这样聚合物就变得更抗造了。

空穴化增韧机理呢,就像是聚合物内部的“秘密洞穴”。

在受力的时候,聚合物内部会形成一些空穴,这就像在山体里突然出现了一些秘密洞穴。

这些空穴能够改变应力的分布,就像洞穴改变了山体内部的压力分布一样,让聚合物可以更好地应对外力,不至于被轻易破坏。

纤维拔出增韧机理就像是拔河比赛。

纤维在聚合物里就像一个个大力士,当聚合物受到外力时,纤维就像在拔河一样,被往外拔。

第二章增韧理论2

第二章增韧理论2

根据Yoff和Griffith裂纹动力学理论,裂纹刚 产生后缓慢发展,长度达到临界值后,急 剧加速,最后达到极限速度(约为所处介 质中声速之半),达到极限速度后,裂纹 迅速支化和转向。
临界裂纹长度
2E r
E——杨氏模量
C=———— r——单位表面破裂能
π T2
T——拉伸强度
理论的应用
ABS体系:在基体中银纹迅速扩散,在达 到最大速度(树脂中的声速之半 约为 620m/s)之前碰到橡胶颗粒而发生减速 (例如:23℃时,聚丁二烯声速之半为 29m/s),因而在银纹与橡胶粒子的界面上 发生强烈支化。 支化的结果: 银纹数目大大增加,能量吸收增加。 每条银纹的前沿应力降低到之银纹终止。
在过程区内,存在着“空化空间” 空化空间的存在形式:
橡胶粒子内部的空洞 两相界面脱离产生的空洞 空洞的产生消耗能量,达到增韧的目的。
与银纹空洞的不同之处
银纹 产生空洞的位置 基体上
界面空洞 两相界面
发生的对象
脆性基体
可出现在韧性基 体上
实例
PC/MBS 在外力作用下,由于两者之间结合力较弱,两者的
剪切形变过程 银纹化过程
a.剪切形变
材料发生拉伸作用时,会发生剪切形变。这是因 为拉伸力可分解为剪切力分量,它的最大值出现 在与正应力成45º的斜面上。在塑料发生剪切形变 的地方,可观察到剪切带的形成。
厚度≈1μm,宽度:5~50 μm。大量不规则 线簇,每一条的厚度构成0.1 μm
形成原因:ⅰ由于应变软化作用引起
T> Tc,体系表现为脆性
T≈ Tc,体系发生脆韧 转变
ⅳ逾渗理论
Dupont 公司吴守恒博士认为聚合物共混物 的脆韧转变实际上是一个逾渗过程。逾渗 模型是专门用于研究组成无序系统的粒子 相互联结程度变化所引起的效应的数学工 具。

热塑性弹性体增韧聚合物理论介绍

热塑性弹性体增韧聚合物理论介绍

热塑性弹性体增韧聚合物理论介绍增韧机理的研究最早开始于上世纪50年代,人们从脆性基体与橡胶分散相所组成的物理模型出发,围绕着橡胶相如何增韧机理而展开。

纵观增韧理论的发展,它主要经历了微裂纹理论、多重银纹理论、剪切屈服理论和银纹-剪切带理论等阶段。

目前被人们较普遍接受的是银纹-剪切带理论。

1、微裂纹理论最早用来解释橡胶增韧塑料的几个假设之一曾认为:橡胶通过力学阻尼来吸收冲击能量,Bucknall等最先观察到由橡胶所贡献的二级损耗峰,并发现其他许多不含橡胶的韧性聚合物在室温下也具有明显的二级损耗峰。

不过阻尼虽可以解释冲击中的某些能量吸收,但未考虑应力发白和大应变的形变。

1956年Mertz等人首次提出了聚合物增韧的理论,该理论认为作为增韧体的部分橡胶粒子会横跨在材料变形所产生的很多细微的裂缝上,阻止其继续发展,而橡胶在变形过程中消耗了能量,从而提高了材料的韧性。

该理论重视了橡胶相而忽视了母体。

如橡胶粒子吸收能量的示意图,假设橡胶粒子处于增长中的裂缝的迎面,以致在冲击中吸收的能量等于玻璃态母体断裂能和破碎橡胶粒子所做功的总和。

但是Newman和Strellla经计算表明:橡胶在拉伸过程中吸收的能量是很少的,仅占材料破坏时吸收能量的1/10,同时实验表明韧性的提高和塑料基体有关,例如,当PVC和ABS共混时,PVC分子量的提高,显著的有利于共混材料冲击强度的提高。

所以,如把增韧塑料的韧性完全归因于橡胶粒子的作用,就不完全符合事实了。

因而该理论并未揭示橡胶增韧的本质原因。

2、多重银纹理论1965年由Bucknall和Smith提出的多重银纹理论是Mertz等人微裂纹理论的发展。

该理论认为在橡胶增韧塑料体系中,橡胶相颗粒起了应力集中的作用。

当材料受到冲击时,它能引发大量的银纹,大量银纹之间的应力场将发生相互干扰,如果发生的银纹前峰处的应力集中低于临界值或银纹遇到另一橡胶颗粒时,银纹就会终止,橡胶相粒子不仅能引发银纹而且能控制银纹。

聚合物强增韧化机制及测量原理简介1

聚合物强增韧化机制及测量原理简介1

聚合物强增韧化机制及测量原理简介聚合物的强韧化一直是高分子材料科学的重要研究领域,通过将有机或无机的大分子或小分子材料,采用物理或化学的方法加入高分子基体中,提高力学及其它性能。

自从上世纪50年代首次提出聚合物的增韧理论,人们利用增韧的方法研发了大量新型高聚物材料,性能较均聚物材料有很大提高。

实际上聚合物增韧的根本问题就是通过引入某种机制,使材料在形变、损伤与破坏过程中耗散更多的能量。

聚合物增韧经历了从弹性体到非弹性体增韧的过程,传统的增韧改性是以橡胶类弹性体材料作为增韧剂,以适当方式分散到塑料基体中以达到增韧目的,如高抗冲聚苯乙烯(HIPS),乙丙共聚弹性体增韧聚丙烯,粉末NBR增韧PVC等,但存在难以克服的问题,如刚度、强度、热变形温度都有较大幅度降低,于是1984年国外首次提出了以非弹性体增韧的新思想。

这种方法可以在提高基体韧性的同时提高材料的强度、刚性和耐热性,且无加工性能下降的不足,达到既增韧又增强的目的,克服了弹性体增韧出现的问题。

以增韧方法的发展为主线,介绍增韧剂从弹性体到非弹性体、从微米到纳米尺度变化,对材料的强韧结构与性能的影响,并通过对其增韧后的力学性能、微观结构形态的分析,衍生相应的的增韧机理。

脆性断面韧性断面图1- 1 典型脆-韧性材料的拉伸行为及断面形貌§1 弹性体增韧增韧机理的研究最早开始于上世纪50年代,人们从脆性基体与橡胶分散相所组成的物理模型出发,围绕着橡胶相如何增韧机理而展开。

纵观增韧理论的发展,它主要经历了微裂纹理论、多重银纹理论、剪切屈服理论和银纹-剪切带理论等阶段。

目前被人们较普遍接受的是银纹-剪切带理论。

随着增韧理念的发展,增韧理论由传统的定性分析进入了定量分析的阶段,主要是Wu 提出了橡胶粒子增韧的T判据,建立了橡胶粒子增韧的逾渗模型,对增c韧理论的定量化研究提供了一个新的思路。

粒子与纤维增韧橡胶粒子的变形与破裂银纹与剪切带空穴与脱粘图1- 2 橡胶增韧机理的示意图§1.1微裂纹理论最早用来解释橡胶增韧塑料的几个假设之一曾认为:橡胶通过力学阻尼来吸收冲击能量,Bucknall[]i等最先观察到由橡胶所贡献的二级损耗峰,并发现其他许多不含橡胶的韧性但载荷未考虑应力发白图1- 3 橡胶粒子吸收能量的示意图和大应变的形变。

acr增韧机理

acr增韧机理

acr增韧机理ACR增韧机理可以分为物理增韧机理和化学增韧机理两方面。

物理增韧机理主要是通过改变聚合物的结构和排列方式,增加材料的强度和韧性,而化学增韧机理则是通过引入增韧剂,改变材料的化学性质来增加材料的韧性。

在物理增韧机理方面,ACR(Acrylic rubber)增韧可以通过增加聚合物链的交联密度来提高材料的强度和韧性。

交联是指聚合物链之间形成网络结构,从而增加材料的整体强度和刚性。

在ACR中,通过引入交联剂,如双丙烯酸丁二酯(BD)或者聚合物后期交联,可以增加ACR的交联密度,提高材料的强度和韧性。

此外,物理增韧机理中还有相分离增韧机理。

当ACR中引入亲相分离增韧剂时,这些增韧剂会在材料中形成分散相或者粒子,从而改变了ACR的相结构和排列方式。

相分离的形成可以增加ACR中的界面面积,提高材料的强度和韧性。

同时,相分离的形成还可以阻碍裂纹传播,增加材料的抗裂纹扩展能力,从而提高材料的韧性。

在化学增韧机理方面,ACR的化学结构可以通过改变聚合物链上的官能团,引入增韧剂来增加材料的韧性。

例如,使用改性聚丙烯酸酯或改性丁基橡胶作为增韧剂,可以通过与ACR的聚合物链进行交联反应,形成网状结构,从而增加ACR的韧性。

此外,通过引入共聚物或者结晶增韧剂,可以改变ACR的分子结构和排列方式,提高材料的韧性。

对于ACR的增韧机理,还需要考虑材料的分子链长度和分子量分布。

一般来说,较长的分子链和较窄的分子量分布可以提高材料的韧性,因为分子链更容易在应力作用下进行重排,从而形成更强大的网络结构。

除了上述的物理和化学增韧机理,ACR的韧性还可以通过改变材料的配方和加工工艺来得到提高。

例如,合理的添加负载剂和填充剂可以增加ACR的强度和韧性,同时改变ACR的配方可以调节材料的硬度和弹性模量,从而适应不同应用领域的需求。

总的来说,ACR的增韧机理主要包括物理增韧和化学增韧两方面。

物理增韧可以通过增加聚合物链的交联密度和改变材料的相分离结构来提高强度和韧性,而化学增韧则是通过引入增韧剂,改变材料的化学结构来增加韧性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增韧理论塑料共混改性的一个重要内容是提高一种塑料的韧性,使其满足使用场合和环境对材料韧性的要求。

比较成熟的是橡胶(弹性体)增韧塑料技术,但近几年也发展了非弹性体增韧技术,如无机刚性粒子增韧塑料等。

(1) 弹性体增韧机理(2) 屈服理论(3)裂纹核心理论(4)多重银纹理论(5)银纹-剪切带理论这是业内普遍接受的一个重要理论。

大量实验表明,聚合物形变机理包括两个过程:一是剪切形变过程,二是银纹化过程。

剪切过程包括弥散性的剪切屈服形变和形成局部剪切带两种情况。

剪切形变只是物体形状的改变,分子间的内聚能和物体的密度基本不变。

银纹化过程则使物体的密度大大下降。

一方面,银纹体中有空洞,说明银纹化造成了材料一定的损伤,是亚微观断裂破坏的先兆;另一方面,银纹在形成、生长过程中消耗了大量能量,约束了裂纹的扩展,使材料的韧性提高,是聚合物增韧的力学机制之一。

银纹的一般特征如下:1.银纹是在拉伸力场中产生的,银纹面总是与拉伸力方向垂直;在压力场中不会产生银纹;Argon的研究发现,在纯剪切力场中银纹也能扩展。

2.银纹在玻璃态、结晶态聚合物中都能产生、发展。

3.银纹能在聚合物表面、内部单独引发、生长,也可在裂纹端部形成。

4.在单一应力作用下引发的银纹,成为应力银纹。

5.银纹的外形与裂纹相似,但与裂纹的结果明显不同。

裂纹体中是空的,而银纹是由银纹质和空洞组成的。

空洞的体积分数为50%70%。

银纹质取向的高分子和/或高分子微小聚集体组成的微纤,直径和间距为几到几十纳米,其大小与聚合物的结构、环境温度、施力速度、应力大小等因素有关。

银纹主微纤与主应力方向呈某一角度取向排列,横系的存在使银纹微纤也构成连续相,与空洞连续相交织在一起成为一个复杂的网络结构。

横系结构使得银纹有一定横向承载能力,银纹微纤之间可以相互传递应力。

这种结构的形成是由于强度较高的缠结链段被同时转入两相邻银纹微纤的结果。

银纹引发的原因是聚合物中以及表面存在应力集中物,拉伸应力作用下产生应力集中效应。

首先在局部应力集中处产生塑性剪切变形,由于聚合物应变软化的特性,局部塑性变形量迅速增大,在塑性变形区内逐渐积累足够的横向应力分量。

随后,微空洞间的高分子和/或高分子微小聚集体继续伸长变形,微空洞长大并彼此复合,最终形成银纹中椭圆空洞。

银纹体形成时所消耗的能量称为银纹生成能,包括消耗的4种形式的能量:生成银纹时的塑性功,黏弹功,形成空洞的表面功及化学键的断裂能。

银纹终止的具体原因有多种,如银纹发展遇到了剪切带,或银纹端部引发剪切带,或银纹的支化,以及其它使银纹端部应力集中因子减小的因素,如图所示(简略说明:剪切带具有精细的结构,其厚度约1μm宽度约5-5 0μm由大量不规则的线簇构成,每一条线簇的厚度约0.1μm如图所示。

剪切带内分子链或高分子的微小聚集体有很大程度的取向,取向方向为切应力和拉伸应力合力的方向。

剪切带的产生只是引起试样形状改变,聚合物的内聚能以及密度基本上不受影响。

剪切带与拉伸力方向间的夹角都接近45°,但由于大形变时试样产生各向异性,试样的体积也可能发生微小的变化,所以与拉伸力方向间的夹角往往与45°有偏差。

单轴拉伸力作用聚合物试样不能产生剪切带,单轴压缩力作用下也可能产生剪切带,局部大形变处不是出现细颈,而是鼓凸。

拉伸和压缩作用产生的剪切带与应力方向间的夹角会不同。

如PVC,压缩时剪切带与压缩力方向间夹角为46°,拉伸时夹角为5 5°。

取向单元取向情况也会有差别:拉伸时,取向单元取向方向与拉伸力方向间夹角较小;压缩时,取向单元方向与压力轴向间夹角较大。

)剪切带的产生和剪切带的尖锐程度,除与聚合物的结构密切相关外,还与温度、形变速率有关。

如温度过低时,剪切屈服应力过高,试样不能产生剪切屈服,而是横截面处引发银纹,并迅速发展成裂纹,试样呈脆性断裂;温度过高,整个试样容易发生均匀的塑性形变,只能产生弥散型的剪切形变而不会产生剪切带。

加大形变速率的影响与降低温度是等效的。

银纹与剪切带之间存在相互作用。

很多情况下,在应力作用下,聚合物会同时产生剪切带与银纹,两者相互作用,成为影响聚合物形变乃至破坏的重要因素。

聚合物形变过程中,剪切带和银纹两种机理同时存在,相互作用时,使聚合物从脆性破坏转变为韧性破坏。

银纹与剪切带的相互作用可能存在三种方式:一是银纹遇上已存在的剪切带而得以与其合伙终止,这是由于剪切带内大分子高度取向限制了银纹的发展;二是在应力高度集中的银纹尖端引发新的剪切带,新产生的剪切带反过来又终止银纹的发展;三是剪切带使银纹的引发与增长速率下降。

该理论认为橡胶增韧的主要原因是银纹和剪切带的大量产生和银纹与剪切带相互作用的结果。

橡胶颗粒的第一个重要作用就是充当应力集中中心,诱发大量银纹和剪切带,大量银纹或剪切带的产生和发展需要消耗大量能量。

银纹和剪切带所占比例与基体性质有关,基体的韧性越大,剪切带所占的比例越高;同时,也与形变速率有关,形变速率增加时,银纹化所占的比例就会增加。

橡胶颗粒第二个重要作用就是控制银纹的发展,及时终止银纹。

在外力作用过程中,橡胶颗粒产生形变,不仅产生大量的小银纹或剪切带,吸收大量的能量,而且,又能及时将其产生的银纹终止而不致发展成破坏性的裂纹。

银纹-剪切带理论的特点是既考虑了橡胶颗粒的作用,又肯定了树脂连续相性能的影响,同时明确了银纹的双重功能,即银纹产生和发展消耗大量的能量,可提高材料的破裂能;银纹又是产生裂纹并导致材料破坏的先导。

但这一理论的缺陷是忽视了基体连续相与橡胶分散相之间的作用问题。

应该说,聚合物多相体系的界面性质对材料性能有很大的影响。

(6)空穴化理论空穴化理论是指在低温或高速形变过程中,在三维应力作用下,发生橡胶粒子内部或橡胶粒子与基体界面层的空穴化现象。

该理论认为:橡胶改性的塑料在外力作用下,分散相橡胶颗粒由于应力集中,导致橡胶与基体的界面和自身产生空洞,橡胶颗粒一旦被空化,橡胶周围的静水张应力被释放,空洞之间薄的基体韧带的应力状态,从三维变为一维,并将平面应变转化为平面应力,而这种新的应力状态有利于剪切带的形成。

因此,空穴化本身不能构成材料的脆韧转变,它只是导致材料应力状态的转变,从而引发剪切屈服,阻止裂纹进一步扩展,消耗大量能量,使材料的韧性得以提高。

(7)WU,s逾渗增韧模型美国杜邦公司SouhengWu博士提出了临界粒子间距判据的概念,对热塑性聚合物基体进行了科学分类并建立了脆韧转变的逾渗模型,将增韧理论由定性分析推向定量分析。

该理论认为共混物韧性与基体的链结构间存在一定的联系,并给出了基体链结构参数一链缠结密度re和链的特征比C∞间的定量关系式,指出聚合物的基本断裂行为是银纹与屈服存在竞争。

re较小及C∞较大时,基体易于以银纹方式断裂,韧性较低;re较大及C∞较小的基体以屈服方式断裂,韧性较高。

链缠结密度re和链的特征比C∞间的定量关系式为:re=pa/(3MyC∞2)式中 M7—统计单元的平均相对分子质量;Pa—非晶区的密度。

Flory给出了re、C∞两个参数的定义如下:re=pa/Mr,e式中 Mr,e——缠结点间的相对分子质量。

C∞ = IimR02/nh2h→∞式中 R02一无扰链均方末端距;n —统计单元数;h2——统计单元数均方长度。

nh2为自由联结链的均方末端距,因此,C∞可表征真正无扰链的柔顺性。

Kramer给出了银纹应力σy与re的关系:σy∝re1/2Kambour则给出了归一化屈服应力{σy}的表达式:{δy)=ay/σz(Tg-T)J式中δy——归一化屈服应力;ay——屈服应力;σz——内聚能密度;Tg——玻璃化转变温度;T——测试温度。

Souheng Wu进一步给出:σz/{δy}∝re1/2/C∞Wu,s逾渗增韧理论科学地将热塑性聚合物基体划分为两大类:脆性基体(银纹断裂为主)和准韧性体(剪切屈服为主)。

re<0.15 mmol/cm3,C∞>约7.5时银纹为主,为脆性基体。

部分聚合物基体的链参数列于表。

表一些聚合物基本的链参数从表看出,增韧PA6、 PA66均属于剪切屈服为主要能量耗散形式,表现出较好的韧性。

因此只有当体系中橡胶粒子间距小于临界值时才有增韧作用。

相反,如果橡胶颗粒间距远大于临界值时,则材料表现为脆性。

τc是决定共混物能否出现脆韧转变的特征参数,它适用所有增韧共混体系。

其理由如下:当橡胶粒子相距很远时,一个粒子周围的应力场对其它粒子影响很小,基体的应力场是这些孤立的粒子的应力场的简单加和,基体塑性变形的能力很小时,表现为脆性。

当粒子间距很小时,基体总应力场是掾胶颗粒应力场相互作用的叠加,这样,使基体应力场的强度大为增强,产生塑性变形的幅度增加,表现为韧性。

(8)刚性粒子增韧机理刚性粒子分为有机刚性粒子和无机刚性粒子。

有机刚性粒子增韧聚合物的增韧机理有两种:"冷拉"机理和"空洞化"机理。

Kurauchi等在研究PC/ABS、PC/AS共混物的力学性能时首先提出了脆性塑料粒子可以提高韧性塑料基体拉伸冲击强度的概念,并用"冷拉"机理给予了解释:拉伸前,ABS、A S都是以球形微粒状分散在PC基体中,粒径大约为2μm 和1μm拉伸后。

PC/ABS、PC/AS共混物中都没产生银纹,但分散相的球形微粒都发生了伸长变形,变形幅度大于100%,基体PC也发生了同样大小的形变。

刚性粒子形变过程中发生大变形的原因在于:在拉伸时,基体树脂发生形变,分散相粒子的极区受到拉应力,赤道区受到压应力,脆性粒子屈服并与基体产生同样大小的形变,吸收相当多的能量,使共混物的韧性提高。

界面是两相间应力传递的基础,所以界面粘接好坏直接影响刚性粒子的冷拉。

如PA6/ AS共混物,不具有增韧效果,其原因在于其界面的粘接力小于屈服应力。

拉伸时,在分散相AS粒子的两极首先发生脱粘,破坏了原有的三维应力场,无法达到使AS屈服冷拉的要求。

在PA6/AS共混物中添加增容剂SMA(苯乙烯-马来酸酐共聚物),提高了界面粘接强度,消除了分散相粒子两极脱粘的现象,使共混物的韧性显著提高。

以上分析表明:冷拉增韧机理只能在拉伸时出现,因为要在分散相粒子极区形成压应力,共混物界面粘接必须很强,要在极区避免界面脱粘。

"空洞化"机理是丫ee等在研究PC/PE共混物增韧机理时发现的,认为裂尖损伤区内分散相粒子承受三维应力,直径约0.3μm,从界面脱粘,形成空洞化损伤,同时使基体PC 易于产生剪切屈服,共混物得到增韧。

朱晓光等使LDPE分散相的直径减小到lμm以下,在缺口产生的损伤区内也有空洞化损伤产生,共混物因此得到增韧。

20世纪90年代初发展了无机刚性粒子增韧理论。

相关文档
最新文档