膜技术应用-其他膜应用

合集下载

膜技术在水处理中的应用与发展

膜技术在水处理中的应用与发展

膜技术在水处理中的应用与发展一、膜技术在水处理中的应用情况膜技术是利用半透膜对水进行过滤和分离的一种水处理技术。

它具有高效、节能、无化学品添加等优点,所以在水处理领域得到了广泛的应用。

目前,膜技术在水处理中主要包括以下几个方面的应用:1. 海水淡化:随着人口的增长和工业的发展,供水紧张问题日益严重。

海水淡化技术通过膜技术可以将海水中的盐分和杂质去除,得到符合饮用水标准的淡水。

在一些水资源紧缺的地区,海水淡化技术成为了解决供水问题的重要手段。

2. 污水处理:城市污水处理是保障城市环境卫生的重要措施。

膜技术在污水处理中可以用于去除污水中的有机物和微生物等有害物质,生产出清洁的再生水。

3. 饮用水处理:膜技术可以应用于自来水、地下水等饮用水源的处理,去除其中的细菌、微生物、重金属等有害物质,提高水质,保障居民的健康。

4. 工业废水处理:工业生产中产生的废水中往往含有大量的有机物质、重金属和化工原料等有害物质。

膜技术可以有效去除这些有害物质,达到排放标准,防止对环境造成污染。

5. 压力驱动与电动式反渗透膜除盐技术:电动反渗透技术是近年来膜技术的新发展趋势,它利用电能来提高膜的去除盐效率,成为一种极具潜力的技术。

膜技术在水处理中的应用正在不断发展和完善,未来的发展趋势主要包括以下几个方面:1. 技术革新:随着科技的不断进步,新型的膜材料、膜结构、膜模块等不断涌现,使得膜技术在水处理中的应用范围更加广泛、性能更加优越。

2. 集成化发展:膜技术在水处理中将逐渐向集成化方向发展,即与生物反应器、化学氧化等其他水处理技术结合,形成多种技术协同作用,提高水处理效率。

3. 绿色环保发展:传统水处理工艺往往需要大量的化学药剂,而膜技术在水处理中不需要外加化学品,且能有效地减少二次污染,因此将是绿色环保水处理技术的重要组成部分。

4. 智能化应用:随着自动化技术和人工智能技术的不断发展,膜技术在水处理中将更加智能化,例如通过智能控制系统实现膜设备的自动运行和故障检测等功能,提高设备运行效率。

薄膜技术的发展和应用

薄膜技术的发展和应用

薄膜技术的发展和应用随着科技的不断进步,薄膜技术也得到了广泛应用和发展。

本文将就薄膜技术的发展和应用进行介绍。

一、薄膜技术的定义和分类薄膜技术是指将材料以极薄的层数覆盖在基材表面上的技术。

薄膜技术因其独特的性质,在电子、医疗、能源、光电和材料领域都有广泛的应用。

薄膜技术按照制备工艺可分为物理气相沉积法、化学气相沉积法、溅射法、离子束沉积法和溶液法等。

其中,物理气相沉积法和化学气相沉积法是基于气相反应制备薄膜,而溅射法和离子束沉积法则是基于固态反应制备薄膜。

二、薄膜技术的应用1、电子领域薄膜技术在电子领域有着广泛的应用,如显示器件中的膜电极和透光薄膜,硅上集成电路中的金属线薄膜和凸点薄膜,以及太阳能电池中的透明导电膜等。

通过不同种类的薄膜组合,可以制造出光电显示器件、光二极管、半导体器件等。

2、医疗领域薄膜技术在医疗领域也有广泛的应用,如人造器官表面的生物相容性薄膜、药物释放薄膜、医用传感器薄膜、隔离膜和过滤膜等。

这些薄膜可以帮助医学界实现更好的医学检测和治疗。

3、能源领域薄膜技术在能源领域也发挥了重要的作用,如太阳能电池和燃料电池中的薄膜。

通过合适的制备工艺可以制造出透明导电膜、锂离子电池隔膜、固体氧化物燃料电池氧离子传输膜等薄膜材料。

4、光电领域光电领域是薄膜技术应用较早的领域之一,尤其是光学涂层和抗反射膜方面的应用。

薄膜技术不仅可以增强光学元件的透过率和强度,还可以制造仿生光学器件等。

5、材料领域薄膜技术还可以制造出纳米微观结构,实现材料性质的精细控制,如金属膜的纳米微结构、高分子复合薄膜、磁性薄膜等,这些材料在生产制造、传感器等领域有广泛的应用。

三、薄膜技术未来的发展趋势随着技术的不断更新,薄膜技术也在不断地发展和创新。

未来薄膜技术的发展趋势将主要集中在以下几个方面:1、多层薄膜技术的发展多层薄膜技术是目前的一个研究热点,它可以实现对于薄膜性质的控制和变化。

通过不同比例的堆叠和改变各种材料的结构和性质,可以制备出更加精细的薄膜材料。

现代膜技术及其应用指南

现代膜技术及其应用指南

现代膜技术及其应用指南现代膜技术可真是一项了不起的创新,想想看,我们的生活中到处都能看到它的身影,水处理、食品加工、药品分离,甚至在我们呼吸的空气里,它都有贡献。

这膜就像一个无形的魔法盾,能把杂质挡在外面,只留最纯净的东西。

说起膜技术,真是一个技术含量十足的“黑科技”,但听起来又像高高在上的神秘学问,其实它并没有那么复杂。

膜的工作原理,简单来说就是利用一些特别的材料,把大分子和小分子分开,真是个聪明的主儿。

我们先来聊聊膜的种类,反渗透膜、纳滤膜、超滤膜,这些听起来挺复杂,但其实它们的使用场景和作用可大了。

反渗透膜就像一个超级过滤器,能把水中的盐分和细菌都过滤掉,喝的水立马清澈见底;而纳滤膜稍微“宽容”一些,能允许一些小分子通过,常用于饮料加工,能让饮品口感更佳。

超滤膜就更有意思了,能把乳制品里的乳脂分离,做出浓浓的奶油,听着就让人垂涎欲滴。

说到应用,这膜技术的用途可谓是五花八门。

比如在水处理行业,没膜可真不行,城市的自来水大多都得经过膜的“洗礼”。

这个过程就像给水进行了一次“美容”,把水中的杂质都清理得干干净净。

食品行业也受益匪浅,想想那些浓缩果汁,都是膜的功劳,让果汁更加浓郁,喝上一口就像咬到了新鲜的水果。

再说药品制造,膜技术在分离纯化方面的表现也可圈可点,这不仅提升了药品的质量,还降低了成本,真是大大助力了医药行业的发展。

不过,膜技术也不是一帆风顺,随着使用的增加,膜的污染问题也随之而来。

膜一旦被污染,效率就下降,得定期清洗或者更换。

这可让不少企业感到头疼。

不过,科学家们正在不断研究新材料、新方法,试图解决这个问题,就像打怪升级一样,永远在追求更高的目标。

想象一下,未来的膜技术将会如何发展。

也许会有更智能的膜,能自动清洗,甚至根据水质变化自动调整过滤程度,真是让人期待得不得了。

这种技术的可持续性也越来越受到关注,环保和经济双赢的目标,正是未来的“王道”。

谁不想用更少的资源,做出更多的产品呢?膜技术不仅提升了我们生活的质量,也改变了许多行业的面貌。

膜技术在水处理领域的应用

膜技术在水处理领域的应用

膜技术在水处理领域的应用随着全球水资源的日益紧缺以及水污染问题的愈加严重,膜技术越来越成为水处理领域中的一项重要技术。

它通过利用特殊的膜,将水中的杂质与纯净的水分离,实现水资源的合理利用。

本文将着重探讨膜技术在水处理中的应用及其优缺点。

一、膜技术的基本原理膜技术是一种基于屏障作用的分离技术,其基本原理是利用膜的孔隙大小和特殊的化学或物理性质,在一定的压力作用下,将水中的杂质与纯净水分离。

膜的材料种类千变万化,常见的有聚丙烯、聚氯乙烯、聚酰胺等。

根据分离机制不同,膜可以分为微孔膜、超滤膜、纳滤膜及反渗透膜等多种类型。

二、膜技术在水处理领域的应用1. 给水处理利用膜技术对自来水进行预处理,可以去除水中的胶体、微生物、悬浮物等杂质,保证给水的质量。

同时,在城市水资源短缺的情况下,膜技术可以将海水、河水等地表水转化为淡水,成为大型饮用水处理设备的重要组成部分。

2. 污水处理膜技术可以去除污水中的有机物、氨氮、微生物等污染物,实现水资源的再利用。

当前,以工业废水处理为主的膜技术已经成为常见的工业废水处理工艺之一,有效解决了冶金、化工、印染等行业处理难度大的污水处理问题。

3. 浓缩处理膜技术还可以用于萃取和浓缩,通过逆向渗透将水中的溶解性物质浓缩至一定程度,减少了化工、制药等工业生产过程中的废液排放,降低了企业生产成本。

三、膜技术的优缺点1. 优点(1)高效:膜技术可实现精细微观分离,过滤效率高。

(2)节能:相比常规处理技术,膜技术能够降低能源消耗。

(3)环保:膜技术不需要使用化学药剂,对环境污染小。

2. 缺点(1)成本高:膜技术所需材料较为昂贵,设备价格较高。

(2)污染问题:膜在使用过程中易产生污染,需要定期更换。

(3)水质要求高:使用膜技术时,水质必须要达到一定程度,否则会影响膜的使用寿命。

四、后续发展趋势膜技术在水处理领域的应用越来越广泛,随着科学技术的不断发展,膜技术也在不断升级。

将来,膜材料将更加耐用、环保;膜的筛选、分离效果会更精确;在能源消耗方面,膜技术也将不断优化和节约。

污水处理中的膜技术应用

污水处理中的膜技术应用

污水处理中的膜技术应用膜技术是污水处理中常用的一种高效处理方法,通过利用半透膜对污水进行过滤和分离,实现污水中有害物质的去除和水资源的回收利用。

本文将探讨污水处理中的膜技术应用以及其在环保领域的重要性。

膜技术是一种基于半透膜的物理分离过程,通过选择性通透性的膜材料,可以将污水中的悬浮固体、有机物、重金属离子等污染物分离出来,达到净化水质的目的。

膜技术广泛应用于污水处理、饮用水净化、海水淡化等领域,成为解决水资源短缺和环境污染问题的重要手段。

污水处理中的膜技术应用主要包括微滤、超滤、纳滤和反渗透等几种方法。

微滤是一种相对粗糙的膜过滤技术,适用于悬浮物颗粒较大的污水处理,可以有效去除悬浮物、浮渣和泥沙等污染物。

超滤则能进一步过滤掉更小的颗粒,有效去除胶体、细菌、病毒等微生物污染物。

纳滤是介于超滤和反渗透之间的一种膜过滤技术,适用于处理水中的有机物和重金属离子。

反渗透是一种高度精细的膜过滤技术,通过强制水分子逆向渗透,有效去除溶解性盐类、重金属离子和有机物等。

膜技术在污水处理中的应用具有许多优点。

首先,膜分离过程相对简单,无需添加化学药剂,对环境友好。

其次,膜材料具有选择性通透性,可实现对特定污染物的高效去除,提高水质净化效果。

此外,膜过滤具有高效、节能的特点,相比传统的物理化学处理方法,能够大幅度降低处理成本。

此外,膜技术还可以实现水资源的回收利用,将处理后的水用于农业灌溉、工业生产等领域。

然而,膜技术在应用过程中也存在一些挑战和限制。

首先,膜材料的性能稳定性和耐受性需要进一步提高,以适应复杂多变的污水处理环境。

其次,膜堵塞问题是膜技术应用中常见的难题,需要进行有效的清洗和维护。

此外,膜材料的生产成本较高,会对设备投资和运行成本造成一定影响。

为了解决膜技术在污水处理中的应用问题,需要加强研发和技术创新。

一方面,需要不断改进和优化膜材料的性能,提高其抗污性和耐久性,以应对复杂多变的处理环境。

另一方面,还应加强膜污染和膜结垢的研究,开发出高效清洁膜的方法,降低膜堵塞带来的经济和环境成本。

薄膜技术及应用

薄膜技术及应用
物理气相沉积技术逐渐成 熟,广泛应用于电子、光 学和机械等领域。
20世纪末至今
随着新材料和制备技术的 不断发展,新型薄膜材料 不断涌现,薄膜技术应用 领域不断扩大。
02
薄膜制备技术
物理气相沉积(PVD)
真空蒸发沉积
利用加热蒸发材料,使其 原子或分子从固态表面升 华进入气态,然后在基底 表面凝结形成薄膜。
导体薄膜
功能薄膜
用于制造集成电路、微电子器件和薄 膜晶体管等,具有高导电性能和稳定 性。
如光电转换薄膜、磁性薄膜、传感器 用敏感薄膜等,在电子器件中具有特 定功能。
绝缘薄膜
用作电子器件的介质层和绝缘材料, 具有低介电常数和损耗、高击穿场强 等特点。
光学领域
反射和滤光薄膜
用于控制光的反射、透射、干涉和偏振等特性, 在光学仪器、摄影、照明等领域有广泛应用。
多功能化薄膜
通过材料复合和结构设计,制备具有多功能特性的薄膜,如光学、热学、电学、磁学等多重性能的集 成。
THANKS FOR WATCHING
感谢您的观看
薄膜的分类
01
按材料分类
金属薄膜、制备方法分类
功能薄膜(如导电薄膜、光学薄 膜、磁性薄膜等)、结构薄膜等。
物理气相沉积、化学气相沉积、 溶胶-凝胶法等。
薄膜技术的发展历程
01
02
03
19世纪末
真空蒸发镀膜技术出现, 主要用于制造光学仪器和 装饰品。
20世纪中期
薄膜技术及应用
目录
• 薄膜技术简介 • 薄膜制备技术 • 薄膜的应用领域 • 薄膜的未来发展与挑战
01
薄膜技术简介
薄膜的定义与特性
定义
薄膜是一种厚度在微米到纳米级别的 材料,覆盖在基底上,具有特定的物 理、化学和机械性能。

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用

膜技术在饮用水处理中的应用一、膜技术在饮用水处理中的应用膜技术是一种高效的分离技术,通过膜的孔隙大小和特性,将水中的杂质、有机物、微生物等分离出来,从而得到经过处理的清洁水。

在饮用水处理中,膜技术主要应用于以下几个方面:1.微滤微滤是膜技术的一种,主要用于去除水中的悬浮颗粒、浑浊物质、胶体和微生物等。

通过微滤膜的孔径大小,可以有效地将水中的微小颗粒和微生物截留在膜表面,从而得到清澈透明的水。

2.超滤超滤是膜技术的另一种应用方式,主要用于去除水中的有机物质、胶体和大分子物质等。

超滤膜的孔径比微滤膜小,可以有效地截留水中的有机物质和大分子物质,提高水的透明度和纯净度。

3.反渗透反渗透是膜技术的一种高级应用方式,主要用于去除水中的溶解性盐分、重金属离子和有机物质等。

通过反渗透膜的高度分子筛选作用,可以将水中的溶解性物质有效地截留在膜表面,从而得到高纯度的饮用水。

二、膜技术在饮用水处理中的优势相比传统的饮用水处理技术,膜技术在饮用水处理中具有独特的优势:1.高效膜技术能够有效地去除水中的各种杂质和污染物,提高水的透明度和纯净度。

与传统的饮用水处理方式相比,膜技术具有更高的净化效率和处理能力,可以更好地保障人们的健康和安全。

2.节能膜技术在饮用水处理中所需的能耗相对较低,能够有效地节约能源和减少成本。

与传统的饮用水处理设备相比,膜技术具有更低的运行成本和维护成本,能够为用户带来更多的经济利益。

3.环保膜技术可以实现闭式循环和零排放,减少对环境的污染和影响。

通过膜技术处理后的饮用水,质量稳定、无污染,符合国家相关标准和要求,可以更好地保护环境和生态平衡。

三、膜技术在提高饮用水质量中的重要作用膜技术在饮用水处理中发挥着重要的作用,主要体现在以下几个方面:1.提高饮用水的卫生安全性膜技术能够有效地去除水中的微生物、病原体和微小颗粒,提高饮用水的卫生安全性。

通过膜技术处理后的饮用水,无异味无色、透明纯净,对人体健康无害,能够更好地保障人们的健康和安全。

膜技术在水处理领域中的应用

膜技术在水处理领域中的应用

膜技术在水处理领域中的应用随着我国经济的快速发展,水资源的供需矛盾不断加剧,水污染日益严重,水资源的保护和利用已经成为保证可持续发展的重要问题。

而膜技术在水处理领域的应用,可以有效解决水资源短缺和水污染问题,保证水资源的可持续利用。

膜技术是一种将物质或能量从一侧传递到另一侧的技术,其主要特点是具有分离性、选型性、反应性和加工性等优点。

膜技术广泛应用于生物医药、化工、食品、电子、环保等领域,其中在水处理领域的应用最为广泛。

膜技术在水处理领域中的应用主要包括:反渗透技术、超滤技术、微滤技术、纳滤技术、气浮膜技术、电渗析技术等。

其中,反渗透技术应用最为广泛。

反渗透技术是一种以半透膜为核心的高科技分离技术,采用高压作用下强制将水通过半透膜实现分离过滤和浓缩的技术。

该技术的主要特点是排除多种腐蚀、催化、有毒有害物质和病毒等,同时获得高净化水质量,广泛应用于纯化自来水、海水淡化、废水处理等方面。

超滤技术是一种物理性分离技术,以微孔大小的滤膜将大分子物质和胶体颗粒从水中分离。

该技术的主要特点是能有效去除颜色、浑浊物、细菌和病毒等,适用于矿泉水、中水、工业废水、印染污水等的处理,弥补传统精密滤料的不足。

微滤技术是一种高效精密过滤技术,采用压力差将水和待处理物质分离,有效去除水中的悬浮物、胶体、细菌和有机物等,广泛应用于电子、饮料、口服液、卫生纸、印刷和染料行业的水处理。

纳滤技术是一种介于超滤和反渗透之间的高科技膜过滤技术,可以去除水中的腐蚀物质、色素、微生物、重金属和溶解盐等有害物质,适用于食品饮料、环卫污水、中水回用等应用领域。

气浮膜技术是一种利用气泡将水中的悬浮物、沉淀物等从污水中分离并去除的技术,具有适用范围广、能耗低、设计简便等优点。

适合于石化、钢铁、印染、造纸等工业废水的处理应用。

电渗析技术是一种电化学过程,通过电解而将溶液中的正负离子分离,有效去除水中的离子污染物质,适用于食品加工、饮料工业、医药中间体、电子工业等领域的水处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
按气体方程可导出气体透过多孔性分离膜的分 离效率为:
M2
M1
此式说明,被分离物质的分子量相差越大,分 离选择性越好。
多孔膜对混合气体的分离主要决定于膜的结 构。
12
2. 制备气体分离膜的材料
(1)影响气体分离膜性能的因素 1)化学结构的影响 通过对不同化学结构聚合物所制备的气体分离
膜的气体透过率P、扩散系数D和溶解系数S的考 察,可得出化学结构对透气性影响的定性规律。从 下表的数据可知,大的侧基有利于提高自由体积 而使P增加。
膜技术应用
其他膜应用介绍
主讲教师:李祝
推动力
压力差
电位差 浓度差 浓度差 浓度差(分压差) 浓度差+化学反应
膜过程
反渗透 超滤 微滤 纳滤 气体分离 电渗析 渗析 控制释放 渗透蒸发 液膜
应用实例
膜形态
对称
非对称
复合
海水淡化
*
*
超纯水/白蛋白浓缩
*
*
前处理/终端过滤
*
*
医药/啤酒
*
*
气体/蒸汽分离
13
表 某些聚合物材料的氧气透过率
品种 聚乙烯
PO2 ×10-2 /kPa 0.4
聚丙烯
1.63
聚异丁烯
1.3
1, 2—聚丁二烯
9.0
1, 4—聚丁二烯
29.5
3, 4—聚异戊二烯
4.8
1, 4—聚异戊二烯
23.0
品种
Cl CC
CH3 CC
PO2×10-2 /kPa 5.9
7.5
CH3 CC
C5H11
液膜分离
4
新型膜分离技术
5
气体分离膜
1. 气体分离膜的分离机理
分离机理 不同
非多孔均 质膜:溶 解扩散机

多孔膜: 透过扩散
机理
7
(1)非多孔均质膜的溶解扩散机理
该理论认为,气体选择性透过非 多孔均质膜分四步进行:
1
气体与膜接触
3
4度进行活性扩散 2
分子溶解在膜中
19
膜技术-应用于气体分离所面临的问题
相转化法技术发展 CA非对称膜的制备
膜技术的黄金期 反渗透,微滤,超滤
CA反渗透膜 应用于气体分离领域
迟迟难以实现
干燥造成支撑层破裂及表皮层变厚,极大损害膜性能; 干燥成为气体分离应用的瓶颈,膜材料及水结合形式。
20
气体分离膜干燥技术进展-液体萃取法
34
14
2)形态结构的影响
一般情况下,聚合物中无定型区的密度小于晶 区的密度。因此气体透过高聚物膜主要经由无定形 区,而晶区则是不透气的;
聚合物分子链沿拉伸方向取向后,透气性和选 择性均有所下降;
高分子的交联对透气性影响的一般规律是随交 联度的增加,交联点间的尺寸变小,透气性有所下 降。但对尺寸小的分子,如氢气和氦气等,透气性 则下降不大。
8
根据这一机理,研究结论如下:
1) 气体的透过量q与扩散系数D、溶解度系数S 和气体渗透系数成正比。而这些参数与膜材料的性 质直接有关。
2) 在稳态时,气体透过量q与膜面积A和时间t 成 正比。
3) 气体透过量与膜的厚度l成反比。
9
(2)多孔膜的透过扩散机理
用多孔膜分离混合气体,是借助于各种气体 流过膜中细孔时产生的速度差来进行的。
离子交换膜
气体分离 压力差
气体和蒸汽的 扩散渗透
气体或蒸汽
难渗透性气 均相膜、复合 体或蒸汽 膜,非对称膜
渗透蒸发 压力差
选择传递
易渗溶质或溶剂
难渗透性溶 均相膜、复合 质或溶剂 膜,非对称膜
液膜分离 浓度差
反应促进和 扩散传递
杂质
溶剂
乳状液膜、支 撑液膜
4
Contents
1
气体分离膜
2
渗透汽化
3
18
2. 气体分离膜的应用领域
气体分离膜是当前各国均极为重视开发的产品, 已有不少产品用于工业化生产。如美国Du Pont公司 用聚酯类中空纤维制成的H2气体分离膜,对组成为 70%H2,30%CH4,C2H6,C3H8的混合气体进行分 离,可获得含90%H2的分离效果。
此外,富氧膜、分离N2,CO2,SO2,H2S等气 体的膜,都已有工业化的应用。例如从天然气中分 离氮、从合成氨尾气中回收氢、从空气中分离N2或 CO2,从烟道气中分离SO2、从煤气中分离H2S或 CO2等等,均可采用气体分离膜来实现。
压力差 离子大小及电荷
水、一价离子、 多价离子
有机物
复合膜
反渗透 压力差 溶剂的扩散传递
水、溶剂
溶质、盐
非对称性膜复 合膜
3
膜分离技术
续上表
膜过程 推动力
传递机理
透过物
截留物
膜类型
渗析 浓度差 溶质的扩散传递 低分子量物、离子
溶剂
非对称性膜
电渗析 电位差
电解质离子的 选择传递
电解质离子
非电解质, 大分子物质
16
2)O2的分离富集
制备富氧膜的材料主要两类:聚二甲基硅氧烷 (PDMS)及其改性产品和含三甲基硅烷基的高分 子材料。
PDMS是目前工业化应用的气体分离膜中PO2 最 高的膜材料,美中不足的是它有两大缺点:一是分 离的选择性低,二是难以制备超薄膜。
17
此外,富氧膜大部分可作为CO2分离膜使用, 若在膜材料中引入亲CO2的基团,如醚键、苯环 等,可大大提高CO2的透过性。同样,若在膜材料 中引入亲SO2的亚砜基团(如二甲亚砜、环丁砜 等),则能够大大提高SO2分离膜的渗透性能和分 离性能。具有亲水基团的芳香族聚酰亚胺和磺化聚 苯醚等对H2O有较好的分离作用。
15
(2)制备气体分离膜的主要材料
根据不同的分离对象,气体分离膜采用 不同的材料制备。
1)H2的分离
美国Monsanto公司1979年首创Prism中空纤维 复合气体分离膜,主要用于氢气的分离。其材料主 要有醋酸纤维素、聚砜、聚酰亚胺等。其中聚酰亚 胺是近年来新开发的高效氢气分离膜材料。它是由 二联苯四羧酸二酐和芳香族二胺聚合而成的,具有 抗化学腐蚀、耐高温和机械性能高等优点。
传递 机理
分子扩散 表面扩散 毛细管冷凝 分子筛
黏性流
10
流体的流动用努森(Knudsen)系数Kn表示时, 有三种情况:Kn≤1 属粘性流动;Kn≥1 属分子流 动;Kn ≌1 属中间流动。
多孔膜分离混合气体主要发生在Kn≥1时,这 时气体分子之间几乎不发生碰撞,而仅在细孔内壁 间反复碰撞,并呈独立飞行状态。
*
*
*
海水淡化/废水
*
人工肾
*
医用/农药
*
无水乙醇
*
*
*
金属分离/废水
*
*
2
膜分离技术
几种主要分离膜的分离过程
膜过程 推动力
传递机理
透过物
截留物
膜类型
微滤 压力差 颗粒大小形状 水、溶剂溶解物 悬浮物颗粒 纤维多孔膜
超滤
压力差 分子特性大小形状
水、溶剂小分子
胶体和超过 截留分子量
的分子
非对称性膜
纳滤
相关文档
最新文档