2020高二数学下学期期末考试试题

合集下载

遂宁市高二数学下学期期末考试试题理含解析

遂宁市高二数学下学期期末考试试题理含解析
B. 该家庭2019年教育医疗的消费额是2015年教育医疗的消费额的1。5倍
C。 该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的六倍
D。 该家庭2019年生活用品的消费额与2015年生活用品的消费额相当
【答案】C
【解析】
【分析】
先对折线图信息的理解及处理,再结合数据进行简单的合情推理逐一检验即可得解。
A。x-2y—1=0B. 2x+y—2=0
C。x+2y—1=0D。 2x-y—2=0
【答案】A
【解析】
【分析】
线段AB经过抛物线y2=4x焦点,由“阿基米德三角形”的特征可得P点坐标,从而得直线PF的斜率,又PF⊥AB,即得直线AB斜率,由点斜式可求直线AB的方程.
【详解】抛物线y2=4x的焦点F的坐标为(1,0),准线方程为:x=﹣1,
二、填空题(本大题共4小题,每小题5分,共20分。)
13。 抛物线 的焦点坐标是__________.
【答案】
【解析】
【分析】
由抛物线的标准方程,可直接写出其焦点坐标.
【详解】因为抛物线方程为 ,所以焦点在 轴上,且焦点为 。
故答案为
【点睛】本题主要考查由抛物线的方程求焦点坐标的问题,属于基础题型.
14。 在 的展开式中, 的系数为__________________。(用数字作答)
【答案】60。
【解析】
试题分析:因为 ,所以 的系数为
考点:二项式定理
【方法点睛】求二项展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项。可依据条件写出第r+1项,再由特定项的特点求出r值即可.
(2)已知展开式 某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数。

2020-2021学年山东省德州市高二(下)期末数学试卷

2020-2021学年山东省德州市高二(下)期末数学试卷

2020-2021学年山东省德州市高二(下)期末数学试卷试题数:22,总分:1501.(单选题,5分)已知集合A= {x|y=√x−2},B={x|lnx<1},则A∩B=()A.(2,e)B.[2,e)C.(e,+∞)D.∅2.(单选题,5分)命题“∃x>0,xx2+1>0”的否定是()A.∀x>0,xx2+1>0B.∃x>0,xx2+1<0C.∀x>0,xx2+1≤0D.∃x>0,xx2+1≤03.(单选题,5分)已知a>0>b且a2>b2,那么下列不等式中,成立的是()A. 1a <1bB.a3<ab2C.a2b<b3D.a+b<04.(单选题,5分)在等比数列{a n}中,a2,a10是方程x2-6x+4=0的两根,则a3a9a6=()A.2B.-2C.-2或2D.3± √55.(单选题,5分)设函数f(x)= x−1x+1,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+16.(单选题,5分)已知正实数a,b满足a+b=3,则4a +1b的最小值为()A.1B.3C. 32 D.97.(单选题,5分)已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A. f (x )=(12+1e x −1)•sinx B.f (x )=(12+1e x −1)•|cosx | C.f (x )=(12+1e x −1)•cosx D.f (x )=(12+1e x −1)•|sinx |8.(单选题,5分)设f'(x )为奇函数f (x )(x∈R )的导函数,f (-2)=0,当x >0时,xf'(x )-3f (x )<0,则使得f (x )>0成立的x 取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-2,0)∪(2,+∞) C.(-2,0)∪(0,2) D.(-∞,-2)∪(0,2)9.(多选题,5分)已知函数f (x )= {log 2(x −1),x >12x ,x ≤1 ,则下面结论成立的是( )A.f (2)=4B. f (f (32))=12 C.f (f (1))=0 D.若f (a )=2,则a=110.(多选题,5分)已知定义域为R 的奇函数f (x )满足f (x+1)=-f (x ),且f (x )=x 2-x (0<x≤1),则下列结论一定正确的是( ) A. f (232)=−14B.f (-1-x )=f (x )C.函数f (x )的图象关于点(-1,0)对称D.f (x )在区间 (−12,12) 上是单调函数11.(多选题,5分)“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而引人,故又称该数列为“兔子数列”,它在现代物理、准晶体结构、化学.等领域都有直接的应用.斐波那契数列{a n }满足:a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*),记其前n 项和为S n ,则下列结论成立的是( ) A.S 8=54B.a 1+a 3+a 5+a 7+⋯+a 2019=a 2020C.a 2+a 4+a 6+a 8+⋯+a 2020=a 2021D.S 2020+S 2019-S 2018-S 2017=a 202212.(多选题,5分)我们把有限集合A 中的元素个数用card (A )来表示,并规定card (∅)=0,例如A={1,2,3},则card (A )=3.现在,我们定义A*B= {card (A )−card (B ),card (A )≥card (B )card (B )−card (A ),card (A )<card (B ) ,已知集合A={x|e x +x 2-2=0},B={x|(lnx-ax )(x 2-aex+1)=0},且A*B=1,则实数a 不可能在以下哪个范围内( ) A. (−2e ,−1e ) B. (0,1e ) C. (1e ,2e ) D. (2e,+∞)13.(填空题,5分)不等式|2x-1|<a 的解集为(0,1),则方程x 2-(2a-1)x-2=0的两根之和为 ___ .14.(填空题,5分)已知函数f (x )满足 f (x )=f′(π4)cosx −sinx ,则 f′(π4) =___ . 15.(填空题,5分)已知不等式 (4x +y )(1x +a y)≥9 对任意正实数x ,y 恒成立,则正实数a 的取值范围是 ___ .16.(填空题,5分)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为a i ,j ,例如a 3,2=9,a 4,2=15,a 5,4=23,由此可得a 8,5=___ ,若a i ,j =2021,则i-j=___ .17.(问答题,10分)已知集合A= {x|x−32−x >0} ,B={x|2m <x <m+3}. (1)当m=0时,求(∁R A )∩B ;(2)请在 ① 充分不必要条件 ② 必要不充分条件这两个条件中任选一个,补充到下面的问题中,并解决问题.若x∈A 是x∈B 的______条件,试判断m 是否存在,若存在,求出m 的取值范围,若不存在,说明理由.18.(问答题,12分)已知数列{a n }满足a 1=1,a n+1= {a n +2,n 奇数a n +1,n 偶数 .(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前10项和.19.(问答题,12分)已知函数f (x )=x 2e x -ax 2-4ax . (1)若a=0,求y=f (x )在x=1处的切线方程;(2)已知函数y=f (x )在x=1处有极值,求函数的单调递增区间.20.(问答题,12分)科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业2020年最新研发了一款电子设备,通过市场分析,生产此类设备每年需要投人固定成本200万,每生产x (百台)电子设备,需另投人成本R (x )万元,且R (x )= {12x 2+30x +150,(10<x <64)72x +1800x−60−920,(64≤x <120) ,由市场调研可知,每台设备售价0.7万元,且生产的设备当年能全部售完.(1)求出2020年的利润W (x )(万元)关于年产量x (百台)的函数关系式,(利润=销售额一成本);(2)2020年产量为多少百台时,企业所获利润最大?最大利润是多少?21.(问答题,12分)已知数列{a n}的前n项和为S n,且a1=1,a n+1=S n+1.(1)求数列{a n}的通项公式;(2)设b n= a n(S n+2)(S n+1+2),数列{b n}前n项和为T n,求证:T n<16.22.(问答题,12分)已知函数f(x)=lnx+ 2−ax-1-a(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(0,+∞)恒成立,求整数a的最大值.2020-2021学年山东省德州市高二(下)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A= {x|y=√x−2},B={x|lnx<1},则A∩B=()A.(2,e)B.[2,e)C.(e,+∞)D.∅【正确答案】:B【解析】:先利用函数的定义以及指数不等式的解法求出集合A,B,再由集合交集的定义求解即可.【解答】:解:因为A= {x|y=√x−2}={x|x≥2},B={x|lnx<1}={x|0<x<e},所以A∩B={x|2≤x<e}.故选:B.【点评】:本题考查了集合的运算,主要考查了集合交集的求解,解题的关键是掌握交集的定义,属于基础题.2.(单选题,5分)命题“∃x>0,xx2+1>0”的否定是()A.∀x>0,xx2+1>0B.∃x>0,xx2+1<0C.∀x>0,xx2+1≤0D.∃x>0,xx2+1≤0【正确答案】:C【解析】:由含有量词的命题的否定方法:先改变量词,然后再否定结论,求解即可.【解答】:解:由含有量词的命题的否定方法:先改变量词,然后再否定结论,可得命题“∃x>0,xx2+1>0”的否定是“∀x>0,xx2+1≤0”.【点评】:本题考查了含有量词的命题的否定,要掌握其否定方法:先改变量词,然后再否定结论,属于基础题.3.(单选题,5分)已知a>0>b且a2>b2,那么下列不等式中,成立的是()A. 1a <1bB.a3<ab2C.a2b<b3D.a+b<0【正确答案】:C【解析】:A选项,利用a,b的正负判断即可;B、C选项,利用不等式a2>b2两边同乘a,b判断;D选项,利用不等式开方性质判断.【解答】:解:因为a2>b2,所以|a|>|b|,又a>0>b,所以a>-b,即a+b>0,所以D选项错误;A选项:因为a>0>b,所以1a >0>1b,所以A选项错误;B选项:因为a2>b2,a>0,所以a3>ab2,所以B选项错误;C选项:因为a2>b2,b<0,所以a2b<b3,所以C选项正确.故选:C.【点评】:本题考查不等式的基本性质,属于基础题.4.(单选题,5分)在等比数列{a n}中,a2,a10是方程x2-6x+4=0的两根,则a3a9a6=()A.2B.-2C.-2或2D.3± √5【正确答案】:A【解析】:根据一元二次方根跟与系数的关系可得2a10=4,再根据等比数列的性质可得a2a10=a3a9=a 62 =4,从而可得a6=2,所以a3a9a6 = a62a6=a6可求.【解答】:解:由a2,a10是方程x2-6x+4=0的两根,得a2a10=4,又{a n}是等比数列,所以a2a10=a3a9=a 62 =4,解得a6=2或a6=-2(舍去),所以a3a9a6 = a62a6故选:A .【点评】:本题考查等比数列的性质,运用到一元二次方程的根与系数的关系,考查学生逻辑推理和运算求解的能力,属于基础题.5.(单选题,5分)设函数f (x )= x−1x+1 ,则下列函数中为奇函数的是( ) A.f (x-1)-1 B.f (x-1)+1 C.f (x+1)-1 D.f (x+1)+1 【正确答案】:A【解析】:根据题意,先分析f (x )的对称性,结合函数平移变换的规律依次分析选项,判断选项中函数的对称中心,分析可得答案.【解答】:解:根据题意,函数f (x )= x−1x+1 = x+1−2x+1 =- 2x+1+1,则f (x )的图象关于点(-1,1)对称, 依次分析选项:对于A ,f (x-1)-1,由函数f (x )的图象向右平移1个单位,向下平移一个单位得到,即f (x-1)-1的图象关于(0,0)对称,是奇函数,A 正确; 对于B ,f (x-1)+1,由函数f (x )的图象向右平移1个单位,向上平移一个单位得到,即f (x-1)+1的图象关于(0,2)对称,不是奇函数,B 错误; 对于C ,f (x+1)-1,由函数f (x )的图象向左平移1个单位,向下平移一个单位得到,即f (x+1)-1的图象关于(-2,0)对称,不是奇函数,C 错误; 对于D ,f (x+1)+1,由函数f (x )的图象向左平移1个单位,向上平移一个单位得到,即f (x+1)+1的图象关于(-2,2)对称,不是奇函数,D 错误; 故选:A .【点评】:本题考查函数奇偶性的判断以及性质的应用,涉及函数解析式的计算,属于基础题. 6.(单选题,5分)已知正实数a ,b 满足a+b=3,则 4a +1b 的最小值为( ) A.1 B.3 C. 32D.9【正确答案】:B【解析】:由a+b=3可得13(a+b)=1,所以4a+ 1b= 13(a+b)(4a+ 1b)= 13(5+ ab+ 4ba)≥ 13(5+2 √ab•4ba)再进一步分析之后即可得出4a+1b的最小值.【解答】:解:由a+b=3,得13(a+b)=1,又a>0,b>0,所以4a + 1b= 13(a+b)(4a+ 1b)= 13(5+ ab+ 4ba)≥ 13(5+2 √ab•4ba)=3,当且仅当ab = 4ba,a=2b,即a=2、b=1时,等号成立,所以4a+1b的最小值为3.故选:B.【点评】:本题主要考查基本不等式的运用,考查学生的推理论证和运算求解能力,属于基础题.7.(单选题,5分)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A. f(x)=(12+1e x−1)•sinxB. f(x)=(12+1e x−1)•|cosx|C. f(x)=(12+1e x−1)•cosxD. f(x)=(12+1e x−1)•|sinx|【正确答案】:B【解析】:利用f(0)的值排除选项A,D,利用当x∈(π2,3π2)时,f(x)的值排除选项C,即可得到答案.【解答】:解:对于A,当x=0时,f(0)=0,不符合图象,故选项A错误;对于D,当x=0时,f(0)=0,不符合图象,故选项D错误;对于C,当x>0时,e x>1,故1e x−1>0,所以12+1e x−1>0,则当x∈(π2,3π2)时,cosx<0,故f(x)<0,不符合图象,故选项C错误;令g(x)=12+1e x−1,则g(-x)=-g(x),则g(x)为奇函数,又y=|cosx|为偶函数,故函数f(x)为奇函数,有可能是图象的解析式.故选:B.【点评】:本题考查了函数图象的识别,解题的关键是掌握识别图象的方法:可以从定义域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象能力与逻辑推理能力,属于基础题.8.(单选题,5分)设f'(x)为奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-3f(x)<0,则使得f(x)>0成立的x取值范围是()A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(0,2)【正确答案】:D【解析】:构造函数g(x)=f(x)x3,g(x)是偶函数,结合题意可得g(x)在(0,+∞)上单调递减,再结合f(-2)=0,可得g(-2)=g(2)=0,作出g(x)的草图,利用f(x)>0⇔x3g(x)>0⇔xg(x)>0⇔{x>0g(x)>0或{x<0g(x)<0可求得答案.【解答】:解:构造函数g(x)=f(x)x3,定义域为{x|x≠0},因为f(x)是在R上的奇函数,所以f(0)=0,且g(−x)=f(−x)(−x)3=−f(x)−x3=f(x)x3=g(x),所以g(x)是偶函数,g′(x)=xf′(x)−3f(x)x4,当x>0时,因为xf′(x)-3f(x)<0,所以g′(x)<0,g(x)在(0,+∞)上单调递减,又因为g(x)是偶函数,所以g(x)在(-∞,0)上单调递增,因为f(-2)=0,所以g(-2)=0,所以g(2)=0,作出函数g(x)的大致草图,当x=0时,f (x )=0,所以x=0不是不等式f (x )>0的解; 当x≠0时, f (x )>0⇔x 3g (x )>0⇔xg (x )>0⇔{x >0g (x )>0 或 {x <0g (x )<0, 数形结合可得x <-2或0<x <2. 故选:D .【点评】:本题考查函数的奇偶性与单调性综合,考查导数逆运算构造函数解不等式,考查数形结合的数学思想,属于中档题.9.(多选题,5分)已知函数f (x )= {log 2(x −1),x >12x ,x ≤1 ,则下面结论成立的是( )A.f (2)=4B. f (f (32))=12 C.f (f (1))=0 D.若f (a )=2,则a=1 【正确答案】:BC【解析】:由分段函数的解析式,逐个求得函数值,即可得出答案.【解答】:解:对于A :f (2)=log 2(2-1)=0,故A 错误;对于B :f ( 32 )=log 2( 32 -1)=log 2 12 =-1,f (f ( 32 ))=f (-1)=2-1= 12 ,故B 正确; 对于C :f (1)=2,f (f (1))=f (2)=log 2(2-1)=0,故C 正确; 对于D :当a >1时,令f (a )=2, 得log 2(a-1)=2,解得a=5, 当a≤1时,令f (a )=2, 得2a =2,解得a=1,所以a=1或a=5,故D 错误.故选:BC.【点评】:本题考查分段函数,函数值,属于中档题.10.(多选题,5分)已知定义域为R的奇函数f(x)满足f(x+1)=-f(x),且f(x)=x2-x(0<x≤1),则下列结论一定正确的是()A. f(232)=−14B.f(-1-x)=f(x)C.函数f(x)的图象关于点(-1,0)对称D.f(x)在区间(−12,12)上是单调函数【正确答案】:BCD【解析】:根据题意,依次分析选项是否正确,综合可得答案.【解答】:解:根据题意,依次分析选项:对于A,函数f(x)满足f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),函数f(x)是周期为2的周期函数,f(232)=f(12- 12)=f(- 12)=-f(12),而f(12)=- 14,则f(232)=-f(12)= 14,A错误;对于B,f(x)为奇函数,且f(x+1)=-f(x),即f(x)=-f(x+1),则有f(x)=f(-x-1),B正确;对于C,由A的结论,f(x)是周期为2的周期函数,则有f(x-2)=f(x),即f(x-2)=-f (-x),函数f(x)的图象关于点(-1,0)对称,C正确;对于D,在区间(0,12)上,f(x)=x2-x=(x- 12)2- 14,是减函数,且有f(x)<f(0)=0,又由f(x)为奇函数,则在区间(- 12,0)上,f(x)是奇函数且f(x)>f(0)=0,综合可得:f(x)在区间(−12,12)上是单调减函数,D正确;故选:BCD.【点评】:本题考查函数奇偶性的性质以及应用,涉及函数周期性的分析,属于基础题.11.(多选题,5分)“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而引人,故又称该数列为“兔子数列”,它在现代物理、准晶体结构、化学.等领域都有直接的应用.斐波那契数列{a n}满足:a1=1,a2=1,a n=a n-1+a n-2(n≥3,n∈N*),记其前n项和为S n,则下列结论成立的是()A.S8=54B.a1+a3+a5+a7+⋯+a2019=a2020C.a 2+a 4+a 6+a 8+⋯+a 2020=a 2021D.S 2020+S 2019-S 2018-S 2017=a 2022 【正确答案】:ABD【解析】:由a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*)可计算得出a 3,a 4,a 5,a 6,a 7,a 8,直接计算S 8即可;【解答】:解:由a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*)得:a 3=2,a 4=3,a 5=5,a 6=8,a 7=13,a 8=21,于是,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=54,故A 正确;因为a 1+a 3+a 5+a 7+…+a 2019=a 2+(a 4-a 2)+(a 6-a 4)+…+(a 2020-a 2018)=a 2020,故B 正确; 因为a 2+a 4+a 6+a 8+…+a 2020=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2021-a 2019)=a 2021-1,故C 不正确;因为S 2020+S 2019-S 2018-S 2017=a 2019+a 2018+a 2019+a 2020=a 2020+a 2021=a 2022,故D 正确; 故选:ABD .【点评】:本题考查递推数列与数列的前n 项和,考查学生的逻辑思维能力和计算能力,属中档题.12.(多选题,5分)我们把有限集合A 中的元素个数用card (A )来表示,并规定card (∅)=0,例如A={1,2,3},则card (A )=3.现在,我们定义A*B= {card (A )−card (B ),card (A )≥card (B )card (B )−card (A ),card (A )<card (B ) ,已知集合A={x|e x +x 2-2=0},B={x|(lnx-ax )(x 2-aex+1)=0},且A*B=1,则实数a 不可能在以下哪个范围内( ) A. (−2e,−1e) B. (0,1e ) C. (1e ,2e ) D. (2e ,+∞) 【正确答案】:BCD【解析】:数形结合可得card (A )=2,根据题中定义可得card (B )=1或3,设f (x )=lnx x ,g (x )= 1e (x+ 1x),分析可知直线y=a 与函数f (x ),g (x )在(0,+∞)上的图象共有1个或3个交点,数形结合可得实数a 的取值范围,即可得出答案.【解答】:解:对于集合A,由e x+x2-2=0,可得e x=2-x2,作出函数y=e x与函数y=2-x2的图象如下所示:所以函数y=e x与函数y=2-x2的图象有两个公共点,故card(A)=2,因为A*B=|card(A)-card(B)|=1,所以card(B)=1或3,对于集合B,由(lnx-ax)(x2-aex+1)=0,x>0,由lnx-ax=0,可得a= lnxx,由x2-aex+1=0,可得a= 1e (x+ 1x),设f(x)= lnxx ,g(x)= 1e(x+ 1x),则直线y=a与函数f(x),g(x)在(0,+∞)上的图象共有1个或3个交点,f′(x)= 1−lnxx2,当0<x<e时,f′(x)>0,函数f(x)单调递增,当x>e时,f′(x)<0,函数f(x)单调递减,所以f(x)max=f(e)= 1e,当x>1时,f(x)>0,g′(x)= 1e (1- 1x2)= x2−1ex2,当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,所以g(x)min=g(1)= 2e,作出直线y=a与函数f(x),g(x)在(0,+∞)上的图象,如下图所示:由图象可知,当a≤0,a= 1e 或a= 2e时,直线y=a与函数f(x),g(x)在(0,+∞)上的图象共有1个公共点,故选:BCD.【点评】:本题考查导数的综合应用,解题中注意分类讨论思想的应用,属于中档题.13.(填空题,5分)不等式|2x-1|<a的解集为(0,1),则方程x2-(2a-1)x-2=0的两根之和为 ___ .【正确答案】:[1]1【解析】:将不等式|2x-1|<a去绝对值,可得1−a2<x<1+a2,由于不等式的解集为(0,1),求出a,再结合韦达定理,即可求解.【解答】:解:∵|2x-1|<a,∴-a<2x-1<a,即1−a2<x<1+a2,又∵不等式|2x-1|<a的解集为(0,1),∴ 1−a2=0且1+a2=1,解得a=1,设x1,x2为方程x2-(2a-1)x-2=0的两根,∴由韦达定理,可得x1+x2=2a-1=1.故答案为:1.【点评】:本题主要考查绝对值不等式的求解,以及韦达定理的应用,属于基础题.14.(填空题,5分)已知函数f(x)满足f(x)=f′(π4)cosx−sinx,则f′(π4) =___ .【正确答案】:[1]1- √2【解析】:根据三角函数的求导公式求导得出f′(x)=−f′(π4)sinx−cosx,然后将x换上π4即可得出f′(π4)的值.【解答】:解:∵ f′(x)=−f′(π4)sinx−cosx,∴ f′(π4)=−√22f′(π4)−√22,解得f′(π4)=−1√2+1=1−√2.故答案为:1−√2.【点评】:本题考查了三角函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.15.(填空题,5分)已知不等式(4x+y)(1x +ay)≥9对任意正实数x,y恒成立,则正实数a的取值范围是 ___ .【正确答案】:[1][1,+∞)【解析】:由x>0,y>0可得(4x+y)(1x + ay)=4+a+ yx+ 4axy≥4+a+2 √yx•4axy=4+a+4√a,又不等式(4x+y)(1x +ay)≥9对任意正实数x,y恒成立,所以4+a+4 √a≥9,从而解出a的取值范围即可.【解答】:解:由x>0,y>0,得(4x+y)(1x + ay)=4+a+ yx+ 4axy≥4+a+2 √yx•4axy=4+a+4 √a,当且仅当yx = 4axy,即y=2 √a x时等号成立,又不等式(4x+y)(1x+ay)≥9对任意正实数x,y恒成立,所以4+a+4 √a≥9,即a+4 √a -5≥0,解得√a≥1或√a≤-5(舍去),所以a≥1.故答案为:[1,+∞).【点评】:本题主要考查基本不等式的运用,考查学生推理论证和运算求解能力,属于基础题.16.(填空题,5分)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i行,第j列的数记为a i,j,例如a3,2=9,a4,2=15,a5,4=23,由此可得a8,5=___ ,若a i,j=2021,则i-j=___ .【正确答案】:[1]65; [2]20【解析】:根据所给数表得到规律:数表为从1开始的连续奇数蛇形排列形成宝塔形数表,第1组1个奇数,第2组2个奇数…第n 组n 个奇数, 则前n 组共n (n+1)2个奇数,奇数行由大到小排列,偶数行由小到大排列, 第一空:a 8,5代表第八行第5个奇数,由上述规律即可求出答案;第二空:由等差数列的前n 项和公式可得:2021在第n 组中,又2021是从1开始的连续奇数的第1011个奇数,则有 {n (n−1)2<1011n (n+1)2≥1011,解得n=45,即2021在第45组中,由归纳推理可得:前44组共990个数,又第44组中的奇数从右到左,从小到大,则2021为第45组从右到左的第1011-990=21个数,即2021为第45组从左到右的第45-21+1=25个数,得解.【解答】:解:由图表可知:数表为从1开始的连续奇数蛇形排列形成宝塔形数表,第1组1个奇数,第2组2个奇数…第n 组n 个奇数, 则前n 组共n (n+1)2个奇数,奇数行由大到小排列,偶数行由小到大排列, 因为a 8,5代表第八行第5个奇数,而前7组共 7×82=28个数,则第8组的第一个奇数为57,且此行奇数由小到大排列,故第5个奇数为65;设2021在第n 组中,又2021是从1开始的连续奇数的第1011个奇数,则有 {n (n−1)2<1011n (n+1)2≥1011,解得n=45,即2021在第45组中, 则前44组共990个数,又第45组中的奇数从右到左,从小到大,则2021为第45组从右到左的第1011-990=21个数, 即2021为第45组从左到右的第45-21+1=25个数, 即i=45,j=5, 故i-j=45-25=20, 故答案为:65,20.【点评】:本题考查归纳推理,涉及等差数列的前n 项和公式及归纳推理,属中档题. 17.(问答题,10分)已知集合A= {x|x−32−x >0} ,B={x|2m <x <m+3}. (1)当m=0时,求(∁R A )∩B ;(2)请在 ① 充分不必要条件 ② 必要不充分条件这两个条件中任选一个,补充到下面的问题中,并解决问题.若x∈A 是x∈B 的______条件,试判断m 是否存在,若存在,求出m 的取值范围,若不存在,说明理由.【正确答案】:【解析】:(1)当m=0时,求出集合A ,B ,由此能求出C R A∩B .(2)若选条件 ① :x∈A 是x∈B 的充分不必要条件且2m=2与m+3=3不同时成立,由此能求出存在m ,m∈[0,1].若选条件 ② :x∈A 是x∈B 的必要不充分条件,当2m≥m+3,即m≥3时,B=∅,成立.当2m <m+3,即m <3时, {2m ≥2m +3≤3 ,由此能求出结果.【解答】:解:(1)当m=0时,B=(0,3), x−32−x >0 ,等价于(x-2)(x-3)<0, ∴A=(2,3),C R A=(-∞,2]∪[3,+∞), ∴C R A∩B=(0,2]. (2)若选条件 ① :∵x∈A 是x∈B 的充分不必要条件且2m=2与m+3=3不同时成立, 解得0≤m≤1,所以存在m ,m∈[0,1], 若选条件 ② :∵x∈A 是x∈B 的必要不充分条件, 当2m≥m+3,即m≥3时,B=∅,成立.当2m <m+3,即m <3时, {2m ≥2m +3≤3 ,解得m 不存在,∴存在m≥3.【点评】:本题考查补集、交集的求法,考查补集、交集定义等基础知识,考查运算求解能力,是基础题.18.(问答题,12分)已知数列{a n }满足a 1=1,a n+1= {a n +2,n 奇数a n +1,n 偶数 .(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前10项和.【正确答案】:【解析】:(1)直接利用分类法和赋值法的应用求出数列的b 1,b 2的值和数列的通项公式; (2)利用分组法的求和的公式的应用求出结果.【解答】:解:(1)设2n 为偶数,2n+1为奇数, 则a 2n+1=a 2n +1,a 2n+2=a 2n+1+2, ∴a 2n+2=a 2n +3, 即b n+1=b n +3, 且b 1=a 2=a 1+2=3,∴{b n }是以3为首项,3为公差的等差数列, ∴b 1=3,b 2=6,b n =3n .(2)当n 为奇数时,a n =a n+1-2,∴{a n }的前10项和为a 1+a 2+...+a 10=(a 1+a 3+...+a 9)+(a 2+a 4+...+a 10)[(a 2-2)+(a 4-2)+...+(a 10-2)]+(a 2+a 4+...+a 10)=2(a 2+a 4+...+a 10)-10, 由(1)可知,a 2+a 4+...+a 10=b 1+b 2+...+b 5= 3×5+5×42×3 =45,∴{a n }的前10项和为2×45-10=80.【点评】:本题考查的知识要点:数列的通项公式的求法及应用,数列的求和,主要考查学生的运算能力和数学思维能力,属于中档题.19.(问答题,12分)已知函数f (x )=x 2e x -ax 2-4ax . (1)若a=0,求y=f (x )在x=1处的切线方程;(2)已知函数y=f (x )在x=1处有极值,求函数的单调递增区间.【正确答案】:【解析】:(1)当a=0时,f (x )=x 2e x ,求导得f'(x ),由导数的几何意义可得k 切=f′(1),又f (1)=e ,即可得出答案.(2)求导得f'(x )=(x 2+2x )e x -2ax-4a ,若函数y=f (x )在x=1处有极值,则f'(1)=0,解得 a =e2 ,进而可得f (x )的解析式,求导,分析f′(x )>0,即可得出答案.【解答】:解:(1)当a=0时,f (x )=x 2e x ,则f'(x )=(x 2+2x )e x , 因此切线斜率k=f'(1)=3e ,又函数图象过点(1,e ),因此切线方程为y-e=3e (x-1),即y=3ex-2e . (2)f'(x )=(x 2+2x )e x -2ax-4a ,函数y=f (x )在x=1处有极值,则f'(1)=0,解得 a =e 2 ,故f'(x )=(x 2+2x )e x -ex-2e=(x+2)(xe x -e ). 设h (x )=xe x ,h'(x )=(x+1)e x , 可知当时x <-1时,h (x )=xe x 为递减函数, 且h (x )<0;x >-1时,h (x )=xe x 为递增函数, 故x=1为xe x =e 的解,且为唯一的解.因此,f'(x )>0时,即x <-2或x >1时,函数单调递增, 因此,函数的单调递增区间为(-∞,-2)和(1,+∞).【点评】:本题考查导数的综合应用,解题中需要理清思路,属于中档题.20.(问答题,12分)科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业2020年最新研发了一款电子设备,通过市场分析,生产此类设备每年需要投人固定成本200万,每生产x (百台)电子设备,需另投人成本R (x )万元,且R (x )= {12x 2+30x +150,(10<x <64)72x +1800x−60−920,(64≤x <120),由市场调研可知,每台设备售价0.7万元,且生产的设备当年能全部售完.(1)求出2020年的利润W (x )(万元)关于年产量x (百台)的函数关系式,(利润=销售额一成本);(2)2020年产量为多少百台时,企业所获利润最大?最大利润是多少?【正确答案】:【解析】:(1)由题意知销售额为0.7×100x=70x 万元,分两种情况:当10<x <64时,当64≤x <120时,写出W (x )的解析式.(2)分情况:10<x <64,64≤x <120时,求出W (x )的最值,即可得出答案.【解答】:解:(1)由题意知销售额为0.7×100x=70x 万元当10<x <64时, W (x )=70x −(12x 2+30x +150)−200=−12x 2+40x −350 , 当64≤x <120时,W (x )=70x-(72x+ 1800x−60 -920)-200=-2x- 1800x−60 +720,w (x )= {−12x 2+40x −350,(10<x <64)720−2x −1800x−−60,(64≤x <120) . (2)若10<x <64, W (x )=−12(x −40)2+450 ,当x=40时,W (x )max =450万元,若64≤x <120时, W (x )=720−2x −1800x−60 600−2(x −60)−1800x−60 ≤600−2√2(x −60)⋅1800x−60=480 ,当且仅当 2(x −60)=1800x−60 时,即x=90时,W (x )max =480万元.相比较可得,2020年产量为90(百台)时,企业所获利润最大,最大利润是480万元.【点评】:本题考查利用函数知识解决实际问题,属于中档题.21.(问答题,12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n+1=S n +1.(1)求数列{a n }的通项公式;(2)设b n = a n (S n +2)(S n+1+2) ,数列{b n }前n 项和为T n ,求证:T n < 16.【正确答案】:【解析】:(1)由数列的递推式和等比数列的定义、通项公式,可得所求;(2)运用等比数列的求和公式,求得b n=2n−1(2n+1)(2n+1+1)=12(12n+1−12n+1+1),再由数列的裂项相消求和,结合不等式的性质,即可得证.【解答】:解:(1)当n≥2时,a n=S n-1+1,又a n+1=S n+1,两式相减得a n+1-a n=a n,即a n+1=2a n,又a1=1,a2=a1+1=2,a2a1=2,所以数列{a n}是首项为1,公比是2的等比数列,所以a n=2n−1.(2)证明:S n=1+2+22+⋯+2n−1=1−2n1−2=2n−1,因为b n=2n−1(2n+1)(2n+1+1)=12(12n+1−12n+1+1),所以T n=b1+b2+⋯+b n=12(13−122+1+122+1−123+1+⋯+12n+1−12n+1+1)= 12(13−12n+1+1)=16−12⋅12n+1+1,所以T n<16.【点评】:本题考查数列的递推式的运用,以及等比数列的通项公式和求和公式的运用、数列的裂项相消求和,考查转化思想和运算能力,属于中档题.22.(问答题,12分)已知函数f(x)=lnx+ 2−ax-1-a(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(0,+∞)恒成立,求整数a的最大值.【正确答案】:【解析】:(1)求出f(x)的定义域,求出f'(x),通过研究f'(x)的正负,确定函数f (x)的单调性即可;(2)将不等式恒成立转化为a<xlnx+2−xx+1对x∈(0,+∞)恒成立,令g(x)=xlnx+2−xx+1,故a<g(x)min,利用导数以及函数零点的存在性定义,研究函数g(x)的最小值,即可得到a的取值范围,从而得到答案.【解答】:(1)函数f(x)的定义域为(0,+∞).因为f(x)=lnx+2−ax−1−a,所以f′(x)=1x +a−2x2=x+a−2x2.当a-2≥0,即a≥2时,f'(x)>0;当a-2<0,即a<2时,由f'(x)>0,解得x>2-a,令f'(x)<0,解得0<x<2-a,综上可得,当a≥2时,f(x)在(0,+∞)上单调递增;当a<2时,f(x)在(0,2-a)上单调递减,在(2-a,+∞)上单调递增;(2)因为f(x)>0在(0,+∞)恒成立,即lnx+2−ax−1−a>0在(0,+∞)恒成立,所以xlnx+2-x>(1+x)a在(0,+∞)恒成立,所以a<xlnx+2−xx+1对x∈(0,+∞)恒成立,令g(x)=xlnx+2−xx+1,故a<g(x)min,则g′(x)=x+lnx−2(x+1)2,令h(x)=x+lnx-2,则ℎ′(x)=1+1x =x+1x,因为x>0,所以h'(x)>0,则h(x)在(0,+∞)上单调递增,因为h(1)=-1<0,h(2)=ln2>0,所以存在x0∈(1,2)满足h(x0)=0,即x0+lnx0-2=0,当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,所以g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,故g(x)min=g(x0)=x0lnx0+2−x0x0+1=x0(2−x0)+2−x0x0+1=2−x0,所以a<2-x0,因为1<x0<2,a∈Z,所以a的最大值为0.【点评】:本题考查了利用导数研究函数的单调性问题以及不等式恒成立的求解,利用导数研究不等式恒成立问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围,属于难题.。

2020-2021学年辽宁省鞍山市高二下学期期末考试数学试卷(解析版)

2020-2021学年辽宁省鞍山市高二下学期期末考试数学试卷(解析版)

辽宁省鞍山市2020-2021学年高二下学期期末考试数学试卷一、单选题(共8小题,每小题5分,共40分).1.设集合A={x|x>3},B={x|≤0},则(∁R A)∩B=()A.(﹣∞,2] B.[3,5] C.[2,3] D.[3,5)『答案』A『解析』因为集合A={x|x>3},所以∁R A={x|x≤3},又B={x|≤0}={x|x≤2或x>5},故(∁R A)∩B=(﹣∞,2].故选:A.2.若a<b<0,则下列不等式中不能成立的是()A.>B.>C.|a|>|b| D.a2>b2『答案』B『解析』∵a<b<0,f(x)=在(﹣∞,0)单调递减,所以>成立;∵a<b<0,0>a﹣b>a,f(x)=在(﹣∞,0)单调递减,所以<,故B不成立;∵f(x)=|x|在(﹣∞,0)单调递减,所以|a|>|b|成立;∵f(x)=x2在(﹣∞,0)单调递减,所以a2>b2成立;故选:B.3.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为0.25,那么他答对题目的概率为()A.0.625 B.0.75 C.0.5 D.0『答案』A『解析』设“考生答对题目”为事件A,“考生知道正确答案”为事件B,则P(B)=0.5,P(A|B)=1,P(A|)=0.25,P(A)=P(AB)+P(A)==1×0.5+0.25×0.5=0.625.故选:A.4.在(x﹣)5的二项展开式中,x2的系数是()A.8 B.﹣8 C.10 D.﹣10『答案』D『解析』∵(x﹣)5的二项展开式的通项公式为T r+1=•(﹣2)r•x5﹣3r,令5﹣3r=2,求得r=1,可得展开式中x2的系数是﹣10,故选:D.5.疫情期间以网课的方式进行授课,某省级示范中学对在家学习的100名同学每天的学习时间(小时)进行统计,服从正态分布N(9,12),则100名同学中,每天学习时间超过10小时的人数为()(四舍五入保留整数)参考数据:P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9545,P(μ﹣3σ<Z≤μ+3σ)=0.9973.A.15 B.16 C.31 D.32『答案』B『解析』,故所求人数为100×0.1587≈16.故选:B.6.下列说法错误的是()A.“若x≠3,则x2﹣2x﹣3≠0”的逆否命题是“若x2﹣2x﹣3=0,则x=3”B.“∀x∈R,x2﹣2x﹣3≠0”的否定是“∃x0∈R,x02﹣2x0﹣3=0”C.“x>3”是“x2﹣2x﹣3>0”的必要不充分条件D.“x<﹣1或x>3”是“x2﹣2x﹣3>0”的充要条件『答案』C『解析』对于A,“若x≠3,则x2﹣2x﹣3≠0”的逆否命题是“若x2﹣2x﹣3=0,则x=3”,正确;对于B,“∀x∈R,x2﹣2x﹣3≠0”的否定是∃x0∈R,x02﹣2x0﹣3=0”,正确;对于C,“x2﹣2x﹣3>0”等价于“x<﹣1或x>3”,∴“x>3”是“x2﹣2x﹣3>0”的充分不必要条件,错误;对于D,“x<﹣1或x>3”是“x2﹣2x﹣3>0”的充要条件,正确.故选:C.7.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则不成立是()A.d<0 B.a16<0C.S n的最大值是S15D.当且仅当S n<0时,n=32『答案』D『解析』设等差数列{a n}的公差为d,由S10=S20,得10a1+45d=20a1+190d,即2a1+29d =0,又a1>0,所以d<0,故选项A正确;由2a1+29d=0,得a1+14d+a1+15d=0,即a15+a16=0,所以a15>0;a16<0,即{a n}是递减数列,且n≤15时,a n>0;当n≥16时,a n<0,所以选项C正确.因为S31=(a1+a31)=31a16<0,所以选项D错误.故选:D.8.定义在R上的可导函数f(x),当x∈(1,+∞)时,(x﹣1)f′(x)﹣f(x)>0恒成立,a=f(2),b=f(3),c=(+1)f(),则a、b、c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a『答案』A『解析』构造函数g(x)=,当x∈(1,+∞)时,g′(x)=,即函数g(x)单调递增,则a=f(2)==g(2),b=f(3)==g(3),c=(+1)f()==g(),则g()<g(2)<g(3),即c<a<b,故选:A.二、多选题(本大题4小题,每小题5分,共20分。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

温州市2020年高二第二学期数学期末复习检测试题含解析

温州市2020年高二第二学期数学期末复习检测试题含解析

温州市2020年高二第二学期数学期末复习检测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知()22i z i -=(i 为虚单位),则复数z 在复平面上所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】由()22i z i -=得22i z i=-,再利用复数的除法法则将复数z 表示为一般形式,即可得出复数z 所表示的点所在的象限.【详解】 由()22i z i -=得()()()22224224222555i i i i i z i i i i ++====-+--+, 因此,复数z 在复平面上对应的点在第二象限,故选B.【点睛】本题考查复数的几何意义,考查复数对应的点所在的象限,解题的关键就是利用复数的四则运算将复数表示为一般形式,考查计算能力,属于基础题.2.下列命题中,正确的命题是( )A .若1212,0z z C z z ∈->、,则12z z >B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =【答案】C【解析】【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z z z ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确.【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z z z ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误.故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=.3.已知集合{}0,1,2P =,{|2}Q x x =<,则P Q I =( )A .{}0B .{0,1}C .{}1,2D .{0,2} 【答案】B【解析】【分析】利用集合的基本运算定义即可求出答案【详解】已知集合{}0,1,2P =,{|2}Q x x =<,利用集合的基本运算定义即可得:{}0,1P Q ⋂=答案:B【点睛】本题考查集合的基本运算,属于基础题4.现有4种不同品牌的小车各2辆(同一品牌的小车完全相同),计划将其放在4个车库中(每个车库放2辆则恰有2个车库放的是同一品牌的小车的不同放法共有( )A .144种B .108种C .72种D .36种 【答案】C【解析】【分析】根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,②、将取出的2个品牌的小车任意的放进2个车库中,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,分别分析每一步的情况数目,由分步计数原理计算可得答案.【详解】解:根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,有C 42种取法,②、将取出的2个品牌的小车任意的放进2个车库中,有A 42种情况,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,有1种情况,则恰有2个车库放的是同一品牌的小车的不同放法共有C 42A 42×1=72种,故选:C .点睛:能用分步乘法计数原理解决的问题具有以下特点:(1)完成一件事需要经过n 个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.5.在四棱锥P ABCD -中,底面ABCD 是正方形,顶点P 在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为11,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:()3322()a b a b a ab b-=-++) A .2 B .116 C .4 D .113 【答案】B 【解析】【分析】如图所示,设底面正方形ABCD 的中心为'O ,正四棱锥P ABCD -的外接球的球心为O ,半径为R .则在'Rt PO D ∆中,有221112a h +=,再根据体积为4可求3h =及2a =,在'Rt OO D ∆中,有222(3)(2)R R -+=,解出R 后可得正确的选项.【详解】如图所示,设底面正方形ABCD 的中心为'O ,正四棱锥P ABCD -的外接球的球心为O ,半径为R .设底面正方形ABCD 的边长为a ,正四棱锥的高为()*h h ∈N,则2O D '=. 11222112a h ⎛⎫+= ⎪ ⎪⎝⎭221112a h +=……① 又因为正四棱锥的体积为4,所以2143a h =• ……②由①得()22211a h =-,代入②得31160h h -+=,配凑得32711330h h --+=,()2(3)3911(3)0h h h h -++--=,即()2(3)320h h h -+-=,得30h -=或2h +320h -=.因为*h ∈N ,所以3h =,再将3h =代入①中,解得2a =,所以2O D a '==,所以OO PO '='-3PO R =-. 在Rt OO D ∆'中,由勾股定理,得222OO O D OD '+'=,即222(3)R R -+=,解得116R =,所以此球的半径等于116.故选B. 【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.6.若90件产品中有5件次品,现从中任取3件产品,则至少有一件是次品的取法种数是( ). A .55128C CB .12589C C C .339085C C -D .329085C C -【答案】C【解析】【分析】根据题意,用间接法分析:先计算从90件产品中任取3件的取法,再排除其中全部为正品的取法,分析可得答案.【详解】解:根据题意,用间接法分析:从90件产品中任取3件,有390C 种取法,其中没有次品,即全部为正品的取法有385C 种取法, 则至少有一件是次品的取法有339085C C -种;故选:C .【点睛】本题考查排列、组合的应用,注意用间接法分析,避免分类讨论,属于基础题.7.2019年6月7日,是我国的传统节日“端午节”。

山东省济南市2020-2021学年高二下学期期末数学试题

山东省济南市2020-2021学年高二下学期期末数学试题
因为 关于 为正相关,则 ,所以,相关系数 变大,D对.
故选:BCD.
12.ACD
【分析】
由已知得出 ,化简变形后可判断A选项的正误;取 可判断B选项的正误;利用构造函数法证明CD选项中的不等式,可判断CD选项的正误.
【详解】
由 可得 ,可知直线 与函数 在 上的图象有两个交点,
,当 时, ,此时函数 单调递增,
附:若随机变量 ,则 .
A.甲生产线硼硅玻璃膨胀系数范围在 的概率约为0.6827
B.甲生产线所产硼硅玻璃的膨胀系数比乙生产线所产硼硅玻璃的膨胀系数数值更集中
C.若用于疫苗药瓶的硼硅玻璃膨胀系数不能超过5.则乙生产线生产的硼硅玻璃符合标准的概率更大
D.乙生产线所产的砌硅玻璃膨胀系数小于4.5的概率与大于4.8的概率相等
3
5
7
9
6.5
5
4
2.5
得到经验回归方程为 ,则()
A. , B. , C. , D. ,
4.甲、乙、丙、丁、戊五个人站成一排,甲乙不相邻的排列方法有()
A.12种B.48种C.72种D.120种
5.目前国家为进一步优化生育政策,实施一对夫妻可以生育三个子女政策.假定生男孩和生女孩是等可能的,现随机选择一个有三个小孩的家庭,如果已经知道这个家庭有女孩,那么在此条件下该家庭也有男孩的概率是()
12.已知函数 , 为常数,若函数 有两个零点 、 ,则下列说法正确的是()
A. B. C. D.
三、填空题
13.已知随机变量 的分布如下表,则 ______.
0
1
14.为调查某企业年利润 (单位:万元)和它的年研究费用 (单位:万元)的相关性,收集了5组成对数据 ,如下表所示:

2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析

2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析

2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 不等式表示的平面区域在直线的( )A.左上方B.左下方C.右上方D.右下方参考答案:C2. 双曲线两条渐近线互相垂直,那么它的离心率为 -()A. B. C. 2 D.参考答案:A3. 阅读下列程序:输入x;if x<0, then y =;else if x >0, then y =;else y=0;输出y.如果输入x=-2,则输出结果y 为( )A.-5 B.--5 C. 3+ D. 3-参考答案:D4. 焦点为直线-2-4=0与坐标轴的交点的抛物线的标准方程是()(A) =16 (B) =-8 或 =16(C) = 8 (D) =8 或 =-16参考答案:B5. 设R,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B6. 若函数有两个零点,则的取值范围()A. B. C. D.参考答案:A7. 已知定义在R上的奇函数f(x),当x≥0时,f(x)单调递增,若不等式f(﹣4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是()A.(﹣∞,﹣)B.(﹣,0)C.(﹣∞,0)∪(,+∞)D.(﹣∞,﹣)∪(,+∞)参考答案:A8. 已知集合A={3m+2n|m>n且m,n∈N},若将集合A中的数按从小到大排成数列{a n},则有a1=31+2×0=3,a2=32+2×0=9,a3=32+2×1=11,a4=33=27,…,依此类推,将数列依次排成如图所示的三角形数阵,则第六行第三个数为( )a1a2a3a4a5a6…A.247 B.735C.733 D.731参考答案:C该三角形数阵中,每一行所排的数成等差数列,因此前5行已经排了15个数,∴第六行第三个数是数列中的第18项,∵a1=31+2×0=3,a2=32+2×0=9,a3=32+2×1=11,a4=33=27,…∴a18=36+2×2=733,故选C.9. 已知全集,集合,集合,则下图中阴部分所表示的集合是:A. B.C. D.参考答案:A略10. 有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f (x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(x0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确参考答案:A考点:演绎推理的基本方法.专题:计算题;推理和证明.分析:在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.解答:解:大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.点评:本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.二、填空题:本大题共7小题,每小题4分,共28分11. 已知数据a1,a2,…,a n的方差为4,则数据2a1,2a2,…,2a n的方差为.参考答案:16【考点】极差、方差与标准差.【分析】根据数据x1,x2,…,x n的平均数与方差,即可求出数据ax1+b,ax2+b,…,ax n+b的平均数和方差.【解答】解:设数据x1,x2,…,x n的平均数为,方差为s2;则数据ax1+b,ax2+b,…,ax n+b的平均数是a+b,方差为a2s2;当a=2时,数据2a1,2a2,…,2a n的方差为22×4=16.故答案为:16.12. 某处有水龙头3个,调查表明每个水龙头被打开的可能性是0.1,随机变量X表示同时被打开的水龙头的个数,则_______(用数字作答).参考答案:0.027【分析】根据二项分布概率计算公式计算出的值.【详解】由于每个龙头被打开的概率为,根据二项分布概率计算公式有.【点睛】本小题主要考查二项分布的概率计算,考查运算求解能力,属于基础题.13. 设,则。

沈阳市2020年高二下数学期末联考试题含解析

沈阳市2020年高二下数学期末联考试题含解析

沈阳市2020年高二(下)数学期末联考试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.已知函数()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()322f x x x =+,则()2f =( )A .12B .20C .28D .14-2.在掷一枚图钉的随机试验中,令1,0,X ⎧=⎨⎩针尖向上针尖向下,若随机变量X 的分布列如下:X0 1P0.3p则EX =() A .0.21B .0.3C .0.5D .0.73.已知函数()f x 的图象如图,设()f x '是()f x 的导函数,则()A .(2)(3)(3)(2)f f f f <'<-'B .(3)(2)(3)(2)f f f f <'<-'C .(3)(2)(2)(3)f f f f ''-<<D .(3)(3)(2)(2)f f f f <-'<'4.已知复数23()z m m mi m =-+∈R 为纯虚数,则m = A .0B .3C .0或3D .45.已知函数()ln (1)22f x x a x a =+-+-.若不等式()0f x >的解集中整数的个数为3,则a 的取值范围是( ) A .(]1ln3,0-B .(]1ln3,2ln 2-C .(]0,1ln 2-D .(]1ln3,1ln 2--6.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有( )人. (K 2≥k 1) 1.151 1.111 k 1 3.8416.635A .12B .6C .11D .187.已知5(1)(2)x x a ++的展开式中各项系数和为2,则其展开式中含3x 项的系数是( ) A .-40B .-20C .20D .408.某导弹发射的事故率为0.001,若发射10次,记出事故的次数为ξ,则D ξ=( ) A .0.0999B .0.001C .0.01D .0.009999.甲、乙两支球队进行比赛,预定先胜 3局者获得比赛的胜利,比赛随即结束.结束除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.则甲队以3:2获得比赛胜利的概率为( ) A .281B .427C .827D .168110.设集合{}12345U =,,,,,{}123A =,,, {}24B =,,则图中阴影部分所表示的集合是( )A .{}4B .{}24,C .{}45,D .{}1,34,11.下列命题是真命题的为( ) A .若11x y=,则x y = B .若21x =,则1x =C .若x y =,x y =D .若x y <,则22x y <12.已知定义在R 上的偶函数()1cos x kf x ex --=-(其中e 为自然对数的底数),记()20.3a f =,()0.32b f =,()3log 6c f k =+,则a ,b ,c 的大小关系是( )A .a c b <<B .c a b <<C .b c a <<D .b a c <<二、填空题(本题包括4个小题,每小题5分,共20分)13.求函数()xe f x x=的单调增区间是__________.14.江湖传说,蜀中唐门配置的天下第一奇毒“含笑半步癫”是由3种藏红花,2种南海毒蛇和1种西域毒草顺次添加炼制而成,其中藏红花添加顺序不能相邻,同时南海毒蛇的添加顺序也不能相邻,现要研究所有不同添加顺序对药效的影响,则总共要进行__________此实验. 15.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______.16.若函数()2ln 2f x x ax bx a b =-++--有两个极值点12,x x ,其中102a -<<,0b >,且()122x f x x <<,则方程()()2210a f x bf x +-=⎡⎤⎣⎦的实根个数为________个.三、解答题(本题包括6个小题,共70分)17.已知函数()22f x x =+,()1g x x a x =---,a R ∈.(1)若4a =,求不等式()()f x g x >的解集;(2)若对任意12x x R ∈、,不等式()()12f x g x ≥恒成立,求实数a 的取值范围. 18.已知集合A ={}|2,0x x a a -,集合B =22|13x x x -⎧⎫<⎨⎬+⎩⎭. (1)若1a =,求A B ;(2)若A⊂≠B ,求实数a 的取值范围.19.(6分)已知平行四边形ABCD 中,45A ∠=︒,2AD =,2AB =,F 是BC 边上的点,且2BF FC =,若AF 与BD 交于E 点,建立如图所示的直角坐标系.(1)求F 点的坐标; (2)求AF EC ⋅.20.(6分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占55%. 一次购物量 1至3件4至7件 8至11件 12至15件16件及以上 顾客数(人)x27 20 y10 结算时间(min /人) 0.511.522.5(1)确定x ,y 的值,并求顾客一次购物的结算时间的平均值;(2)从收集的结算时间不超过...1min 的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为0.5min 的概率.(注:将频率视为概率)21.(6分)为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工月工资的中位数为39百元(假设这100名农民工的月工资均在[]25,55(百元)内)且月工资收入在[)45,50(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(Ⅰ)求m ,n 的值;(Ⅱ)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名,则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.05 0.01 0.005 0.0010k3.8416.6357.879 10.82822.(8分)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,60B ︒=,三边a ,b ,c 成等比数列,且面积为3{}n a 中,14a =,公差为b . (I )求数列{}n a 的通项公式; (Ⅱ)数列{}n c 满足116n n n c a a +=,设n T 为数列{}n c 的前n 项和,求n T . 参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.A 【解析】 【分析】 先计算出()2f -的值,然后利用奇函数的性质得出()()22f f =--可得出()2f 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高二数学下学期期末考试试题高 二 数 学(理)考试时间:120分钟 试卷满分150分一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个)1. 抛物线的准线方程是( )218y x =-A .B .C .D .132x =-2y =-132y =2y = 2.设命题,则为 ( ) 2:0 , log 23p x x x ∀><+p ⌝ A . B .20 , log 23x x x ∀>+≥20 , log 23x x x ∃><+C .D .20 , log 23x x x ∃>+≥20 , log 23x x x ∀<+≥3. 已知命题;命题若,则.下列命题为真命题的是 ( )2:,10P x R x x $?+?q 22a b <a b <A. B. C. D. p q Ùp q ØÙp q ØÙp q 刎Ù 4. 设函数的导函数为,且,则 ( )()f x ()f x '2()2(1)f x x xf '=+(1)f '-=A .B .C .D .06-3-2-5. 过双曲线C:的右焦点作直线l 交该双曲线于两点,则满足的直线l 有( )2213y x -=B A ,6AB = A. 1条 B. 2条 C. 3条 D.4条6. 函数,,若对, ,()3123f x x x =-+()3xg x m =-[]11,5x ∀∈-[]20,2x ∃∈()()12f x g x ≥,则实数 的最小值是 ( )mA.11B.12C.13D.147.如图,三棱锥的底面 是等腰直角三角形,,侧面与底面垂直,已知其正视图的面积为3,则其侧视图的面积为( )V ABC -ABC AB BC =VACA .B .C .D .2232343243 8.若关于的不等式对任意恒成立,则的取值范围是 ( )x 0x e ax -≥(0,)x ∈+∞aA .B .C .D .[]0,e (,0]-∞[,)e +∞(,]e -∞9.如图,的二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于. 已知,则的长为 ( )060,A B ,AC BD AB 4,6,8AB AC BD ===CDA .B .7C .D .917217 10. 椭圆上的一点关于原点的对称点为,为它的右焦点, 若,则的面积是( )221164x y +=A B F AF BF ⊥AFB ∆A .4 B. 2 C.1 D.311.已知椭圆与双曲线的焦点重合,分别为的离心率,则( )2212:1(1)x C y m m +=>()01:2222>=-n y nx C12,e e 12,C C A. 且 B. 且 m n >121e e >m n >121e e < C. 且 D. 且m n <121e e >m n <121e e <12. 已知函数有两个极值点,则实数a 的取值范围是( )()(ln )f x x x ax =- A. B. C. D. 1(,)2-∞1(0,)2(0,1)(,1)-∞ 二、填空题(本大题共4小题,每小题5分,共20分) 13.复数的共轭复数是__________.()()141i i z i--=+14.由直线,曲线及轴围成的图形的面积是 .01x x ==,x y e =x15. 已知,设函数的图象在点处的切线为,则在轴上的截距为_________________.a R Î()ln f x ax x =-(1,(1))f16.已知抛物线的焦点为,准线与轴的交点为,点在抛物线上,且2:4y x G =F x K P Γ2PK =,则△的面积为________. PKF三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为 极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.xOy l ⎩⎨⎧=-=ty t x 33t x C 03cos 42=+-θρρ (1)求直线的普通方程和曲线的直角坐标方程;l C(2)设点是曲线上的一个动点,求它到直线的距离的取值范围. 18.(本小题满分12分)已知函数.()2f x x a a =-+ (1)当时,求不等式的解集;3a =()6+f x x ≤(2)设函数.,,求的取值范围.()23g x x =-x ∀∈R ()()5f x g x +≥a19.(本小题满分12分)已知命题,命题“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”()21:,2102p x R x m x ∃∈+-+≤:q 222:128x y C m m +=+x :s 22:11x y C m t m t +=--- (1)若“”是真命题,求的取值范围;p q ∧m (2)若是的必要不充分条件,求的取值范围.q s t20.(本小题满分12分)如图,在四棱锥P -ABCD 中,PA ⊥面ABCD ,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =PA =2,E ,F 分别为PB ,AD 的中点.(1) 证明:AC⊥EF;(2)求直线EF 与平面PCD 所成角的正弦值.21.(本小题满分12分)已知椭圆:()经过点,离心率为,点为坐标原点.E O (1)求椭圆的标准方程;E(2)过椭圆的左焦点任作一直线,交椭圆于,两点,求的取值范围.E F l E P Q OP OQ ⋅uu u r uuu r22.(本题满分12分)已知. ()212ln x f x x+=(1)求的单调区间;()f x(2)令,则时有两个不同的根,求的取值范围;()22ln g x ax x =-()1g x =a(3)若存在,且,使成立,求的取值范围.1x ()21,x ∈+∞12x x ≠|ln ln ||)()(|2121x x k x f x f ->-k高二理科数学答案一、选择题1-5 D C B B C 6-10 D B D C A 11-12 A B 二、填空题13、 14、 15、1 16、 2 14i -+1e - 三、解答题17解:(Ⅰ)直线的普通方程为:; (2分)l 0333=+-y x 曲线的直角坐标方程为: (5分)C 1)2(22=+-y x (Ⅱ)设点,则)sin ,cos 2(θθ+P )(R ∈θ所以的取值范围是 (10分) d [1,1]22-+ (注:几何法略)18.解:(1)当时,等价于3a =()6f x ≤233x x --≤当时,解得 ; 当时,解得23≥x ]6,23[∈x 230〈〈x )23,0(∈x 当时,解得 ; 所以解集为. (5分)0≤x {}0∈x {}06x x ≤≤ (2)当时,,x ∈R ()()232f x g x x a a x +=-++-2323x a x a a a ≥-+-+=-+ 所以当时,等价于.① (7分)x ∈R ()()5f x g x +≥35a a -+≥ 当时,①等价于,无解; 5a ≤当时,①等价于,解得, 所以的取值范围是.(10分)[)4,+∞19.(Ⅰ)解:若p 为真,则解得:m ≤-1或m ≥3 2分若q 为真,则解得:-4 < m < -2或m > 4 4分 若“p 且q ”是真命题,则解得:或m > 4 6分∴m 的取值范围是{ m |或m > 4} 7分21(1)4202m ∆=--⨯⨯≥ 228280m m m ⎧>+⎨+>⎩13424m m m m ≤或≥或-⎧⎨-<<->⎩42m -<<- 42m -<<-(Ⅱ)解:若s 为真,则,即t < m < t + 1 8分∵由q 是s 的必要不充分条件∴ 9分即或t≥4 11分 解得:或t≥4∴t 的取值范围是{ t |或t≥4} 12分()(1)0m t m t ---<{|1}{|424}m t m t m m m <<+-<<->或Ü 412t t -⎧⎨+-⎩≥≤ 43t --≤≤ 43t --≤≤20. 解:(1)易知AB ,AD ,A P 两两垂直.如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设AB =t ,则相关各点的坐标为:A(0,0,0),B(t,0,0),C(t,1,0),D(0,2,0),P(0,0,2),E(,0,1),F(0,1,0).从而=(-,1,-1),=(t,1,0),=(-t,2,0).因为AC ⊥BD ,所以·=-t2+2+0=0.解得t =或t =-(舍去). (3分)于是=(-,1,-1),=(,1,0).因为·=-1+1+0=0,所以⊥,即AC ⊥EF. (5分) (2) 由(1)知,=(,1,-2),=(0,2,-2). 设n =(x ,y ,z)是平面PCD 的一个法向量,则⎩⎨⎧2x +y -2z =02y -2z =0令z =,则n =(1,,). (10分) 设直线EF 与平面PCD 所成角为θ,则sinθ=|cos <n ,>|=.即直线EF 与平面PCD 所成角的正弦值为. (12分)21.解:(1)因为,所以,从而,222253144415a b b a ⎧+=⎪⎪⎨⎪-=⎪⎩1a b ⎧=⎪⎨=⎪⎩2c = 椭圆的方程为. (4分)E 2215x y +=(2),当直线的斜率不存在时,可得,,()2,0F -l 2,5P ⎛- ⎝⎭2,5Q ⎛-- ⎝⎭ 此时; (5分)119455OP OQ ⋅=-=uu u r uuu r当直线的斜率存在时,设:,,,l l ()2y k x =+()11,P x y ()22,Q x y联立与,可得,()2y k x =+2215x y +=()222215202050k x k x k +++-=所以,, (7分)21222015k x x k +=-+212220515k x x k-=+ 1212OP OQ x x y y ⋅=+u u u r u u u r()()2221212124k x x k x x k =++++,所以()222205115k OP OQ k k -⋅=+⋅++uu u r uuu r 2222202415k k k k ⎛⎫⋅-+ ⎪+⎝⎭2224419519515515k k k-==-++, (10分) 因为,,所以,从而,20k ≥2511k +≥2444450515k -≤-<+1955OP OQ -≤⋅<uu u r uuu r综上可得的取值范围是. (12分)OP OQ ⋅uu u r uuu r 195,5⎡⎤-⎢⎥⎣⎦22.解:(1).令得,()34ln xf x x -'=()0f x '=1x = ()0,1x ∈时,,单调递增;()0f x '>()f x ()1,x ∈+∞时,,单调递减.()0f x '<()f x综上,单调递增区间为,单调递减区间为. (3分)()f x ()0,1()1,+∞ (2)①当时,,单调递减,故不可能有两个根,舍去0≤a ()'0g x <②当时, 时,,单调递减,0>a x ⎛∈⎝()'0g x <()f xx ⎫∈+∞⎪⎪⎭时,,单调递增.所以得.()'0g x >()fx 1g <01a << 综上, (7分) (注:可利用第(1)问结论用分离参数法)01a << (3)不妨设,由(1)知时,单调递减.121x x >>()1,x ∈+∞()f x()()1212ln ln f x f x k x x -≥-,等价于()()()2112ln ln f x f x k x x -≥-即()()2211ln ln f x k x f x k x +≥+存在,且,使成立1x ()21,x ∈+∞12x x ≠()()2211ln ln f x k x f x k x +≥+ 令,在存在减区间()()ln h x f x k x =+()h x ()1,+∞()234ln 0kx xh x x -'=<有解,即有解,即24ln x k x <2max4ln x k x ⎛⎫< ⎪⎝⎭ 令,,时,,单调递增,()24ln xt x x=()()3412ln x t x x-'=(x ∈()0f x '>()f x)x ∈+∞时,,单调递减,,. (12分) ()0f x '<()f x 2max 4ln 2x x e⎛⎫= ⎪⎝⎭∴2k e <。

相关文档
最新文档