2018年11月1日绵阳市高中2016级第一次诊断性考试理科数学试题及参考答案及评分标准
2019届绵阳高三数学一诊理数试卷(含答案)

保密*启用前【考试时间:2018年I I月1日15:00—17:00】
绵阳市高中2016级第一次诊断性考试
数学.(理工类)
本试卷分第1卷(选择题)和第II卷(非选择题).第I卷1至2页,第II卷3至4页.共4页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将答题卡交回.
第I卷(选择题,共60分)
注意事项:
必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑.
第1卷共12小题
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只
有一个是符合题目要求的.
l.设集合A={-1,O, 1, 2}, 集合B={y ly=2x }, 则AnB=
A.{O, l}
B.{l, 2}
C.{O, l, 2}
2.已知向量a=(l,2), b=(x, 1), 若a.lb,则x=
A.2
B.-2
C.I
3.若点P(-3,4)是角a的终边上一点,则sin2a=
A.24. "
25B.7
25
4.若a,bER, 且a>I b I, 则
A. a<-b
B.a>b c. 16
25
C.a2<b2
D.(0, +oo)
D.一1
D.-8
I I
D.一>一
b
5.已知命题p:3xoER, 使得lgcosx。
>0;命题q:Vx < 0 ,J'> 0,则下列命题为真命题的是
A.pAq
B.pV (-,q)
C.(-,p)A (-,q)
D.pVq
数学(理工类)试题第1页(共4页)。
绵阳市2018高三第一次考试数学试题(理工类)参考答案

绵阳市2015级高三第一次考试数学试题(理工类)参考答案10.【解析】画出图形如下图所示,由图可知1160,45C DC BCB ∠=∠=,故可设11,CB CC CD ===,所求异面直线所成的角的大小等于1ABC ∠,在三角形1ABC 中, 11AB AC B C ==弦定理得1cos AB C ∠11.解析 画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b .∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25.∵3<c <4,∴21<-(c -5)2+25<24,即21<abcd <24,故选B .12.解析:因为函数()2y f x =+是偶函数,所以()()22f x f x +=-+,即()()4f x f x +=-. 当[)2,0x ∈-时,(]2,0∈-x ax x x f x f x f ---=--=+-=)ln()()4()(.()11x 0ax f a x x +=--=-=',有()12,0x a=-∈-,函数()y f x =在⎪⎭⎫⎢⎣⎡--a 1,2函数单减,在(1,0)a -单调递增.()11113min f x f ln lna a a ⎛⎫=-=-+=+= ⎪⎝⎭,解得2a e =.二、填空题13.),0()0,1(+∞⋃- 14.3 15.⎥⎦⎤⎢⎣⎡1,43 16.116解析:由题设()()212222122221212121,,,,,,x x e e k x e x e kx y l e x B ex A x x x x x x ====----可得则易知的方程为直线--由题设1ln ln ln ),ln ,(),ln ,(212121212211=-=--=x x x xx x x x k x x D x x C CD则三、解答题 17:解: 由题知[]1:21)(32)(2-≤=+-=a x f a x ax x x f 由数形结合知上单调递增,,在,的对称轴为-命题44016:2<<<-=∆a a q -得错误!未找到引用源。
四川省绵阳市2016届高三上学期第一次诊断性考试数学文试题Word版含答案

绵阳市高中2016届高三第一次(11月)诊断性考试数学文试题本试卷分第I 卷(选择题)和第II 卷(非选择题).第I 卷.1至2页,第II 卷2至4 页.共4页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在 本试题卷、草稿纸上答题无效.考试结束后,将答题卡交回. 第I 卷(选择题,共50分) 注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第I 卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一个是符合题目要求的.1.集合S={3,4, 5},T ={4,7,8},则S U T = (A){4} (B){3,5,7,8} (C) {3,4, 5,7,8} (D) {3,4, 4, 5, 7, 8}2.命题“2000,23x N x x ∃∈+≥”的否定为(A) 2000,23x N x x ∃∈+< (B) 2,23x N x x ∀∈+<(C) 2000,23x N x x ∃∈+≤ (D) 2,23x N x x ∀∈+≤3.己知幂函数过点(2),则当x=8时的函数值是(A )±(B )2 (C ) (D )644.若,,a b c ∈R,且0abc ≠,己知P :,,a b c 成等比数列;Q: P 是Q 的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5.下列四个函数中,最小正周期为π,且关于直线x =一512π对称的函数是 (A )sin()23x y π=+(B )sin()23x y π=-(C )sin(2)3y x π=-(D )sin(2)3y x π=+6.在等差数列{n a }中,若a 4+a 9+a l4=36,则10112a a -=(A )6 (B )12 (C )24 (D )367.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,若22,sin c b A B =+=,则cosC =(A )2 (B )4 (C )一2 (D )一48.若实数x ,y 满足不等式组024010x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,则x y +的最大值为(A )1 (B )2 (C )3 (D )49.设函数y =f (x ),x ∈R 满足f (x +l )=f (x 一l ),且当x ∈(-1,1]时,f (x )=1一x 2,函数g (x )=lg ||,01,0x x x ≠⎧⎨=⎩,则h (x )=f (x )一g (x )在区间[-6,9]内的零点个数是(A )12 (B )13 (C )14 (D )15 10.直角△ABC 的三个顶点都在单位圆221x y +=上,点M (12,12),则|MA MB MC ++|的最大值是(A+l (B+2 (C)2+1 (D)2+2第II 卷(非选择题共100分) 注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答.作图题可 先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效. 第II 卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分, 11、·函数()f x =的定义域为12,式子0tan 20tan 4020tan 40+的值是 .13·已知函数266,2(),2x x x x f x a a x ⎧-+-≤⎪=⎨->⎪⎩其中a >0,1a ≠,若对任意的1212,,x x R x x ∈≠,恒有1212[()()]()f x f x x x -->0,则实数a 的取值范围 .14.已知,a b 满足212log log 1a b -=,则(12)(1)a b ++的最小值为 .1 5.设集合M 是实数集R 的一个子集,如果点0x ∈R 满足:对任意ε>0,都存在x ∈M , 使得0<0||x x ε-<;,称x 0为集合M 的一个“聚点”.若有集合:①有理数集; ②无理数 ③sin|*1n N n π⎧⎫∈⎨⎬+⎩⎭ ④|*1n N n π⎧⎫∈⎨⎬+⎩⎭其中以0为“聚点”的集合是 .(写出所有符合题意的结论序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤. 16.(本小题满分12分)已知向量(cos ,1sin ),(cos ,sin )()m n R ααααα=-=-∈ (1)若m n ⊥,求角α的值; (2)若||3m n -=,求cos2α的值.17、(本小题满分12分)已知数列{n a }的首项a 1=1,且a n+1=2a n +1(*)n N ∈(1)证明数列{n a +1}是等比数列,并求数列{n a }的通项公式; (2)记1n n nb a =+,求数列{n b }的前n 项和Sn18.(本小题满分12分)某民营企业家去年为西部山区80名贫困大学生捐资奖学金共50万元妥该企业家计划 从今年起(今年为第一年)10年内每年捐资总金额都比上一年增加10万元,资助的 贫困大学生每年净增a 人。
2018届绵阳一诊理科-数学一诊试卷+答案

2018年四川省绵阳市高考数学一诊试卷及答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}2.(5分)若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<13.(5分)已知向量,,若,则x的值是()A.﹣1 B.0 C.1 D.24.(5分)若,则tan2α=()A.﹣3 B.3 C.D.5.(5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.166.(5分)已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b ﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q7.(5分)函数f(x)满足f(x+2)=f(x),且当﹣1≤x≤1时,f(x)=|x|.若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为()A.(4,5) B.(4,6) C.{5}D.{6}8.(5分)已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是()A.x=0 B.C.D.9.(5分)在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(5分)已知0<a<b<1,给出以下结论:①;②;③.则其中正确的结论个数是()A.3个 B.2个 C.1个 D.0个11.(5分)已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣112.(5分)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知变量x,y满足约束条件,则z=2x+y的最小值是.14.(5分)已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是.15.(5分)在△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,则=.16.(5分)已知数列{a n}的首项a1=m,且a n+1+a n=2n+1,如果{a n}是单调递增数列,则实数m的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)若函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求函数f(x)的解析式;(2)设,且,求sin2α的值.18.(12分)设公差大于0的等差数列{a n}的前n项和为S n,已知S3=15,且a1,a4,a13成等比数列,记数列的前n项和为T n.(Ⅰ)求T n;(Ⅱ)若对于任意的n∈N*,tT n<a n+11恒成立,求实数t的取值范围.19.(12分)在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;(2)若,求△ABC的面积.20.(12分)已知函数f(x)=x3+x2﹣x+a(a∈R).(1)求f(x)在区间[﹣1,2]上的最值;(2)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围.21.(12分)函数f(x)=﹣lnx+2+(a﹣1)x﹣2(a∈R).(1)求f(x)的单调区间;(2)若a>0,求证:f(x)≥﹣.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)设,,若l1,l2与曲线C分别交于异于原点的A,B 两点,求△AOB的面积..[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|2x+3|.(1)解不等式f(x)≥6;(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.2018年四川省绵阳市高考数学一诊试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}【解答】解:集合A={x∈Z|(x﹣4)(x+1)<0}={x∈Z|﹣1<x<4}={0,1,2,3},B={2,3,4},则A∩B={2,3},故选:D2.(5分)若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<1【解答】解:∵x>y,且x+y=2,∴x>2﹣x,∴x>1,故x2>1正确,故选:C3.(5分)已知向量,,若,则x的值是()A.﹣1 B.0 C.1 D.2【解答】解:根据题意,向量,,若,则有2x=(x﹣1),解可得x=﹣1,故选:A.4.(5分)若,则tan2α=()A.﹣3 B.3 C.D.【解答】解:∵=,可求tanα=﹣3,∴tan2α===.故选:D.5.(5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.16【解答】解:设该职工这个月实际用水为x立方米,∵每位职工每月用水不超过10立方米的,按每立方米3元水费收费,∴用水不超过10立方米的缴水费不超过30元,∵该职工这个月缴水费55元,∴该职工这个月实际用水超过10立方米,超过部分的水费=(x﹣10)×5,∴由题意可列出一元一次方程式:30+(x﹣10)×5=55,解得:x=15,故选:C.6.(5分)已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b ﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q【解答】解:由指数函数的值域为(0,+∞)可得:命题p:∃x0∈R,使得e x0≤0为假命题,若|a﹣1|=|b﹣2|,则a﹣1=b﹣2或a﹣1=﹣b+2即a﹣b=﹣1,或a+b=3,故命题q为假命题,故¬q为真命题;p∨q,p∧q为假命题,故选:B7.(5分)函数f(x)满足f(x+2)=f(x),且当﹣1≤x≤1时,f(x)=|x|.若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为()A.(4,5) B.(4,6) C.{5}D.{6}【解答】解:因为f(x+2)=f(x),所以f(x)的周期为2,在x∈[﹣1,1]时,f(x)=|x|.画出函数f(x)与g(x)=log a x的图象如下图所示;若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则函数g(x)=log a x的图象过(5,1)点,即a=5,故选:C8.(5分)已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是()A.x=0 B.C.D.【解答】解:∵函数f(x)=sinϖx+cosϖx=2sin(ωx+)(ϖ>0)图象的最高点与相邻最低点的距离是,∴设函数f(x)的周期为T,则()2+[2﹣(﹣2)]2=()2,解得:T=2,∴T=2=,解得:ω=π,∴f(x)=2sin(πx+),∴y=g(x)=f(x﹣)=2sin[π(x﹣)+]=2sin(πx+),∵令πx+=kπ+,k∈Z,解得:x=k+,k∈Z,∴当k=0时,函数y=g(x)图象的一条对称轴方程是:x=.故选:C.9.(5分)在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:“C=”⇔“A+B=”⇔“A=﹣B”⇒sinA=cosB,反之sinA=cosB,A+B=,或A=+B,“C=”不一定成立,∴A+B=是sinA=cosB成立的充分不必要条件,故选:A.10.(5分)已知0<a<b<1,给出以下结论:①;②;③.则其中正确的结论个数是()A.3个 B.2个 C.1个 D.0个【解答】解:∵0<a<b<1,故y=为减函数,y=x a在(0,+∞)上为增函数,故,即①正确;y=b x为减函数,y=在(0,+∞)上为增函数,,即②错误;y=log a x与在(0,+∞)上均为减函数,故,.即③正确;故选:B11.(5分)已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣1【解答】解:∵f′(x)=1﹣=,∴当﹣2<x<﹣1时,f′(x)<0,当x>﹣1时,f′(x)>0,∴当x=﹣1时,f(x)取得最小值f(﹣1)=0,∴f(x)只有唯一一个零点x=﹣1,即x1=﹣1,∵|x1﹣x2|≤1,∴﹣2≤x2≤0,∴g(x)在[﹣2,0]上有零点,(1)若△=4a2﹣4(4a+4)=0,即a=2±2,此时g(x)的零点为x=a,显然当a=2﹣2符合题意;(2)若△=4a2﹣4(4a+4)>0,即a<2﹣2或a>2+2,①若g(x)在[﹣2,0]上只有一个零点,则g(﹣2)g(0)≤0,∴a=﹣1,②若g(x)在[﹣2,0]上有两个零点,则,解得﹣1≤a<2﹣2.综上,a的最小值为﹣1.故选:D.12.(5分)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B.C.D.【解答】解:∵函数f(x)=ax+bcosx+csinx,b2+c2=1,∴f′(x)=a+ccosx﹣bsinx=a﹣sin(x﹣φ),其中tanφ=,则f′(x)∈[a﹣1,a+1],若存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则存在k1,k2∈[a﹣1,a+1],使k1k2=﹣1,由(a﹣1)(a+1)=a2﹣1≥﹣1得:a=0,则a+c=c=sin(φ+θ),其中tanθ=,故a+c∈[﹣,],故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知变量x,y满足约束条件,则z=2x+y的最小值是3.【解答】解:作出约束条件对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.由,解得A(1,1),代入目标函数z=2x+y得z=2×1+1=3.即目标函数z=2x+y的最小值为3.故答案为:3.14.(5分)已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是(﹣,).【解答】解:根据题意,f(x)为偶函数,则(2x+1)=f(|2x+1|),又由f(x)在[0,+∞)上单调递增,且f(2)=1,则f(2x+1)<1⇒f(|2x+1|)<f(2)⇒|2x+1|<2,解可得﹣<x<;则x的取值范围是(﹣,);故答案为:(﹣,).15.(5分)在△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,则=.【解答】解:根据题意,如图△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,有=+=+=+(﹣)=+,=+=+=+(﹣)=+,则=(+)•(+)=2+2+•=;即=;故答案为:.16.(5分)已知数列{a n}的首项a1=m,且a n+1+a n=2n+1,如果{a n}是单调递增数列,则实数m的取值范围是(,).【解答】解:根据题意,数列{a n}中,a n+1+a n=2n+1,对其变形可得[a n+1﹣(n+1)]+(a n﹣n)=0,即a n+1﹣(n+1)=﹣(a n﹣n),又由a1=m,则a1﹣1=m﹣1,当m=1时,a n﹣n=0,则a n=n,符合题意,当m≠1时,数列{a n﹣n}是以m﹣1为首项,公比为﹣1的等比数列,则a n﹣n=(m﹣1)×(﹣1)n,即a n=(m﹣1)×(﹣1)n+n,则a n﹣1=(m﹣1)×(﹣1)n﹣1+n﹣1,当n为偶数时,a n﹣a n﹣1=2(m﹣1)+1,①当n为奇数时,a n﹣a n﹣1=﹣2(m﹣1)+1,②如果{a n}是单调递增数列,则有,解可得<m<,即m的取值范围是(,)∪(1,);故答案为:(,).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)若函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求函数f(x)的解析式;(2)设,且,求sin2α的值.【解答】解:(1)由图得,A=2.…(1分),解得T=π,于是由T=,得ω=2.…(3分)∵,即,∴,k∈Z,即,k∈Z,又,所以,即.…(6分)(2)由已知,即,因为,所以,∴.…(8分)∴===.…(12分)18.(12分)设公差大于0的等差数列{a n}的前n项和为S n,已知S3=15,且a1,a4,a13成等比数列,记数列的前n项和为T n.(Ⅰ)求T n;(Ⅱ)若对于任意的n∈N*,tT n<a n+11恒成立,求实数t的取值范围.【解答】解:(Ⅰ)设{a n}的公差为d(d>0),由S3=15有3a1+=15,化简得a1+d=5,①…(2分)又∵a1,a4,a13成等比数列,∴a42=a1a13,即(a1+3d)2=a1(a1+12d),化简得3d=2a1,②…(4分)联立①②解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1.…(5分)∴,∴.…(7分)(Ⅱ)∵tT n<a n+11,即,∴,…(9分)又≥6,当且仅当n=3时,等号成立,∴≥162,…(11分)∴t<162.…(12分)19.(12分)在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;(2)若,求△ABC的面积.【解答】解:(1)△ABD中,由正弦定理,得,∴,∴.(2)由(1)知,∠BAD=∠BDA=,故AB=BD=2.在△ACD中,由余弦定理:AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,整理得CD2+6CD﹣40=0,解得CD=﹣10(舍去),CD=4,∴BC=BD+CD=4+2=6.=.∴S△ABC20.(12分)已知函数f(x)=x3+x2﹣x+a(a∈R).(1)求f(x)在区间[﹣1,2]上的最值;(2)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围.【解答】解:(1)f'(x)=3x2+2x﹣1=(3x﹣1)(x+1),…(1分)由f'(x)>0解得或x<﹣1;由f'(x)<0解得,又x∈[﹣1,2],于是f(x)在上单调递减,在上单调递增.…(3分)∵,∴f(x)最大值是10+a,最小值是.…(5分)(2)设切点Q(x,x3+x2﹣x+a),P(1,4),则,整理得2x3﹣2x2﹣2x+5﹣a=0,…(7分)由题知此方程应有3个解.令μ(x)=2x3﹣2x2﹣2x+5﹣a,∴μ'(x)=6x2﹣4x﹣2=2(3x+1)(x﹣1),由μ'(x)>0解得x>1或,由μ'(x)<0解得,即函数μ(x)在,(1,+∞)上单调递增,在上单调递减.…(10分)要使得μ(x)=0有3个根,则,且μ(1)<0,解得,即a的取值范围为.…(12分)21.(12分)函数f(x)=﹣lnx+2+(a﹣1)x﹣2(a∈R).(1)求f(x)的单调区间;(2)若a>0,求证:f(x)≥﹣.【解答】解:(1).…(1分)①当a≤0时,f'(x)<0,则f(x)在(0,+∞)上单调递减;…(3分)②当a>0时,由f'(x)>0解得,由f'(x)<0解得.即f(x)在上单调递减;f(x)在上单调递增;综上,a≤0时,f(x)的单调递减区间是(0,+∞);a>0时,f(x)的单调递减区间是,f(x)的单调递增区间是.…(5分)(2)由(1)知f(x)在上单调递减;f(x)在上单调递增,则.…(6分)要证f(x)≥,即证≥,即lna+≥0,即证lna≥.…(8分)构造函数,则,由μ'(a)>0解得a>1,由μ'(a)<0解得0<a<1,即μ(a)在(0,1)上单调递减;μ(a)在(1,+∞)上单调递增;∴,即≥0成立.从而f(x)≥成立.…(12分)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)设,,若l1,l2与曲线C分别交于异于原点的A,B 两点,求△AOB的面积.【解答】解:(1)∵曲线C的参数方程是(α为参数),∴将C的参数方程化为普通方程为(x﹣3)2+(y﹣4)2=25,即x2+y2﹣6x﹣8y=0.…(2分)∴C的极坐标方程为ρ=6cosθ+8sinθ.…(4分)(2)把代入ρ=6cosθ+8sinθ,得,∴.…(6分)把代入ρ=6cosθ+8sinθ,得,∴.…(8分)∴S△===.…AOB(10分).[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|2x+3|.(1)解不等式f(x)≥6;(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.【解答】解:(1)当x≤时,f(x)=﹣2﹣4x,由f(x)≥6解得x≤﹣2,综合得x≤﹣2,…(2分)当时,f(x)=4,显然f(x)≥6不成立,…(3分)当x≥时,f(x)=4x+2,由f(x)≥6,解得x≥1,综合得x≥1,…(4分)所以f(x)≥6的解集是(﹣∞,﹣2]∪[1,+∞).…(5分)(2)f(x)=|2x﹣1|+|2x+3|≥|(2x﹣1)﹣(2x+3)|=4,即f(x)的最小值m=4.…(7分)∵a•2b≤,…(8分)由2ab+a+2b=4可得4﹣(a+2b)≤,解得a+2b≥,∴a+2b的最小值为.…(10分)。
四川省绵阳市2016届高三上学期第一次诊断性考试数学理试题 Word版含答案

绵阳市高中2016届高三第一次(11月)诊断性考试数学理试题本试卷分第I 卷(选择题)和第II 卷(非选择题).第I 卷.1至2页,第II 卷2至4 页.共4页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在 本试题卷、草稿纸上答题无效.考试结束后,将答题卡交回. 第I 卷(选择题,共50分) 注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第I 卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一个是符合题目要求的.1.集合S={x ||x-4|<2,x ∈N *},T ={4,7,8},则S U T =(A){4} (B){3,5,7,8} (C) {3, 4, 5,7,8} (D) {3,4, 4, 5, 7, 8} 2.命题“2000,23x N x x ∃∈+≥”的否定为(A) 2000,23x N x x ∃∈+≤ (B) 2,23x N x x ∀∈+≤ (C) 2000,23x N x x ∃∈+< (D) 2,23x N x x ∀∈+<3.己知幂函数过点(2,则当x=8时的函数值是(A )(B )±(C )2 (D )644.若,,a b c ∈R,己知P :,,a b c 成等比数列;Q: P 是Q 的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5.下列四个函数中,最小正周期为π,且关于直线x =一512π对称的函数是 (A )sin()23x y π=+(B )sin()23x y π=- (C )sin(2)3y x π=-(D )sin(2)3y x π=+6.在等差数列{n a }中,若a 4+a 9+a l4=36,则101112a a -=(A )3 (B )6 (C )12 (D )247.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,若22,sin c b A B ==, 则cosC =(A )2 (B )4 (C )一2 (D )一48.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m=(A )一1 (B )12(C )l (D )2 9.设函数y =f (x ),x ∈R 满足f (x +l )=f (x 一l ),且当x ∈(-1,1]时,f (x )=1一x 2,函数g (x )=lg ||,01,0x x x ≠⎧⎨=⎩,则h (x )=f (x )一g (x )在区间[-6,9]内的零点个数是(A )15 (B )14 (C )13.(D )1210.直角△ABC 的三个顶点都在单位圆221x y +=上,点M (12,12),则|MA MB MC ++|的最大值是(Al (B2 (C1 (D2第II 卷(非选择题共100分) 注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答.作图题可 先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效. 第II 卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分, 11、·函数()f x =的定义域为12,式子0000tan 20tan 4020tan 40+的值是 .13·已知函数266,2(),2x x x x f x a a x ⎧-+-≤⎪=⎨->⎪⎩其中a >0,1a ≠,若对任意的1212,,x x R x x ∈≠,恒有1212[()()]()f x f x x x -->0,则实数a 的取值范围 .14.二次函数2()f x ax =+2bx+c 的导函数为'()f x ,已知'(0)0f >,且对任意实数x ,有()0f x ≥,则(1)'(0)f f 的最小值为 . 1 5.设集合M 是实数集R 的一个子集,如果点0x ∈R 满足:对任意ε>0,都存在x ∈M , 使得0<0||x x ε-<;,称x 0为集合M 的一个“聚点”.若有集合:①有理数集; ②cos|*1n N n π⎧⎫∈⎨⎬+⎩⎭③sin|*1n N n π⎧⎫∈⎨⎬+⎩⎭ ④|*1n N n π⎧⎫∈⎨⎬+⎩⎭其中以0为“聚点”的集合是 .(写出所有符合题意的结论序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤. 16.(本小题满分12分)已知向量(cos ,1sin ),(cos ,sin )()m n R ααααα=-=-∈(1)若m n ⊥,求角α的值;(2)若||m n -=cos2α的值.17、(本小题满分12分)已知数列{n a }的首项a 1=1,且a n+1=2a n +(*,)n N R λλ∈∈(1)试问数列{n a +λ}是否为等比数列?若是,请求出数列{n a }的通项公式;若不是, 请说,明理由; (2)当λ=1时,记1n n nb a =+,求数列{n b }的前n 项和Sn18.(本小题满分12分)某民营企业家去年为西部山区80名贫困大学生捐资奖学金共50万元妥该企业家计划 从今年起(今年为第一年)10年内每年捐资总金额都比上一年增加10万元,资助的 贫困大学生每年净增a 人。
四川省绵阳市高中2018级第一次诊断性考试理科数学(含答案)

1秘密★启用前【考试时间: 2020年11月1日15: 00— 17: 00】四川省绵阳市高中2018级第一次诊断性考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题 答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后, 将答题卡交回。
一 、 选择题:本大题共12小题, 每小题5分,共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1. 已知A = {x |0< x <2}, B = {x |x (l −x )≥0}, 则A B =A.∅B.(−∞,1]C. [l, 2)D.(0,1]2. 下列函数中,既是奇函数又是增函数的是A.y =tan xB.y =ln xC.y =x 3D.y =x 23. 若log a b > 1, 其中a >0且a ≠1, b >1, 则A.0<a <l<bB.1<a <bC.1<b <aD.1<b <a 24. 函数ππ()sin()24f x x =+的图象的一条对称轴是A.x =−3B. x =0C.x=π2D. x=32−5. 函数2()ln ||f x x x x=+的大致图象是6. 已知命题p : 在△ABC 中,若cos A =cos B , 则A =B ;命题q : 向量a 与向量b相等的充要条件2是|a |=| b |且a //b .下列四个命题是真命题的是 A.p ∧(⌝q )B. (⌝p ) ∧(⌝q )C.(⌝p )∧qD. p ∧q7.若曲线y =(0, −1)处的切线与曲线y =ln x 在点 P 处的切线垂直,则点 P 的坐标为A.(e,1)B.(1,0)C. (2, ln2)D. 1(,ln 2)2−8. 已知菱形ABCD 的对角线 相交于点O , 点E 为AO 的中 点, 若AB =2, ∠BAD =60°,则AB DE ⋅= A.−2B. 12−C. 72−D. 129. 若a <b < 0, 则下列不等式中成立的是A. 11a b a<− B. 11a b b a+>+C.11b b a a −<−D. (1)(1)a b a b −>−10. 某城市要在广场中央的圆形地面设计 一块浮雕,彰显城市积极向上的活力.某公司设计方案如图, 等腰△PMN 的顶点P 在半径为20m 的大⊙O 上, 点M , N 在半径为10m 的小⊙O 上, 圆心O 与点P 都在弦MN 的同侧. 设弦MN 与对应劣弧所围成的弓形面积为S , △OPM 与△OPN 的面积之和为S 1,∠MON =2α, 当S 1−S 的值最大时,该设计方案最美, 则此时cos α= A. 12C.11. 数列{a n }满足21121n n n a a a ++=−,2411,59a a ==,数列{b n }的前n 项和为S n ,若b n =a n a n +1,则使不等式427n S >成立的n 的最小值为 A. 11B. 12C. 13D. 1412. 若1823,23a b +==,则以下 结论正确的有 ①b −a <1 ②112a b+> ③34ab > ④22b a > A.1个B.2个C.3个D.4个二、填空题:本大题共4小题, 每小题5分, 共20分.313. 已知向量a =(l, 0), b =(l, 1), 且a +λb 与a 垂直,则实数λ= .14. 若实数x ,y 满足0,,22,x x y x y ≥⎧⎪≤⎨⎪+≥⎩则z =2x +y 的最大值为 .15. 已知sin x +cos y =14, 则sin x −sin 2y 的最大值为 .16. 若函数f (x )=(x 2 +ax +2a )e x 在区间(−2, 1)上恰有一个极值点,则实数a 的取值范围为 .三、解答题:共70分。
四川省绵阳市级高三数学第一次诊断性考试试题 理
秘密★启用前【考试时间:2020年11月1日15: 00—17: 00】绵阳市高中2018级第一次诊断性考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知^={x|0<x<2}, B={x|x(l-x)^0},则=6.己知命题在ZUBC中,若cos^=cosB,贝ij A=B;命题向量a与向量ft相等的充要条件是I a I =丨6 I且allb.下列四个命题是真命题的是A. p A(—iq)B. (—>p)八(一>q)C. (-ip)D. p/\q7.若曲线y = ->/7+T在点(0, -1)处的切线与曲线y = \nx在点P处的切线垂直,则点P 的坐标为A. (e,1)B. (1, 0)C. (2, ln2)D.(去,-ln2)8.己知菱形ABCD的对角线相交于点0,点五为的中点,若AB=2, ZBAD=60°,9.若a<ZK0,则下列不等式中成立的是A 1 1A. --------- >—a-b aB. a + — >b + —b ac.a a-\ D. (l-a)a>(l-Z>)hA. 0B. (-oo,l]C. [1, 2)D. (0, 1]2.下列函数中,既是奇函数又是增函数的是A. y=tanxB.尸lnxC. y=x3D. y=x23.若log fl> 1,其中a>0且a关1,b>l,则A. Q<a<KbB. l<a<bC. l<b<aD. l<b<a24.函数/(x) = sin(^x + ^)的图象的一条对称轴是7T 3A. x=~3B. x=0C. x=—D. x=—2 2 10.某城市要在广场中央的圆形地面设计一块浮雕,彰显城市积极向上的活力.某公司设计方案如图,等腰八_的顶点P 在半径为20m的大OO上,点M,#在半径为10m的小0(9 上,圆心(9与点P都在弦胃的同侧.设弦胃与对应劣弧所围成的弓形面积为51,zxa™■与△cvw的面积之和为及,ZMON= 2a,当Si-S的值最大时,该设计方案最美,则此时cosa=11.数列{a M}满足~~~ = ~- — ~,a2=与,a4=^,数列{bn}的前n项和为S…,若b…= a n a n+x,a n+2 a n+\ a n 5 712 1 - 2 D.A4则使不等式S n> —成立的n的最小值为A. 11B. 12C. 13D. 1412.若2fl+1=3, 2b=-,3则以下结论正确的有① Z>~a<l;②丄+丄>2;3③ ab> — \④ b2>2aa b4A. 1个B. 2个C. 3个D. 4个理科数学试题第2页(共4页)理科数学试题第1页(共4页)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a=(l,0), Z>=(1,1),且与a垂直,则实数又=.x 多0,14.若实数%,少满足、则z=2x+y的最大值为.x + 2^2y,15.已知sinx+cos尸1,则sinx-sin2^的最大值为.416.若函数/(x) = (jc2+ax + 2a)e x在区间(_2,1)上恰有一个极值点,则实数a的取值范围为二.三、解答题:共70分。
2018年11月1日绵阳市高中2016级第一次诊断性考试物理参考答案及评分标准
绵阳市高2016级第一次诊断考试物理学科参考答案和评分意见二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.C 15. B 16. B 17. D 18.AD 19.BC 20.AD 21.AC三、非选择题:本卷包括必考题和选考题两部分。
22.(6分)(1)A(2分);(2)ℎx1(2分);(3)反复左右移动矩形垫,直到打出的纸带上任意相邻两点间的距离相等;多次测量矩形垫高度h和O与A点间距离x1,取平均值;等。
(2分。
要求是实验操作过程中的做法;提高测量的准确度或让木块在斜面上做匀速运动的做法;一条即给2分)。
23.(9分)(1)0.845(2分);(5)3.52 (2分) ;367.81(2分);4.57×10-4(3分)。
24.(12分)解:(1)设小物体从A到C的过程中加速度大小为a,时间为t,则F−μmg=ma(2分)L=12at2(2分)解得a=3m/s2;t=2s (2分)(2)设撤去拉力时,小物体的速度为v,撤去拉力后,小物体加速度大小为a1,运动时间为t1,克服摩擦力做功为W,平均功率为P,则v=at(2分)μmg=ma1,v=a1t1(1分)−W=0−12mv2(1分)P=Wt1(1分)解得a1=2m/s2,t1=3s;P=12W (1分)25.(20分)解:(1)滑块从A运动到B的过程中,有E P=12mυB2+mgx sin37°(2分)−(mg sin37°+μmg cos37°)L=0−12mv B2(2分)解得v B=6m/s;E p=10.5 J (2分)(2)由于v B<v1,小滑块滑上传送带后相对传送带向下滑动,又由于mg sin37°=μmg cos37°,所以,小滑块相对地面做匀速直线运动,设经过时间t1运动到C处,在时间t1内传送带上任意一点的路程为x1,则L=v B t1(2分)x1=v1t1(2分)Q1=μmg cos37°(x1−L)(2分)解得t1=0.25 s,x1=2.5 m。
绵阳市高中2016 级第一次诊断性考试理科数学答案
当 a ≤ 0 时, f (x) 0 , f ( x) 在 R 上单调递增;................................................. 2 分 当 a >0 时,由 f (x) 0 解得 x >ln a ,由 f (x) 0 解得 x <ln a............................ 4 分 综上所述:当 a≤0 时,函数 f ( x) 在 R 上单调递增; 当 a >0 时,函数 f ( x) 在 (ln a ,) 上单调递增, 函数 f ( x) 在 (,ln a) 上单调递减............................. 5 分 (Ⅱ)由(Ⅰ)知,当 a≤0 时,函数 f ( x) 在 R 上单调递增, ∴ 函数 f ( x) 在[1,2]上的最小值为 f(1)=e-a+3=4, 即 a e 1 >0 ,矛盾 .................................................................................................... 6 分 当 a>0 时, 由(Ⅰ)得 x=lna 是函数 f ( x) 在 R 上的极小值点. ① 当 lna≤1 即 0<a≤e 时,函数 f ( x) 在[1,2]上单调递增, 则函数 f ( x) 的最小值为 f (1)= e - a +3=4 ,即 a = e - 1 ,符合条件..................... 7 分 ②当 lna≥2 即 a≥e2 时,函数 f ( x) 在[1,2]上单调递减, 则函数 f ( x) 的最小值为 f (2)= e 2 - 2 a +3=4 即 a
2016届绵阳一诊数学试题及答案
绵阳市高2013级第一次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CBCBD BACCC二、填空题:本大题共5小题,每小题5分,共25分.11.[)∞+,10 12.3 13.a ≥2 14.7 15.②③三、解答题:本大题共6小题,共75分.16.解 :(1)∵ m ⊥n ,∴ m ·n =(cos α,1-sin α)·(-cos α,sin α)=0,即—cos 2α+sin α-sin 2α=0. ……………………………………………………3分由sin 2α+cos 2α=1,解得sin α=1,∴ 22ππα+=k ,k ∈Z 。
…………………………………………………………6分 (2) ∵ m —n =(2cos α,1-2sin α),∴ |m -n |=22)sin 21()cos 2(αα-+αααsin 41)sin (cos 422-++=αsin 45-=, ………………………………………………………9分∴ 5—4sin α=3,即得21sin =α, ∴ 21sin 212cos 2=-=αα. ……………………………………………………12分 17.解:(1)由已知a n +1=2a n +1,可得a n +1+1=2(a n +1).∴ 2111=+++n n a a (常数).………………………………………………………3分 此时,数列}1{+n a 是以211=+a 为首项,2为公比的等比数列,∴ n n n a 22211=⋅=+-,于是a n =2n-1. ………………………………………6分 (2)∵nn n b 2=.…………………………………………………………………7分 ∴ n n n S 2232221321++++= , 两边同乘以21,得,2232221211432+++++=n n n S 两式相减得 12221212121+-+++=n n n n S 12211)211(21+---=n n n 12211+--=n n n , ∴n n n n S 22121--=-.…………………………………………………………12分 18.解:(1)设第n 年的受捐贫困生的人数为a n ,捐资总额为b n .则a n =80+(n -1)a ,b n =50+(n —1)×10=40+10n . ……………………………2分∴ 当a =10时,a n =10n +70,∴ 8.01040+n b n ,解得:n >8. ……………………………………………………………………5分即从第9年起每年的受捐大学生人均获得的奖学金才能超过0.8万元. …6分(2)由题意:nn n n a b a b >++11(n >1), 即an n na n )1(80104080)1(1040-++>+++,………………………………………………8分 整理得 (5+n )[80+(n -1)a ]—(4+n )(80+na )〉0,即400+5na -5a +80n +n 2a —na —320-4na -80n —n 2a >0,化简得80-5a 〉0,解得a <16,……………………………………………………………………11分∴ 要使人均奖学金年年有增加,资助的大学生每年净增人数不超过15人.……………………………………………12分19.解:(1)在Rt △ABC 中,AC =AB cos60º=3216=⨯,231==AB AD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(理工类)参考答案及评分意见第1页(共6页)绵阳市高中2016级第一次诊断性考试数学(理工类)参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.BBABD CBDAD CC二、填空题:本大题共4小题,每小题5分,共20分.13.7 14.-7 15.216.32-三、解答题:本大题共6小题,共70分.17.解:(Ⅰ)设等差数列{a n }的公差为d (d >0),由a 4=7,得a 1+3d =7,① ……………………………………………………2分 又∵ a 2,a 6-2a 1,a 14是等比数列{b n }的前三项,∴ (a 6-2a 1)2=a 2a 14,即(5d -a 1)2=(a 1+d )(a 1+13d ),化简得d =2a 1,② ……………………………4分 联立①②解得a 1=1,d =2.∴ a n =1+2(n -1)=2n -1. ………………………………………………………6分 (Ⅱ)∵ b 1=a 2=3,b 2=a 6-2a 1=9,b 3=a 14=27是等比数列{b n }的前三项, ……………………………………………………8分 ∴ 等比数列{b n }的公比为3,首项为3.∴ 等比数列{b n }的前n 项和S n =3(13)13n −−=3(31)2n −. ……………………10分 由S n >39,得3(31)2n −>39,化简得3n >27. 解得n >3,n ∈N *. …………………………………………………………12分18.解:(Ⅰ)2())4cos 3f x x x π=−+=2cos cos2sin )33x x ππ−+2(1+cos2x ) ………………2分=32cos222x x −+2cos2x +2=12+cos22x x +2数学(理工类)参考答案及评分意见第2页(共6页) =sin(2)26x π++, ……………………………………………4分 由题意得()sin[2()]2266g x x ππ=−++−, 化简得g (x )=sin(2)6x π−. ……………………………………………………6分 (Ⅱ)由6π≤x ≤23π,可得6π≤2x -6π≤76π. 当2π≤2x -6π≤76π即3π≤x ≤23π时,函数()g x 单调递减. ∴ ()g x 在2[]63ππ,上的单调递减区间为2[]33ππ,. ………………………9分 ∵ ()g x 在[]63ππ,上单调递增,在2[]33ππ,上单调递减, ∴ ()g x ma x =()3g π=sin 12π=. 又2()3g π=7sin 6π=sin (+6ππ)=-1sin 62π=−<()6g π=1sin 62π=, ∴ 12−≤()g x ≤1, 即()g x 在2[]63ππ,上的值域为1[1]2−,.……………………………………12分 19.解 :(Ⅰ)∵ 2c sin B =3a tan A ,∴ 2c sin B cos A =3a sin A .由正弦定理得2cb cos A =3a 2, ………………………………………………2分由余弦定理得2cb •222+2b c a bc−=3a 2,化简得b 2+c 2=4a 2, ∴ 2224b c a+=. ………………………………………………………………5分 (Ⅱ)∵ a =2,由(Ⅰ)知b 2+c 2=4a 2=16,∴由余弦定理得cos A =222+2b c a bc −=6bc, …………………………………6分 根据重要不等式有b 2+c 2≥2bc ,即8≥bc ,当且仅当b =c 时“=”成立,数学(理工类)参考答案及评分意见第3页(共6页)∴ cos A ≥68=34.………………………………………………………………8分 由cos A =6bc,得bc =6cos A ,且A ∈(0)2π,, ∴ △ABC 的面积S =12bc sin A =12×6cos A ×sin A =3tan A . ………………10分 ∵ 1+tan 2A =1+22sin cos A A =222cos sin cos A A A +=21cos A , ∴ tan A=≤∴ S =3tan A≤∴ △ABC 的面积S的最大值为. ……………………………………12分20.解:(Ⅰ)()x f x e a '=−.当a ≤0时,()0f x '>,()f x 在R 上单调递增; …………………………2分 当a >0时,由()0f x '>解得x >ln a ,由()0f x '<解得x <ln a . ……………4分 综上所述:当a ≤0时,函数()f x 在R 上单调递增;当a >0时,函数()f x 在(ln )a +∞,上单调递增,函数()f x 在(ln )a −∞,上单调递减. ………………5分(Ⅱ)由(Ⅰ)知,当a ≤0时,函数()f x 在R 上单调递增,∴ 函数()f x 在[1,2]上的最小值为f (1)=e -a +3=4,即1a e =−>0,矛盾. …………………………………………………………6分 当a >0时, 由(Ⅰ)得x =ln a 是函数()f x 在R 上的极小值点.① 当ln a ≤1即0<a ≤e 时,函数()f x 在[1,2]上单调递增,则函数()f x 的最小值为f (1)=e -a +3=4,即a =e -1,符合条件. …………7分 ②当ln a ≥2即a ≥e 2时,函数()f x 在[1,2]上单调递减,则函数()f x 的最小值为f (2)=e 2-2a +3=4即212e a −=<e 2,矛盾.…………8分 ③当1<ln a <2即e <a <e 2时,函数()f x 在[1,ln a ]上单调递减,函数()f x 在[ln a ,2]上单调递增,则函数()f x 的最小值为f (ln a )=e ln a -a ln a +3=4即a -a ln a -1=0.数学(理工类)参考答案及评分意见第4页(共6页)令h (a )=a -a ln a -1(e <a <e 2), 则()ln h a a '=−<0,∴ h (a )在(e ,e 2)上单调递减,而h (e )=-1,∴ h (a )在(e ,e 2)上没有零点,即当e <a <e 2时,方程a -a ln a -1=0无解.综上,实数a 的值为e -1. …………………………………………………12分21.解:(Ⅰ))(x f 的定义域为(0,+∞).当a =e -1时,()f x =ln x -e x +(e -1)x -e +1,则()f x '=1x-e x +e -1, 令1()()1x h x f x e e x '==−+−,则21()0x h x e x '=−−<.………………………2分 即()f x '在(0+)∞,上单调递减,又(1)0f '=,故(01)x ∈,时,()f x '>0,)(x f 在(0,1)上单调递增,(1+)x ∈∞,时,)(x f '<0,)(x f 在(1+)∞,上单调递减.所以函数()f x 有极大值f (1)=-e ,无极小值. ………………………………4分 (Ⅱ)由()f x '=1x -e x +a ,令g (x )=()f x '=1x -e x +a , 则21()x g x e x '=−−<0,所以g (x )在(0+)∞,上单调递减, 即)(x f '在(0+)∞,上单调递减.又0x →时,()f x '→+∞;x →+∞时,()f x '→−∞,故存在0x ∈(0+)∞,使得0()f x '=01x 0x e −+a =0. ……………………………6分 当x ∈(0,x 0)时,)(x f '>0,f (x )在(0,x 0)上单调递增,x ∈(x 0,+∞)时,)(x f '<0,f (x )在(x 0,+∞)上单调递减.又()f x =0有唯一解, 则必有0000()ln 0x f x x e ax a =−+−=. 由0000010ln 0x x e a x x e ax a ⎧−+=⎪⎨⎪−+−=⎩,, 消去a 得000001ln (1)()0x x x e x e x −+−−=.数学(理工类)参考答案及评分意见第5页(共6页) 令1()ln (1)()x x x x e x e x ϕ=−+−−=1ln 2+1x x x e xe x−+−,……………………8分 则211()2x x x x e e xe x xϕ'=−++− 21=(1)x x x e x −+− =21(1)()x x e x −+. 故当x ∈(0,1)时,)(x ϕ'<0,)(x f 在(0,1)上单调递减,当x ∈(1,+∞)时,)(x ϕ'>0,)(x f 在(1,+∞)上单调递增.…………10分 由1(1)0(2)ln 202e ϕϕ=−<=−+>,, 得存在0(1,2)x ∈,使得0()0x ϕ=即0()0f x =.又关于x 的方程()f x =0有唯一解x 0,且*0(1)x n n n ∈+∈N ,,,∴ 0(12)x ∈,.故n =1. ………………………………………………………………………12分22.解:(Ⅰ)将t =2y 代入x=3+,整理得30x −= , 所以直线l的普通方程为30x −=. …………………………………2分 由4cos ρθ=得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入24cos ρρθ=,得2240x y x +−=,即曲线C 的直角坐标方程为22(2)4x y −+=. ……………………………5分 (Ⅱ)设A ,B 的参数分别为t 1,t 2.将直线l 的参数方程代入曲线C 的直角坐标方程得221(32)()42t −+=,化简得230t −=,由韦达定理得12t t +=于是122P t t t +== ………………………………………………………6分数学(理工类)参考答案及评分意见第6页(共6页) 设P (x 0,y 0),则0093(41(2x y ⎧=+=⎪⎪⎨⎪=⨯=⎪⎩,即P (94,. ……………………………………………………………8分 所以点P 到原点O的距离为2=. ……………………10分 23.解:(Ⅰ)当x ≤12−时,)(x f =-2x -1+(x -1)=-x -2, 由)(x f ≥2解得x ≤-4,综合得x ≤-4; ……………………………………2分 当112x −<<时,)(x f =(2x +1)+(x -1)=3x , 由)(x f ≥2解得x ≥23,综合得23≤x <1; …………………………………3分 当x ≥1时,)(x f =(2x +1)-(x -1)=x +2,由)(x f ≥2解得x ≥0,综合得x ≥1. ………………………………………4分所以)(x f ≥2的解集是2(4][+)3−∞−∞,,. ………………………………5分 (Ⅱ)∵ )(x f =|2x+1|-|x -m |≥|x -3|的解集包含[3,4],∴ 当x ∈[3,4]时,|2x+1|-|x -m |≥|x -3|恒成立. …………………………7分 原式可变为2x+1-|x -m |≥x -3即|x -m |≤x +4, ……………………………8分 ∴ -x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10]. ………………………………………………10分。