旋转变换中的全等与相似
专题三全等变换(旋转)相似变换的应用

专题三全等变换(旋转)相似变换的应用。
例:如图,在△ABE中,BE=2,AE=2,以AB为边向形外作正方形ABCD,连接DE,则DE的最大值为题型举例1、如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______2、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,L的最小值是.3、(2015四月考题)已知⊙O为Rt△的外接圆,点D在边AC上,AD=AO,点F在边BC上,2,OF=3,求⊙O的BF=BO,若OD=2直径。
归纳:旋转(全等)变换的一般题目背景是:旋转(全等)变换得到的效果86,∠练1如图,已知△ABC为正三角形,P为三形内一点且∠APB=0BPC=0124.PC=2,PA=7,PB=15,正方形的边长为4,练2如图,P为正方形ABCD内一点,已知∠PAB=∠PBA=0则△ADP的面积是120,P为△ABC 练3如图,O为锐角三角形ABC内的点,且∠AOB=∠BOC=∠COA=0内任意一点,试证明:OC≥++OB+OAPA+PCPB2,PC=4,则△ABC的边长是练4如图,P是等边ABC内的一个点,PA=2,PB=3________练5如图,在△ABC中,∠ACB=090,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,则∠BPC的度数是.练6如图,四边形ABCD中,∠BAD=∠BCD=090,AB=AD,若四边形ABCD的面积是24cm2.则AC长是练7如图,在△ABC中,∠B=2∠C,已知AB=2,BC=14,则BC=练8如图,在△ABC中,∠ACB=090,DE∥AB分别交AC、BC于D、E两点。
F、G 分别为DE、AB的中点,则FG=练9如图,在△ABC中,∠ACB=090,AD=BC,CD=BE,则∠BOE=练10△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.。
全等旋转类

旋转类全等中考剖析课程结构一、几何变换——共顶点旋转等边三角形共顶点共顶点等腰直角三角形以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化。
证明的基本思想“SAS”。
二、旋转变换的性质:(1)对应线段相等,对应角相等(2)对应点位置的排列次序相同(3)任意两条对应线段所在直线的夹角都等于旋转角θ.三、利用旋转思想构造辅助线(1)根据相等的边先找出被旋转的三角形(2)根据对应边找出旋转角度,画出旋转三角模块一简单类旋转与全等【例1】D是等腰Rt ABC∆内一点,BC是斜边,如果将ABD∆绕点A逆时针方向旋转到'ACD∆的位置,旋转的度数是( )A.25︒B.30︒C.35︒D.90︒D'DCBA例题精讲【巩固】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到P BA '∆,则PBP '∠的度数是( ) A .45︒ B .60︒ C .90︒ D .120︒P 'ABCP【巩固】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少?B'A'CBA【例2】 如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形'''AB C D ,如果22CD DA ==,那么'CC =_________.D'C'B'D CB A【巩固】如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 顺时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______,APB ∠= .P'PCB A模块二 旋转中的基本模型【例3】 如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后得到ABE ∆,如果4AF =,7AB =. ⑴指出旋转中心和旋转角度; ⑵求DE 的长度.A BCD EF【巩固】⑴如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.⑵如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.图1ABCDEO 图2ABCDEO【例4】 在等腰Rt ABC △的斜边AB 上取两点M N 、,使45MCN ∠=︒,若3AM =,4BN =,求ABC △的面积.NMCBA【例5】 等腰直角三角形ABC ,902ABC AB O ∠=︒=,,为AC 中点,45EOF ∠=︒,求△B E F的周长. OFE CBA【巩固】如图,将ABC △绕顶点B 按顺时针方向旋转60︒,得到DBE △,连接AD DC 、,若30DCB ∠=︒,123AB BC CD ===,,,求ACEDCBA【例6】 如图,ABC ∆和ADE ∆都是等腰直角三角形,点M 为EC 的中点,求证:BMD ∆为等腰直角三角形.MDECBA【巩固】已知:在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连结EC ,取EC 的中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明;(2)如果将图①中的△ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.【巩固】取一副三角板按图①拼,固定三角板ADC ,将三角板ABC 绕点A 依顺时针方向旋转一个大小为α的角()045α︒<︒≤得到ABC '∆,如图所示.试问:⑴当α为多少度时,能使得图②中AB DC ∥?⑵连结BD ,当045α︒<︒≤时,探寻DBC CAC BDC ''∠+∠+∠值的大小变化情况,并给出你的证明.ABCDABCDC'图2图1图②M DB ACE 图①M D B ACE【例7】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:(1)AN BM =(2)CD CE =(3)CF 平分AFB ∠(4)CDE △是等边三角形.M D NEC BFA【巩固】如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E是BM 中点,求证:CDE ∆是等边三角形.M DNECBA【例8】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OB ECF A【巩固】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.APMCQ B【例9】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA【例10】 如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =MHGFECB A本课易错点反思1、等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA2、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE CG =;(2)CG AE ⊥.G FE DCBA课后作业3、已知:△ABC 和△ADE 均为等腰直角三角形, ∠ABC =∠ADE =90︒, AB = BC ,AD =DE ,按图1放置,使点E 在BC 上,取CE 的中点F ,联结DF 、BF . (1)探索DF 、BF 的数量关系和位置关系,并证明;(2)将图1中△ADE 绕A 点顺时针旋转45︒,再联结CE ,取CE 的中点F (如图2),问(1)中的结论是否仍然成立?证明你的结论;(3)将图1中△ADE 绕A 点转动任意角度(旋转角在0︒到90︒之间),再联结CE ,取CE 的中点F (如图3),问(1)中的结论是否仍然成立?证明你的结论图1FE D CBA图2ABCD E FFEDCBA图34、在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且︒=∠60MDN ,︒=∠120BDC ,CD BD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边ABC ∆的周长L 的关系.N M DCBANM DCBANMD CBA图(1) 图(2) 图(3)⑴如图①,当点M ,N 在边AB ,AC 上,且DM=DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN=x ,则Q=_________(用x ,L 表示)。
【中考专项】2023年中考数学转向练习之选择题04 几何变换之旋转问题

【选择题】必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
0,2,点B是x轴正半轴上的一点,将线段AB绕点A 【2022·江苏苏州·中考母题】如图,点A的坐标为()m,则m的值为()按逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A B C D.3【考点分析】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.【思路分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得=,即可解得BD OB mm =. 【2022·江苏扬州·中考母题】如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 【考点分析】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.【思路分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【2020·江苏宿迁·中考母题】如图,在平面直角坐标系中,Q 是直线y=﹣12x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )A B C D 【考点分析】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.【思路分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.1.(2022·江苏·九年级专题练习)如图将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,点B 恰好落在A ’B ’上,若∠A =25°,∠BCA ’=45°,则∠A ’CA = ( )A.30°B.35°C.40°D.45°2.(2022·江苏泰州·九年级专题练习)在正方形ABCD中,AB=8,若点E在对角线AC上运动,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①222=+,②EF=,③线段PF的最小值是CFE的面积最大是16.其中EF AE CE正确的是()A.①②④B.②③④C.①②③D.①③④3.(2022·江苏苏州·一模)如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,DE和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.64.(2022·江苏徐州·二模)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A B C .D .45.(2022·江苏盐城·一模)如图,在AOB 中,2AO =,3BO AB ==.将AOB 绕点O 逆时针方向旋转90°,得到A OB ''△,连接AA '.则线段AA '的长为( )A.2 B .3 C .D .6.(2022·江苏·宜兴外国语学校一模)如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPE =∠DAC ,且过D 作DE ⊥PE ,连接CE ,则CE 最小值为( )A .65B .3625C .3225D .857.(2022·江苏扬州·模拟)如图,将矩形ABCD 绕点B 按顺时针方向旋转一定角度得到矩形A B C D ''''.此时点A 的对应点A '恰好落在对角线AC 的中点处.若AB =3,则点B 与点D 之间的距离为( )A.3B.6C.D.8.(2022·江苏·九年级专题练习)如图所示,已知ABC是等边三角形,点D是BC边上一个动点(点D不与,B C重合),将ADC绕点A顺时针旋转一定角度后得到AFB△,过点F作BC的平行线交AC于点E,②为等边三角形;③四边形BCEF为平行四边形;连接DF,下列四个结论中:①旋转角为60︒;ADF=④.其中正确的结论有()BF AEA.1B.2C.3D.49.(2022·江苏南京·模拟)如图,在Rt ABC中,∠ACB=90°,BC=2,∠BAC=30°,将ABC绕顶点C逆时针旋转得到△A'B'C',M是BC的中点,P是A'B'的中点,连接PM,则线段PM的最大值是()A.4B.2C.3D.10.(2022·江苏苏州·二模)如图,将ABC绕点A顺时针旋转角α,得到ADE,若点E恰好在CB的延长线上,则BED∠等于()A .2αB .23αC .αD .180α︒-11.(2022·江苏·阳山中学一模)如图,在△ABC 中,∠BAC =45°,AC =8,动点E 从点A 出发沿射线AB 运动,连接CE ,将CE 绕点C 顺时针旋转45°得到CF ,连接AF ,则△AFC 的面积变化情况是( ).A .先变大再变小B .先变小再变大C .逐渐变大D .不变12.(2022·江苏·南通市启秀中学九年级阶段练习)如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .C .6D .13.(2022·江苏·九年级专题练习)如图1,在Rt ABC 中,AC BC =,90C ∠=︒,点D 为AB 边的中点,90EDF ∠=︒,将EDF ∠绕点D 旋转,它的两边分别交AC 、CB 所在直线于点E 、F ,有以下4个结论:①CE BF =;②180DEC DFC ∠+∠=︒;③222EF DE =;④如图2,当点E 、F 落在AC 、CB 的延长线上时,12DEF CEF ABC S S S -=△△△,在旋转的过程中上述结论一定成立的是( )A .①②B .②③C .①②③D .①③④14.(2022·江苏扬州·三模)如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF +CF 的最小值是( )A .B .C .D .15.(2022·江苏南京·一模)在平面直角坐标系中,点A 的坐标是()2,3-,将点A 绕点C 顺时针旋转90°得到点B .若点B 的坐标是()5,1-,则点C 的坐标是( )A .()0.5, 2.5--B .()0.25,2--C .()0, 1.75-D .()0, 2.75-16.(2022·江苏南京·模拟)如图,在Rt ABC 中,AB =AC =10,∠BAC =90°,等腰直角三角形ADE 绕点A 旋转,∠DAE =90°,AD =AE =4,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,连接MP 、PN 、MN.①PMN 为等腰直角三角形;②MN ≤PMV 面积的最大值是494;④PMN 周长的最小值为6+ )A.4个B.3个C.2个D.1个17.(2022·江苏无锡·一模)如图,已知直线AB与y轴交于点(0,A,与x轴的负半轴交于点B,且∠ABO=60°,在x轴正半轴上有一点C,点C坐标为()1,0,将线段AC绕点A逆时针旋转120°,得线段AD,连接BD.则BD的长度为()A.B.4C D.15 218.(2022·江苏·无锡市积余实验学校一模)如图1,在Rt△ABC中,90A∠=︒,AB AC=,点D,E分别在边AB,AC上,AD AE=,连接DC,点M、P、N分别为DE、DC、BC的中点.将△ADE绕点A在平面内自由旋转(如图2),若4=AD,10AB=,则△PMN面积的最大值是()A.494B.18C.492D.25219.(2022·江苏·无锡市天一实验学校一模)如图,扇形OAB中,90AOB∠=︒,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则ADAC的值为()A B C D 20.(2022·江苏·苏州市平江中学校二模)如图,在BAC 中,90BAC ∠=︒,2AB AC =,将BAC 绕点A 顺时针旋转至DAE △,点D 刚好落在BC 直线上,则BDE 的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB 21.(2022·江苏·淮安市浦东实验中学九年级开学考试)如图,直线1y x =+与x 轴、y 轴分别相交于点A 、B ,过点B 作BC AB ⊥,使2BC BA =.将 ABC ∆绕点O 顺时针旋转,每次旋转90︒.则第2022次旋转结束时,点C 的对应点C '落在反比例函数k y x=的图象上,则k 的值为( )A .4-B .4C .6-D .622.(2022·江苏无锡·九年级期末)如图,在Rt △ABC 中,90BAC ∠=︒,6AB AC ==,点D 、E 分别是AB 、AC 的中点.将△ADE 绕点A 顺时针旋转60°,射线BD 与射线CE 交于点P ,在这个旋转过程中有下列结论:①△AEC ≌△ADB ;②CP 存在最大值为3+BP 存在最小值为3;④点P 运动的路.其中,正确的( )A .①②③B .①②④C .①③④D .②③④23.(2022·江苏无锡·模拟)如图,在正方形ABCD 中,6AB =,点H 为BC 中点,点E 绕着点C 旋转,且4CE =,在DC 的右侧作正方形DEFG ,则线段FH 的最小值是( )A .9-B .8- C .9-D .10-24.(2022·江苏·常州市金坛区水北中学二模)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .CD .325.(2022·江苏南京·模拟)如图,在ABC ∆中,5,AB AC BC ===,D 为边AC 上一动点(C 点除外),把线段BD 绕着点D 沿着顺时针的方向旋转90°至DE ,连接CE ,则CDE ∆面积的最大值为( )A .16B .8C .32D .10【选择题】必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
6、全等模型汇总--陆老师

全等模型汇总编辑:陆老师2023.10.15【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件. 【常见模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【常见模型】【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
【常见模型】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
【模型图示】公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分【常见模型】(等腰)(等边)(等腰直角)一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
判断立体图形的相似性与全等性

03
立体图形的全等性
全等性的定义
全等性是指两个立体图 形能够完全重合,无论 从大小、形状、角度等 方面都完全相同。
全等性是立体图形之间 的一种特殊关系,可以 通过平移、旋转、翻转 等方式实现。
在几何学中,全等性是 研究图形之间关系的重 要概念之一,对于理解 几何性质和解决几何问 题具有重要意义。
应用场景:相似性在几何学、工程学等领域有广泛应用,如建筑设计、机械设计等;全 等性在数学证明、几何构造等方面有重要应用。
相似性与全等性的转换条件
定义:相似性是指两个立体图形 形状相同但大小可以不同,全等 性是指两个立体图形形状和大小 都相同
证明方法:通过相似比和角度等 参数证明相似性,再通过相似性 证明全等性
01
添加章节标题
02
立体图形的相似性
相似性的定义
两个立体图形对应角相等 两个立体图形对应边成比例 两个立体图形大小和形状都相同 两个立体图形可以通过平移、旋转或翻转相互转化
相似性的判断方法
定义法:根据相 似图形的定义来 判断,即对应角 相等、对应边成 比例的两个立体 图形是相似的。
判定定理法:利 用相似图形的判 定定理来判断, 即一组对应角相 等,其他两组对 应角分别相等且 对应边成比例的 两个立体图形是 相似的。
全等性可以通过多种方 式进行证明,如SSS、 SAS、ASA等定理。
全等性的判断方法
两个立体图形经过平移、旋转或翻转后能够完全重合,则它们全等。 两个立体图形在三维空间中具有相同的形状和大小,则它们全等。 两个立体图形可以通过一系列的切割、折叠、展开等操作后相互转换,则它们全等。 两个立体图形在平面投影中呈现相同的形状和大小,则它们全等。
全等性的关系
相似三角形和全等三角形

相似三角形和全等三角形相似三角形和全等三角形是初中数学中的重要知识点,本文将分别介绍相似三角形和全等三角形的定义、性质以及应用。
一、相似三角形1. 定义相似三角形是指具有相同形状但大小不同的三角形。
即两个三角形的对应角度相等,但对应边长不相等。
2. 性质相似三角形有一些重要的性质:(1) 相似三角形的对应边成比例。
(2) 相似三角形的对应高线、中线、角平分线也成比例。
(3) 相似三角形的面积成比例的平方。
(4) 相似三角形的周长成比例。
(5) 相似三角形的内角和相等。
3. 应用相似三角形在实际应用中有着广泛的用途。
比如:(1) 制图时,可以利用相似三角形的性质,根据已知图形的大小比例绘制出所需图形。
(2) 在建筑工程中,可以通过相似三角形的性质,测量出高度、距离等。
(3) 在计算机图形学中,利用相似三角形的性质,可以将一个图形放大或缩小。
二、全等三角形1. 定义全等三角形是指具有相同大小和形状的三角形。
即两个三角形的对应边长相等,对应角度也相等。
2. 性质全等三角形有一些重要的性质:(1) 全等三角形的对应角度相等。
(2) 全等三角形的对应边相等。
(3) 全等三角形的对应高线、中线、角平分线也相等。
(4) 全等三角形的面积相等。
(5) 全等三角形的周长相等。
3. 应用全等三角形在实际应用中也有着广泛的用途。
比如:(1) 在建筑工程中,可以利用全等三角形的性质,确定角度、距离等。
(2) 在制图时,可以利用全等三角形的性质,绘制出所需图形。
(3) 在计算机图形学中,利用全等三角形的性质,可以进行图形变换,如旋转、平移等。
相似三角形和全等三角形在数学和实际应用中有着广泛的用途。
掌握它们的定义、性质和应用,对于提高数学水平和解决实际问题都具有重要意义。
平移翻折旋转等几何变换的性质分析

平移翻折旋转等几何变换的性质分析平移、翻折、旋转等几何变换是在平面上对图形进行操作的常用方法。
它们具有独特的性质与特点,本文将对这些几何变换的性质进行详细分析。
一、平移的性质分析平移是指将图形按照指定的方向和距离进行移动,而不改变其形状和大小。
平移的性质如下:1. 平移变换是保持图形各点之间距离和相对位置不变的变换。
即使图形进行平移,其各点之间的距离关系和相对位置仍然保持不变。
2. 平移变换的结果是与原图形全等的新图形。
即平移前后的图形在大小和形状上完全相同,只是位置不同。
3. 平移变换可以通过向量的加法来表示。
设图形上一点的坐标为A(x, y),进行平移变换时,将其横向平移a个单位,纵向平移b个单位,则新点的坐标为A'(x+a, y+b)。
二、翻折的性质分析翻折是指沿直线将图形对称地折叠,使得每个点关于折叠线对称,从而得到一个新的图形。
翻折的性质如下:1. 翻折变换是保持图形各点到折叠线的距离不变,但改变图形的相对位置。
即折叠前后的图形各点到折叠线的距离相等。
2. 翻折变换的结果是与原图形全等的新图形。
具体而言,翻折变换前后的图形在大小和形状上完全相同,只是位置不同。
3. 翻折变换可以通过向量的减法来表示。
设图形上一点的坐标为A(x, y),进行翻折变换时,将其关于折叠线的对称点的坐标表示为A'(-x, y')。
三、旋转的性质分析旋转是指围绕指定的旋转中心,按照指定的旋转角度将图形沿逆时针或顺时针方向旋转,从而得到一个新的图形。
旋转的性质如下:1. 旋转变换是保持图形上各点到旋转中心的距离和相对位置不变的变换。
旋转前后的图形各点到旋转中心的距离保持不变,且各点的相对位置不变。
2. 旋转变换的结果是与原图形全等的新图形。
即旋转前后的图形在大小和形状上完全相同,只是位置不同。
3. 旋转变换可以通过矩阵乘法来表示。
设图形上一点的坐标为A(x, y),进行旋转变换时,将其绕旋转中心点逆时针旋转θ角度得到的新点的坐标表示为A'(x', y')。
专题7 类比探究—图形旋转中三角形相似题型(学生版)

专题7类比探究—图形旋转中三角形相似题型知识归纳图形的类比探究常以三角形、四边形为背景,与翻折、旋转相结合,考查三角形全等或相似的性质与判定,难度较大.此类题目第一问相对简单,后面的问题需要结合第一问的方法进行类比解答.根据其特征大致可分为:几何变换类比探究问题、旋转综合问题、翻折类问题等。
本专题主要对类比探究—图形旋转中三角形相似题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。
知识点睛(1)类比探究属于几何综合题,类比(类比字母,类比辅助线,类比思路)是解决此问题的主要方法,做好类比需要把握变化过程中的不变特征.(2)类比探究问题中常见结构举例①旋转结构②中点结构(类)倍长中线平行夹中点中位线方法总结(1)类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主.(2)解决类比探究问题的一般方法:①根据题干条件,结合分支条件先解决第一问;②用解决第一问的方法类比解决下一问,整体框架照搬.整体框架照搬包括照搬字母,照搬辅助线,照搬思路。
(3)用铅笔做讲义第1,2题,并将计算、演草保留在讲义上,先看知识点睛,再做题,思路受阻时(某个点做了2~3分钟)重复上述动作,若仍无法解决,课堂重点听.常考题型专练一、解答题1.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=31,请直接写出点D到CP的距离为.2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,Rt△ABC绕点C按顺时针方向旋转得到Rt△A′B′C,A′C与AB交于点D.(1)如图1,当A′B′∥AC时,过点B作BE⊥A′C,垂足为E,连接AE.①求证:AD=BD;②求S△ACE S△ABE的值;(2)如图2,当A′C⊥AB时,过点D作DM∥A′B′,交B′C于点N,交AC的延长线于点M,求DN NM的值.3.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.4.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.5.已知,ABC中,AB=AC,∠BAC=2α°,点D为BC边中点,连接AD,点E为线段AD上一动点,把线段CE 绕点E顺时针旋转2α°得到线段EF,连接FG,FD.(1)如图1,当∠BAC=60°时,请直接写出BFAE的值;(2)如图2,当∠BAC=90°时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时DFDC的值最小.最小值是多少?(用含α的三角函数表示)6.在ABC ∆中,CA CB =,(0180)ACB αα∠=<<.点P 是平面内不与A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,CP 点M 是AB 的中点,点N 是AD 的中点.(1)问题发现,如图1,当60α=时,MN PC 的值是,直线MN 与直线PC 相交所成的较小角的度数是;(2)类比探究,如图2,当120α=时,请写出MN PC的值及直线MN 与直线PC 相交所成的较小角的度数,并就图2的情形说明理由;(3)解决问题,如图3,当90α=时,若点E 是CB 的中点,点P 在直线ME 上,MN =请直接写出点B ,P ,D 在同一条直线上时PD 的长.7.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMVP旋转至C,N,M三点共线时,请直接写出线段CN的长8.(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE.填空:①BEAD的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断BEAD的值及∠DBE的度数,并说明理由.(3)拓展延伸如面3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转变换中的全等与相似
旋转变换是全等变换,旋转变换与全等紧密相连,但有些相似问题也可以在旋转变换的背景中加以研究。
仅举几例以作说明:
例1.(旋转中的全等) 如图一,在△ABC 中,分别以AB ,AC 为直径在△ABC 外
作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心. F 是边BC 的中点,点D 和点E 分别为两个半圆圆弧的中点. 过点A 分别作半圆1O 和半圆2O 的切线,交BD 的延长线和CE 的延长线于点P 和点Q ,连结PQ ,若∠ACB =90°,DB =5,CE =3,求线段PQ 的长;
例2.(旋转中的相似)含30°角的直角三角板ABC 中,∠A =30°.将其绕直角顶
点C 顺时针旋转α角(0120α︒<<︒且α≠ 90°),得到Rt△''A B C ,'A C 边与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'CB 边于点E ,连接BE . (1)如图1,当''A B 边经过点B 时,α= °;
(2)在三角板旋转的过程中,若∠CBD 的度数是∠CBE 度数的m 倍,猜想m
的值并证明你的结论;
(3) 设 BC =1,AD =x ,△BDE 的面积为S ,以点E 为圆心,EB 为半径作⊙E ,
当S =1
3
ABC S ∆ 时,求AD 的长,并判断此时直线'A C 与⊙E 的位置关系.
图二
例3.(旋转中的相似)已知:在△ABC中,∠ACB=90°,CD⊥AB于点D,点E 在AC上,BE交CD于点G,EF⊥BE交AB于点F.
如图甲,当AC=BC,且CE=EA时,则有EF=EG;
(1)如图乙①,当AC=2BC,且CE=EA时,则线段EF与EG的数量关系是:EF EG;
(2)如图乙②,当AC=2BC,且CE=2EA时,请探究线段EF与EG的数量关系,并证明你的结论;
(3)当AC=mBC,且CE=nEA时,请探究线段EF与EG的数量关系,直接写出你的结论(不必证明).
例4.(旋转中的全等与相似)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。
图①,②,③是旋转三角板得到的图形中的3种情况。
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
图乙②
图乙①
图甲
(第25题)
E
F
D
C
B A
E F
D
C
B
A
E
F C
B
A
(2)三角板绕点P 旋转,是否能居为等腰三角形?若能,指出所有情况(即写出△PBE 为等腰三角形时CE 的长);若不能,请说明理由。
(3)若将三角板的直角顶点放在斜边AB 上的M 处,且AM :MB =1:3,和前面一样操作,试问线段MD 和ME 之间有什么数量关系?并结合图④加以证明。
例5.(旋转中的全等)△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 的中点,把一个三角板的直角顶点放在点D 处,将三角板绕点D 旋转且使两条直角边分别交AB 、AC 于E 、F .
(1)如图1,观察旋转过程,猜想线段AF 与BE 的数量关系并证明你的结论; (2)如图2,若连接EF ,试探索线段BE 、EF 、FC 之间的数量关系,直接写出你的结论(不需证明);
(3)如图3,若将“AB=AC,点D 是BC 的中点”改为:“∠B=30°,AD ⊥BC 于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF 、BE 的比值.
例6.(旋转中的全等)已知:⊿ABC 为直角三角形,∠BAC=900,D 为BC 边的中点,有一块直角三角板PMN ,其中∠MPN=900,将它放在⊿ABC 上,使得其顶点P 与D 点重合,旋转三角板PMN ,在旋转过程中,三角板的两条直角边DM 、DN 分别于AB 、BC 边所在的直线交于点E 、F ,连结EF 。
(1)当E 、
F
分别在边AB、AC上(如图1)求证:BE2+CF2=EF2(2)当E、F分别在边AB、AC所在的直线上(如图2、图3)时线段BE、CF、EF之间的关系是否变化?请写出结论并证明。
图 2
(P)
B C
图 3
N 图 1。