数学物理方法课件
合集下载
《数学物理方法》课件第7章

小弦长,与其过点z0的原像曲线在z0处的无穷小弦长之比
的极限,不管曲线的方向如何,都等于|f'(z0)|。换句话说,
一切过z0点的曲线的无穷小弦长都被放大(或缩小)了|f'(z0)|
倍,可知无穷小面积就被放大(或缩小)了|f'(z0)|2倍。这正是
高等数学中定义的面积变换因子雅可比行列式
J
u, x,
k 1
1
2k 13
2k
sin
1 x
cos k
2k
1 at
l
(7.15) 可以验证这个解与用分离变量法得到的结果完全一致。
13
7.2 保角变换法
电学、光学、流体力学和弹性力学中的很多实际问题, 都可以归结为求解平面场的拉普拉斯方程或泊松方程的边 值问题,而这些边值问题中的边界形状通常十分复杂,我 们可以设法先将它转化为简单形状边界的边值问题,然后 求解。本节所介绍的保角变换法就是按照这种思路求解问 题的有效方法。
27
7.2.2 拉普拉斯方程的解
保角变换之所以受人重视,主要是因为拉普拉斯方程 的解在经过一个保角变换后仍然是拉普拉斯方程的解,即:
定理3 在单叶解析函数的变换(保角变换)下,拉普拉 斯方程式仍然变为拉普拉斯方程。
证明 设w=f(z)=u(x,y)+iv(x,y)是一单叶解析函数,
且j(x,y)满足拉普拉斯方程
(7.17)
16
定理1 若f(z)是D上的单值解析函数,且f'(z)≠0(z∈D), 则变换w=f(z)在区域D上构成一一对应的变换(或映射), 并称该变换为D域上的单叶变换,函数w=f(z)为D域上的 单叶解析函数。
下面我们进一步来研究这种单叶变换的特点。图7.1中, 设z平面上的原像曲线C经单叶变换w=f(z)变成w平面上的 变像曲线G;在C上的无穷小弦长为Dz,则在Dz上的变像为 Dw,分别记为
数学物理方法 ppt课件

解: 令
a c c o 2 o c s 3 o s c s n o
b s i s 2 n i s 3 n i n s n i
W a i b co c2 s o c s 3 o s cn o i (s s i2 n i n s3 i n sn i)
z1z2 z1z2
ar z 1g z2 ) (az r1 g az r2g
3、复数的除法
z1 x1 y1i (x1y1i)(x2y2i) z2 x2 y2i (x2y2i)(x2y2i)
x1xx2 2 2 yy12 2y2ix2xy2 2 1 xy12 2y2
或指数式: z1 x1 y1i z2 x2 y2i
有三角
关系: z1z2 z1z2
z1z2 z1z2
2、复数的乘法
z 1 z 2 (x 1 y 1 i)x 2 ( y 2 i)
( x 1 x 2 y 1 y 2 ) i( x 1 y 2 x 2 y 1 )
z1z21 e i1 2 e i2
ei(12) 12
12 [c 1 o 2 ) s is( i 1 n 2 )
使用教材:数学物理方法,梁昆淼编
数学物理方法是物理类及其它相关理工类极为重要的 基础课,数学物理方法是连接数学与物理学的桥梁.是通 往科学研究和工程计算的必经之路.因为它教导我们怎样 将一个自然现象转化为一个数学方程.它非常充分地体现 了科学的精髓,即:定量化.因而数学物理方法在科学中 的地位尤为突出.
( k 0 ,1 ,2 ,3 )
故k取不同值,n z 取不同值
nz e 1/n i(2k)/n
k0 nz1/nei/n
k 1 nz1 /n e i( 2 )/n
k 2 nz1 /n e i( 4 )/n
a c c o 2 o c s 3 o s c s n o
b s i s 2 n i s 3 n i n s n i
W a i b co c2 s o c s 3 o s cn o i (s s i2 n i n s3 i n sn i)
z1z2 z1z2
ar z 1g z2 ) (az r1 g az r2g
3、复数的除法
z1 x1 y1i (x1y1i)(x2y2i) z2 x2 y2i (x2y2i)(x2y2i)
x1xx2 2 2 yy12 2y2ix2xy2 2 1 xy12 2y2
或指数式: z1 x1 y1i z2 x2 y2i
有三角
关系: z1z2 z1z2
z1z2 z1z2
2、复数的乘法
z 1 z 2 (x 1 y 1 i)x 2 ( y 2 i)
( x 1 x 2 y 1 y 2 ) i( x 1 y 2 x 2 y 1 )
z1z21 e i1 2 e i2
ei(12) 12
12 [c 1 o 2 ) s is( i 1 n 2 )
使用教材:数学物理方法,梁昆淼编
数学物理方法是物理类及其它相关理工类极为重要的 基础课,数学物理方法是连接数学与物理学的桥梁.是通 往科学研究和工程计算的必经之路.因为它教导我们怎样 将一个自然现象转化为一个数学方程.它非常充分地体现 了科学的精髓,即:定量化.因而数学物理方法在科学中 的地位尤为突出.
( k 0 ,1 ,2 ,3 )
故k取不同值,n z 取不同值
nz e 1/n i(2k)/n
k0 nz1/nei/n
k 1 nz1 /n e i( 2 )/n
k 2 nz1 /n e i( 4 )/n
浅谈数学物理方法课程的学习PPT课件

得到非平衡态的速度分布函数
量子力学:用薛定谔方程
( 2 2 Zes2 ) E
2
描绘电子在库仑场中的运动
第16页/共53页
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂” 数理方法是学习专业课的奠基石
材料物理: 热处理 热传导方程 光学、电子科技: 电磁波传播 波动方程
第20页/共53页
二、数学物理方法在物理学中的地位
3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
数学物理方法研究物理问题的三个步骤: ➢导(写)出定解问题 (泛定方程、定解条件) ➢求解 ➢对解答进行分析 其间一系列的过程都不可缺少清晰的逻辑推理和 创造性思维,由此学生分析问题和解决问题的能 力也就自然地得到了训练和培养
第25页/共53页
三、如何学好数学物理方法
1.认真学好先行课
普物 重点:力学、电学、热学 高数 重点:微积分、常微分方程解法
求解方程:
行波法:求解常微分方程的先求通 解再用定 解条件定特解的思想
分离变量法、积分变换法: 均用到化偏微分方程为常微分方程的求解
所有求解方程的过程离不开微分、积分手段。
——萧伯纳
第38页/共53页
三、如何学好数学物理方法
6.学会举一反三,懂得由树木见森林。
第28页/共53页
三、如何学好数学物理方法
例:求解三维无界空间的波动问题 z z
M (x, y, z)
utt u |t0
a 2 u x3
y2z
x x at sin cos y y at sin sin
ut |t0 0
z z at cos
数学物理方法2描述课件

z
r sin
r
采用球坐标系
x
r sin sin
y
r sin cos
Lˆ2
2
sin
sin
Lˆ2z
sin2
通过求解L2和Lz 的本征方程得到本征函数和本征值 如下(过程略):
Lˆ2Yl,m ( ,) L2Yl,m ( ,)
LˆzYl,m ( ,) LzYl,m ( ,)
L2 l(l 1) 2
考虑电子在 r~ r+dr 球壳的几率
Wnl (r)dr
Ylm
(
,
)
2
d
Rn2l
(r
)r
2dr
4
Ylm ( ,) 2 d 1 (球谐函数是归一的)
4
Wnl (r)dr Rn2l (r)r 2dr un2l (r )dr
Wnl (r)=u2nl(r)的意义呢?
Wnl (r)
电子径向几率密度与半径的关系
决定电子轨道角动量L(l)、能量 Enl
3) 轨道磁量子数ml: ml=0, 1, 2, …, l 决定轨道角动量的方向
4) 自旋磁量子数ms: ms= 1/2
决定自旋角动量的方向
二、泡利不相容原理
1. 费米子和玻色子 实验表明, 现在发现大多数微观粒子的自旋量 子数取半整数, 如电子, 中子, 质子, 中子自旋 均为s=1/2;
1 (电子径向波函数是是归一的)
Wnlm ( ,)d Ylm ( ,) 2 d
Wnlm ( , )的意义呢?
规定: l=0, 1, 2 ,3,…分别对应 s, p, d, f, …轨道
电子在基态时角向几率分布是球对称分布的 电子在激发态时的角向几率分布亦有某种对称性
最新数学物理方法(MethodofmathematicalPhysics)PPT

-2 -1 0
2021/1/22
数学物理方法
1
(MethodofmathematicalPhysics)
5 4 3 2 1 5
2 1 0 -1
16
2 -2
复变函数
三角函数
20
定义:w = sin(z)
0
分析
-20
-5
u + iv = sin(x+iy) = sin(x)ch(y)
-2.5
+ i cos(x)sh(y)
100
50 0
-50 -100
-10 -5 0
10 5 0 -5
5 -10
10
u = x2 -y2 ,
v = 2xy 200
性质
对称性、无周期性 无界性、单值性
100 0
-100 -200
-10 -5 0
10 5 0 -5
2021/1/22
数学物理方法 (MethodofmathematicalPhysics)
正交性:解析函数的实部与虚部梯度正交,
即 ∇u ∇ v=(uxi+uyj)(vxi+vyj)= uxvx+uyvy = 0 或曲线 u(x,y)=C1, v(x,y)=C2 相互垂直。
2021/1/22
数学物理方法
22
(MethodofmathematicalPhysics)
解析函数
应用
例1:已知平面电场的电势为u=x2-y2,求电力线方程。
vx=-uy=2y, vy=ux =2x dv = vxdx+vxdy=2ydx+2xdy=d(2xy)
v = 2xy 注意:热流线方程的一般形式为 f(2xy)=C
2021/1/22
数学物理方法
1
(MethodofmathematicalPhysics)
5 4 3 2 1 5
2 1 0 -1
16
2 -2
复变函数
三角函数
20
定义:w = sin(z)
0
分析
-20
-5
u + iv = sin(x+iy) = sin(x)ch(y)
-2.5
+ i cos(x)sh(y)
100
50 0
-50 -100
-10 -5 0
10 5 0 -5
5 -10
10
u = x2 -y2 ,
v = 2xy 200
性质
对称性、无周期性 无界性、单值性
100 0
-100 -200
-10 -5 0
10 5 0 -5
2021/1/22
数学物理方法 (MethodofmathematicalPhysics)
正交性:解析函数的实部与虚部梯度正交,
即 ∇u ∇ v=(uxi+uyj)(vxi+vyj)= uxvx+uyvy = 0 或曲线 u(x,y)=C1, v(x,y)=C2 相互垂直。
2021/1/22
数学物理方法
22
(MethodofmathematicalPhysics)
解析函数
应用
例1:已知平面电场的电势为u=x2-y2,求电力线方程。
vx=-uy=2y, vy=ux =2x dv = vxdx+vxdy=2ydx+2xdy=d(2xy)
v = 2xy 注意:热流线方程的一般形式为 f(2xy)=C
《数学物理方法概论》课件

与工程领域的交叉研究,将为解决实际工程问题提供更加精准和高效的算 法和模型。
与经济、金融等领域的交叉研究,将为各行业的决策和预测提供更加科学 和可靠的支持。
05 案例分析
弦振动方程的求解与分析
弦振动方程的建立
基于物理背景,通过拉格朗日方程和哈密顿 原理推导弦振动方程。
弦振动方程的求解
利用分离变量法、积分变换法等数学技巧求 解弦振动方程。
02 数学物理方程的建立与求 解
微分方程的建立
总结词
描述微分方程的建立过程
详细描述
微分方程是描述物理现象变化规律的重要工具。在建立微分方程时,需要先对物理现象进行观察和抽 象,找出影响现象的关键因素,并建立相应的数学模型。然后通过数学推导,将模型转化为微分方程 的形式。
偏微分方程的建立
总结词
描述偏微分方程的建立过程
投资组合优化
数学物理方法在投资组合优化领域用于确定最 优投资组合。
金融衍生品定价
数学物理方法在金融衍生品定价领域用于确定衍生品价格和制定交易策略。
04 数学物理方法的展望与挑 战
数学物理方法的未来发展方向
数学物理方法将进一步与计算机科学、人工智 能等新兴领域结合,发展出更加智能化的算法 和模型。
、解释和预测自然现象。
抽象性
使用数学语言描述物理现象,需要一定的 抽象思维。
跨学科性
融合数学和物理学知识,提供多角度分析 问题的视角。
应用广泛性
适用于各种物理领域,如力学、电磁学、 热学等。
数学物理方法的重要性
理论意义
促进数学和物理学的发展,加深对自然现象本质的认 识。
实践意义
为解决实际问题提供有效工具,如工程设计、实验数 据分析等。
与经济、金融等领域的交叉研究,将为各行业的决策和预测提供更加科学 和可靠的支持。
05 案例分析
弦振动方程的求解与分析
弦振动方程的建立
基于物理背景,通过拉格朗日方程和哈密顿 原理推导弦振动方程。
弦振动方程的求解
利用分离变量法、积分变换法等数学技巧求 解弦振动方程。
02 数学物理方程的建立与求 解
微分方程的建立
总结词
描述微分方程的建立过程
详细描述
微分方程是描述物理现象变化规律的重要工具。在建立微分方程时,需要先对物理现象进行观察和抽 象,找出影响现象的关键因素,并建立相应的数学模型。然后通过数学推导,将模型转化为微分方程 的形式。
偏微分方程的建立
总结词
描述偏微分方程的建立过程
投资组合优化
数学物理方法在投资组合优化领域用于确定最 优投资组合。
金融衍生品定价
数学物理方法在金融衍生品定价领域用于确定衍生品价格和制定交易策略。
04 数学物理方法的展望与挑 战
数学物理方法的未来发展方向
数学物理方法将进一步与计算机科学、人工智 能等新兴领域结合,发展出更加智能化的算法 和模型。
、解释和预测自然现象。
抽象性
使用数学语言描述物理现象,需要一定的 抽象思维。
跨学科性
融合数学和物理学知识,提供多角度分析 问题的视角。
应用广泛性
适用于各种物理领域,如力学、电磁学、 热学等。
数学物理方法的重要性
理论意义
促进数学和物理学的发展,加深对自然现象本质的认 识。
实践意义
为解决实际问题提供有效工具,如工程设计、实验数 据分析等。
数学物理方法概论课件

(1) ()x (x) (x) (2) (x y) xy (3) ( )x xx
§ 2.1 线性空间
§ 2 线性空间
四、线性子空间
设V是F上的线性空间,如果 V V
(即 V 是V中的某些向量的集合),且满足:
(1)对任意的 x,y V ,(xy) V
(2)对任意的 F ,x V ,则 x V
定V中的一个元素y, 记为 y x ,数乘满足:
1x x ( ) x ( x ) ( ) x x x (x y) x y
数1的数乘 结合律 左分配律 右分配律
则称V是数域F上的线性空间(向量空间),记为V(F)。 (以上8个公式为线性空间的8个公理)
§ 2.1 线性空间
数学物理方法概论课件
§ 2.1 线性空间
§ 2 线性空间
一、群
设G是一元素集,“.”是某种定义在G上的运算,对任意
aG,bG有 abG 这种运算称为封闭运算。
定义:群为由集合G和封闭运算“.”所组成的系统,记为 G ,
它满足以下三个公理:
(1)运算满足结合律: (ab)ca(bc)
(2) 存在单位元素e,有 e a a e a
§ 2 线性空间
例:n个对象置换的集合。不满足交换律,不是Abel群。 以n=3 为例。该集合包含3!=6个元素,可以表示为
1 1
2 2
33=I
1 3
2 1
23=F
1 2
2 3
13=D
1 2
2 1
33=A
1 1
2 3
23=C
1 3
2 2
13=B
定义一个乘法“*”,其法则是两个置换的乘积仍是一个置换, 运算由右至左连续施行两次。
§ 2.1 线性空间
§ 2 线性空间
四、线性子空间
设V是F上的线性空间,如果 V V
(即 V 是V中的某些向量的集合),且满足:
(1)对任意的 x,y V ,(xy) V
(2)对任意的 F ,x V ,则 x V
定V中的一个元素y, 记为 y x ,数乘满足:
1x x ( ) x ( x ) ( ) x x x (x y) x y
数1的数乘 结合律 左分配律 右分配律
则称V是数域F上的线性空间(向量空间),记为V(F)。 (以上8个公式为线性空间的8个公理)
§ 2.1 线性空间
数学物理方法概论课件
§ 2.1 线性空间
§ 2 线性空间
一、群
设G是一元素集,“.”是某种定义在G上的运算,对任意
aG,bG有 abG 这种运算称为封闭运算。
定义:群为由集合G和封闭运算“.”所组成的系统,记为 G ,
它满足以下三个公理:
(1)运算满足结合律: (ab)ca(bc)
(2) 存在单位元素e,有 e a a e a
§ 2 线性空间
例:n个对象置换的集合。不满足交换律,不是Abel群。 以n=3 为例。该集合包含3!=6个元素,可以表示为
1 1
2 2
33=I
1 3
2 1
23=F
1 2
2 3
13=D
1 2
2 1
33=A
1 1
2 3
23=C
1 3
2 2
13=B
定义一个乘法“*”,其法则是两个置换的乘积仍是一个置换, 运算由右至左连续施行两次。
《数学物理方法》课件

弹性力学方程的求解
总结词
弹性力学方程是描述弹性物体变形和应力分布的偏微分方程 ,通过求解该方程可以了解物体的弹性和稳定性。
详细描述
弹性力学方程的一般形式为 $nabla cdot sigma = f$,其中 $sigma$ 是应力张量,$f$ 是体力密度,$nabla cdot$ 是散 度算子。求解该方程可以得到应力分布、应变能和弹性常数 等。
在工程学中的应用
机械工程
数学物理方法在机械工程 中广泛应用于分析力学、 热传导、流体力学等问题 。
电子工程
在电子工程中,数学物理 方法用于描述电磁波的传 播、散射和吸收等。
土木工程
在土木工程中,数学物理 方法用于分析结构力学、 地震工程等问题。
在经济学中的应用
金融建模
数学物理方法在金融领域中用于 建立复杂的金融模型,如期权定
在此添加您的文本16字
数学物理方法将进一步发展,以适应未来科技发展的需求 ,特别是在能源、环境、生物医学等领域。
在此添加您的文本16字
随着人工智能和机器学习的发展,数学物理方法将与这些 技术相结合,以实现更高效、精确的问题解决方案。
06 数学物理方法的实际案例分析
一维波动方程的求解
总结词
一维波动方程是描述一维波动现象的基本方程,通过求解该方程可以了解波的传播规律 。
这些概念在描述物理现象的变化规律 和求解物理问题中发挥着关键作用, 例如在描述速度、加速度、功和能量 等物理量时。
微积分中的基本概念包括极限、连续 性、导数和积分等。
微分方程
微分方程是描述物理现象变化规律的数学工具,它表示一个或多个未知函数的导数 之间的关系。
微分方程的基本类型包括常微分方程、偏微分方程和积分微分方程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 y2 i2xy
2)、 1 (z z*) Re z 2
1 (z z*) Im z 2i
3)、
1 2
( z1
z2 )*
1 2
( z1*
z
* 2
)
例:讨论式子 Re(1/ z) 2在复平面上的意义
解:
Re(1/ z) 2
z x yi
1 z
1 x yi
x yi x2 y2
Re(1/ z)
ei ei2 ei3 ein
W ei ei2 ei3 ein Wei ei2 ei3 ei(n1) Wei W ei(n1) ei
Argz 2k
(k 0,1,2)
0 arg z 2
为辐角的主值,为主
辐角,记为 arg z
y r
A(x, y)
Argz x
y r Argz
x
Argz y x r
y Argz
r
x
复数的三角表示: z cos i sin
复数的指数表示: z (cos i sin ) ei
把微积分延伸到复域。使微分和积分获得新的 深度和意义。
第一章 复变函数
§1.1 复数与复数运算 §1.2 复变函数 §1.3 复变函数的导数 §1.4 解析函数 §1.5 多值函数
§1.1 复数与复数运算
(一) 复数的基本 概念 1、 复数表示
复数: z x yi
式中 i 1
x、y为实数,称为 复数的实部与虚部
(x1x2 y1y2 ) i(x1y2 x2 y1)
z1 z2
e e i1
i 2
1
2
ei(1 2 ) 12
12[cos(1 2 ) i sin( 1 2 )]
z1 z2 z1 z2
arg( z1 z2 ) arg z1 arg z2
3、复数的除法
z1 x1 y1i (x1 y1i)(x2 y2i) z2 x2 y2i (x2 y2i)(x2 y2i)
x1x2 x22
y1 y2 y22
i
x2 y1 x22
x1 y2 y22
或指数式: z1 z2
x1 y1i x2 y2i
ei1 1
ei2 2
z1 z2
1 2
e i(1 2 )
1 2
[cos(1
2 ) i sin( 1
2 )]
Hale Waihona Puke 4、复数的乘方与方根乘方 z n ( ei )n nein
使用教材:数学物理方法,梁昆淼编
数学物理方法是物理类及其它相关理工类极为重要的 基础课,数学物理方法是连接数学与物理学的桥梁.是通 往科学研究和工程计算的必经之路.因为它教导我们怎样 将一个自然现象转化为一个数学方程.它非常充分地体现 了科学的精髓,即:定量化.因而数学物理方法在科学中 的地位尤为突出.
x x2 y2
2
x2 y2 x 2
为 (x 1 )2 y 2 ( 1 )2 圆上各点
4
4
例:计算 W a ib
解: 令
z a ib z (cos i sin ) W a ib [ z (cos i sin )]1/2
z a2 b2
sin b
a2 b2
z 1/2[cos( 2k ) i sin( 2k )]
y
y1 y2 y1
z1
y2 x1
z1 z2
z2
x
x2 x1 x2
z1 z2 (x1 x2 )2 ( y1 y2 )2
arg z arctg[( y1 y2 ) /( x1 x2 )]
有三角
关系: z1 z2 z1 z2
z1 z2 z1 z2
2、复数的乘法
z1 z2 (x1 y1i)(x2 y2i)
1/ n i( 2k ) / n
n z 1/ nei / n
z e n
1/ n i( 2 ) / n
z e n
1/ n i( 4 ) / n
e z e n
1/ n i(2 / n)
1/ n i / n
注意:
1)、 z z* z 2 x2 y2
z z z2 (x yi)(x yi)
n (cos n i sin n) 故: (cos i sin )n cos n i sin n
方根 n z n ei e 1/ n i / n
e 1/ n i( 2k ) / n
(k 0,1,2,3) 故k取不同值,n z 取不同值
k 0 k 1 k 2
k n
z e n
a cos cos 2 cos 3 cos n b sin sin 2 sin 3 sin n
W a ib cos cos 2 cos 3 cos n i(sin sin 2 sin 3 sin n )
(cos i sin ) (cos 2 i sin 2 ) (cos n i sin n )
(cos i sin )
ei
cos 1 (ei ei )
2
sin 1 (ei ei )
2i
(二) 无限远点 N
零点 无限远点
Riemann球面 复球面
A
z
S
(三)复数的运算 1、复数的加减法
z1 z2 x1 y1i (x2 y2i)
(x1 x2 ) ( y1 y2)i
x Re( z) y Im( z)
几何表示:
y
复平面
z x yi
A(x, y)
r
x
z r x2 y2 为复数的模
arctg( y / x) 为复数的辐角 x cos y sin
x cos y sin
arctg( y / x) Argz
由于辐角的周期性, 辐角有无穷多
e 应用: 2k i 1 1 e i
i e(2k /2) i (k 0,1,) i e(2k 3 / 2) i
例:求 z 1 3i 的Argz与argz
解:z位于第二象限
arg z arctg y arctg( 3) 2
x
3
Argz arg z 2k 2k 2
3
共轭复数: z* (cos i sin )*
2
2
cos
a a2 b2
W2
W1
z 1/2[cos( ) i sin( )]
2
2
z 1/2[cos( 2 ) i sin( 2 )]
2
2
sin
2
1 cos
2
例:计算 cos cos 2 cos 3 cos n sin sin 2 sin 3 sin n
解: 令