现代环境分析技术复习试题及答案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《现代环境分析技术》

1、气相色谱法的基本原理、流程及相关的基本概念。

基本原理

2、气相色谱仪的基本构成和工作原理。

气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组分在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,虽然载气流速相同,各组分在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。这就是气象色谱仪的工作原理。

各种型号的气相色谱仪都包括六个基本单元。

即:(1) 载气及其流速控制系统;(2) 进样系统;(3) 色谱柱系统;

(4) 检测器系统;(5) 记录器系统;(6)温控系统。

在刑侦检验技术工作中常用的检测器有:火焰离子化简测器 (FID) 、氮磷检测器 (NPD) 、

火焰光度检测器 (FPD) 、电子浦获检测器 (ECD) 等。

3、气相色谱分析法定性、定量分析方法。

定性分析方法包括:

(1)保留值定性法。固定相及操作条件恒定时,每种组分都有恒定的保留值。在相同的条件下,测定标准物质和未知样品的保留值,当未知样品中出现与标准物质保留值相同的色谱峰时,则未知物中可能含有此种物质。

(2)峰高定性法取两份未知样品,在其中一份中加入已知纯物质,然后在相同实验条件下,分别测定两份样品的色谱图,对比色谱图,如果某一组分峰高增加,则未知样品中可能含有已知纯物质

(3)与质谱、红外光谱联用定性上述两种方法适用于确定未知样品中是否含有某一组分。如果对未知样品的组分全然不知时,可采用气相色谱与质谱、红外光谱联用的方法进行测定。气相色谱有很强的分离能力,而质谱、红外光谱可以测定未知物的结构,如果再接上计算机,对数据进行快速处理和检索就更方便。

定量分析方法有:归一化法,外标法,内标法。

4、气相色谱最佳实验条件选择的原则、方法。

5.气相色谱法在在有机污染监测上的应用。

(1)建立了适用于静态顶空气相色谱法的前期固相萃取方法。将普通的气相毛细管去掉表面涂层,根据有机污染物在水相与固定相之间的分配特性,选择合适的固定液涂在毛细管外侧,将水中目标物萃取至毛细管上,通过顶空进样器,用气相色谱法直接测定。

(2)以多种挥发性有机污染物作为混合标准液,分别应用吹扫捕集气相色谱质谱和固相萃取顶空气相色谱质谱进行测定,针对挥发性有机污染物代表进行了各项指标测定。实验结果表明,固相萃取顶空气相色谱法克服了传统顶空气相色谱法灵敏度低的缺点,与吹扫捕集气相色谱法具有极其相近的检测限,却具有更好的重现性。

(3)运用固相萃取顶空气相色谱/质谱法,对有机污染物进行了实际检测并对实验结果进行了比较。通过对固相萃取顶空气相色谱/质谱法的实际运用,显示该方法现实可行性。

6.气相色谱-质谱联用技术简介。

气质联用色谱是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。当试样流经柱子时,根据个组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。流出柱子的分子被下游的质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化的分子。质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定的。 GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。

7、色谱法有哪些类型?其分离的基本原理是什么?

分类:按照固定相的形态分类分为柱色谱和平面色谱;按照色谱动力学过程分类分为淋洗色谱法、置换色谱法和迎头色谱法;按照两相的物理形态、分离机理等分类分为液相色谱、气相色谱、超临界流体色谱。

基本原理:色谱分离体系都有两相组成,即固定不动的固定相和在外力作用下带着试样通过固定相的流动相。在固定相上溶解、吸着或吸附力大,即分布常数大的组分迁移速率慢,保留时间长;在固定相上溶解、吸着或吸附力小,即分布常数小的组分迁移速率快。结果是试样各组分同时进入色谱柱,而以不同速率在色谱柱内迁移,导致各组分在不同时间从色谱柱洗出,实现组分分离。

8、气相色谱仪由哪几部分组成?

气相色谱主要包括气路系统、进样系统、色谱柱系统、检测器、温度系统及数据处理和计算机控制系统。

9、气相色谱最佳实验条件应该如何选择?

气相色谱分析中实验条件的选择

选择气相色谱分析的实验条件主要包括:色谱柱的选择、柱温的选择和载气的选择。

另外还有一些其他条件的选择,包括气化室温度、检测室温度、进样量的选择等。

(1)色谱柱的选择

主要是选择固定相和柱长。固定相选择需注意极性及最高使用温度。气一液色谱法还要注意载体的选择。高沸点样品用比表面小的载体、低固定液配比(1%~3%),以防保留时间过长,峰扩张严重。低沸点样品宜用高固定液配比(5%~25%),从而增大分配系数,以达到良好分离。难分离样品可用毛细管柱。

柱长加长能增加塔板数,使分离度提高。但柱长过长,峰变宽,柱阻也增加,并不利于分离。在不改变塔板高度(H)的条件下,分离度与柱长有如下关系。(R1/R2)2=L1/L2

(2)柱温的选择

选择的基本原则是:在使最难分离的组分有符合要求的分离度的前提下,尽可能采用较低柱温。低柱温可增大分配系数,增加选择性,减少固定液流失,延长柱寿命及降低检测本底。但柱温降低,液相传质阻抗增加,而使峰扩张,柱温太低则拖尾,故以不拖尾为度。可根据样品沸点来选择柱温。

分离高沸点样品(300~400℃),柱温可比沸点低100~150℃。分离沸点<300℃的样品,柱温可以在比平均沸点低50℃:至平均沸点的温度范围内。对于宽沸程样品(混合物中高沸点组分与低沸点组分的沸点之差称为沸程),选择一个恒柱温经常不能兼顾两头,需采取程序升温的方法。程序升温改善了复杂成分样品的分离效果,使各成分都能在较佳的温度下分离。程序升温还能缩短分析周期,改善峰形,提高环境监测中检测灵敏度。

(3)载气的选择

载气的选择从三方面考虑:对峰扩张、柱压降及环境监测中检测器灵敏度的影响。载气采用低线速时,宜用氮气为载气,高线速时宜用氢气(黏度小)。色谱柱较长时,在柱内产生较大的压力降,此时采用黏度低的氢气较合适。H2最佳线速度为10~12cm/s;N2为7~10cm /s。通常载气流速可在20~80mL/min内,通过实验确定最佳流速,以获得高柱效。但为缩短分析时间,载气流速常高于最佳流速。

(4)其他条件的选择

①气化室温度气化室温度取决于样品的挥发性、沸点及进样量。可等于样品的沸点或稍高于沸点,以保证迅速全气化。但一般不要超过沸点50℃以上,以防样品分解。对于稳定性差的样品可用高灵敏度检测器,降低进样量,这时样品可在远低于沸点温度下气化。

②检测室温度为了使色谱柱的流出物不在检测器中冷凝而污染检测器,检测室温度需高于柱温。一般可高于柱温30~50℃左右,或等于气化室温度。但若检测室温度太高,热导检测器的灵敏度降低。

③进样量进样量的大小直接影响谱带的初始宽度,进样量越大,谱带初始宽度越宽,经分离后的色谱峰宽也越宽,不利于分离。因此,在检测器灵敏度足够的前提下,尽量减少进样量。通常以塔片数减少10%作为最大允许进样量。柱超载时峰变宽,柱效降低,峰不正常。一般来说,柱越长,管径越粗,固定液配比越高,组分的分配系数越大,则最大允许进样量越大。对于填充柱,气体样品以0.1~1mL为宜,液体样品进样量应小于4uL或小于1uL。毛细管柱需用分流器分流进样,分流后的进样量为填充柱的1/100~1/10。

相关文档
最新文档