有限元分析第一章
有限元分析课程 第一章 绪论PPT

其中: b.t.( y, g ) 与边界条件有关。)
14
若假设试探函数只选取一项,即
ϕ ( x ) = α1 ( x − x 2 )
5 易得 α1 = 9 ,则问题的近似解为 5 ϕ ( x) = ( x − x 2 ) 9 变分法的试探函数定义于整个求解域,且必须满足
23
转向机构支架的强度分析
24
动力分析
模态分析—计算线性结构的自振频率及振形. 谱分析—是模态分析的扩展,用于计算由于随机振动引起 的结构应力和应变 (也叫作响应谱).
整机的模态分析
25
谐响应分析—确定线性结构对随时间按正弦曲线变化的载 荷的响应. 旋转设备(如压缩机、发动机、泵、涡轮机械等)的支 座、固定装置和部件; 受涡流(流体的漩涡运动)影响的结构,例如涡轮叶片、 飞机机翼、桥和塔等。 瞬态动力学分析—确定结构对随时间任意变化的载荷的响 应. 可以考虑与静力分析相同的结构非线性行为. 显式动力分析—计算高度非线性动力学和复杂的接触问题。 用于模拟非常大的变形,惯性力占支配地位,并考虑所 有的非线性行为.
L=∫
b a
{ y( x)}
dy 1 + dx dx
2
L依赖于函数y(x)的形式,L随着曲线的形状而变化。L就是函 数y(x)的泛函。 12
假设试探函数为多项式: ϕ ( x) = α1 ( x − x 2 )+α 2 ( x − x 3 )+L +α n ( x − x n +1 )
P
meshing
P
有限元分析与应用——第一章 PPT课件

0
0
k2u2 k2u3 k3u3 k3u4
k3u3 k3u4 k4u4 k4u5 0
k4u4 k4u5 P
写成矩阵的形式为
k1
=
k1 k1 k2 k2 0 0
k1 k1 0 0 0
0 k2 k 2 k3 k3 0
k1 k1 k2 k2 0 0
有限元方法与ANSYS简介
有限元方法是用于求解工程中各类问题的数值方法,应 力分析中稳态的、瞬态的、线性的或非线性的问题以及热传导、 流体流动和电磁学中的问题都可以用有限元方法进行分析解决。 现代有限元方法的20世纪早期开始,20世纪50年代,boeing公司 采用三角元对机翼进行建模,推动了有限元方法的应用。到20 世纪60年代,人们接受了“有限元”这个词。 ANSYS是一个通用的有限元计算机程序,其代码长度超 过10万行。应用ANSYS可以进行静态、动态、热传导、流体流 动和电磁学等分析。在过去的20多年里,ANSYS是主要的有限 元分析程序。现在ANSYS被广泛应用在如航天、汽车、电子、 核科学等领域。
第一章 概述
有限元方法是广泛用于解决应力分析、热传 递、电磁场和流体力学等工程问题的数值方 法。
本章的内容
(1)工程问题 (2)数值方法 (3)有限元方法与ANSYS简介 (4)有限元方法的基本步骤 (5)直接公式法 (6)最小总势能公式 (7)加权余数法 (8)结果的验证 (9)理解问题
工程问题
0
R1 0 0 0 0
0 k2 k 2 k3 k3 0
0 k3 k3 k 4 k4
0 u1 0 0 u 2 0 0 u3 0 k4 u 4 0 k4 P u5
有限元分析基础课件第一章

物体离散化 将某个工程结构离散为由各种单元组成的计算模型, 这一步称作单元剖分。 离散后单元于单元之间利用单元的节点相互连接起来; 单元节点的设置、性质、数目等应视问题的性质,描 述变形形态的需要和计算进度而定。 用有限元分析计算所获得的结果只是近似的。如果划 分单元数目非常多而又合理,则所获 得的结果就与实 际情况相符合。
1956年Turener和Clough等用有限元法第一次得 出了平面应力问题的正确答案。 1960年Clough又进一步应用有限元法处理了平面弹 性问题,并提出了有限元法的名称,这才使得有限元 法的理论和应用都得到了迅速发展。 20世纪70年代以后,随着计算机和软件技术的发展 有限元法得到了迅猛的发展。
对于实际的连续结构,任何位置的物体都是相 互连接、相互作用的,而在被离散成有限元模型 后,假设相邻单元除节点外都是不相互连接、不相 互作用的,这一点是不符合实际的,但当单元趋近 无限小、节点无限多时,则这种离散结构将趋近于 实际的连续结构。 有限元法的离散处理的本质就是将原始的无限 自由度的连续体物理系统转换成由有限个节点自由 度组成的离散系统,且当所分割的单元无限小时, 该离散系统完全等价于原始的连续系统。
有限元基础理论
与ANSYS应用
CAD/CAE/CAM:CAD 工具用于产品结构设计,形 成产品的数字化模型,有限元法则用于产品性能的分 析与仿真,帮助设计人员了解产品的物理性能和破坏 的可能原因,分析结构参数对产品性能的影响,对产 品性能进行全面预测和优化;帮助工艺人员对产品的 制造工艺及试验方案进行分析设计。当前,有限元法 在产品开发中的作用,已从传统的零部件分析、校核 设计模式发展为与计算机辅助设计、优化设计、数字 化制造融为一体的综合设计。
增强可视化的前置建模和后置数据处理功能 目前几乎所有的商业化有限元程序系统都有功能很强 的前置建模和后置数据处理模块。使用户能以可视图 形方式直观快速地进行网格自动划分,生成有限元分 析所需数据,并按要求将大量的计算结果整理成变形 图、等值分布云图,便于极值搜索和所需数据的列表 输出。
2_杆系结构有限元分析1

( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e
e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为
《有限元分析及应用》课件

受垂直载荷的托架
31
体单元
•线性单元 / 二次单元 –更高阶的单元模拟曲面的精度就越高。
低阶单元
更高阶单元
32
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
36
第二章 有限元分析的力学基础
(3) 研究的基本技巧
采用微小体积元dxdydz的分析方法(针对任意变
形体)
40
2.2 弹性体的基本假设
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
物质连续性假定: 物质无空隙,可用连续函数来描述 ;
物质均匀性假定: 物体内各个位置的物质具有相同特 性;
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
28
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
29
30
y
dy zy
1 2
zy
z
dz
0
略去微量项,得 yz zy
MY 0 zx xz
MZ 0
xy yx
剪切力互等定律
53
二维问题: 平衡微分方程
x yx X 0
x y xy y Y 0 x y
剪切力互等定律
有限元分析方法

k1 k1k2 k2
0
0
0 k2 k2 k3 k3
0
0 0 k3 k3 k4 k4
0 u1 0 0 u2 0 0k4uu4300 k4 u5 P
写成一般形式,可得:
[R ][K ]U [][F]
即: [反作]用 [总 力 体 矩 ]刚 位 [阵 度 移 ] [负 矩 矩荷 阵 阵 ]
引入边界条件,根据本题要求,节点1
有限元分析方法
第一章 概述
一、有限单元法的基本概念
一变横截面杆,一 端固定,另一端承受负 荷 P,试求杆沿长度方 向任一截面变形大小。 其中杆上边宽度为 w1 下边宽度为 w 2 ,厚度
为 t ,长度为 L,弹性
模量为 E。
① 采用材料力学的研究方法进行精确求解
解:设杆任一横截面面积为 A( y) ,平均应力
来,重新对上述五个方程进行变换,得:
节点1: k1u1k1u2R1
节点2: k 1 u 1 (k 1 k 2 )u 2 k 2 u 3 0
节点3: k 2 u 2 (k 2 k 3 )u 3 k 3 u 4 0 节点4: k 3 u 3 (k 3 k 4 )u 4 k 4 u 5 0
节点5: k4u4k5u5P
的位移为0,即 u1 0 ,则有如下矩阵形 式:ቤተ መጻሕፍቲ ባይዱ
1 0
0
0 0 u1 0
k1 k1 k2 k2
0
0 u2 0
0
0
k2 0
k2 k3 k3
k3 k3 k4
0k4uu43
0 0
0 0
0 k4 k4 u5 P
求解上述矩阵方程,可得每个节点位移,进 而求得每个节点反作用力,每一个单元的平均应 力和应变。即:
第1章有限元基本理论ppt课件
x dx
li
E i
i
E (ui1ui )
x
x
li
1.8 直杆受自重作用的拉伸问题(续)
❖ 外载荷与结点的平衡方程
EA(uiui1 ) li1
EA(ui1ui ) li
q(li1 li ) 2
q(li1li ) 为第i个结点上承受的外载荷
2
1.8 直杆受自重作用的拉伸问题(续)
❖ 假定将直杆分割成3个单元,每个单元长为a=L/3, 则对结点2,3,4列出的平衡方程为:
单元: 一组节点自由度间相互作用的 数值、矩阵描述(称为刚度或系数 矩阵)。单元有线、面或实体以及二 维或三维的单元等种类。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
1.6 节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
. . . 1 node
1.1 有限元分析 (FEA)
有限元分析 是利用数学近似的方法对真实物理
系统(几何和载荷工况)进行模拟。它利用简 单而又相互作用的元素,即单元,用有限数量 的未知量去逼近无限未知量的真实系统。
1.2 有限单元法的基本思想
❖ 将连续的结构离散成有限个单元,并在每一单元中 设定有限个节点,将连续体看作只在节点处相连接 的一组单元的集合体。
I
J
O
N
三维实体结构单元
K UX, UY, UZ
P
M L
J
I
J
K J
O N
K J
三维梁单元 UX, UY, UZ, ROTX, ROTY, ROTZ
三维四边形壳单元 UX, UY, UZ, ROTX, ROTY, ROTZ
西安交通大学有限元分析word版第一章
第一章 引言§1-1概述1、有限元方法(The Finite Element Method, FEM )是计算机问世以后迅速发展起来的一种分析方法。
众所周知,每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。
这些方程通常称为控制方程(Governing equation )。
针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。
人们多采用数值方法给出近似的满足工程精度要求的解答。
有限元方法就是一种应用十分广泛的数值分析方法。
有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。
然而,这种思想自古有之。
齐诺(Zeno 公元前5世纪前后古希腊埃利亚学派哲学家)曾说过:空间是有限的和无限可分的。
故,事物要存在必有大小。
亚里士多德(Aristotle 古希腊大哲学家,科学家)也讲过:连续体由可分的元素组成。
古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。
图1-2可以用来表示这一过程。
工程中的问题 (力学、物理)各种方程及相应的定解条件(边界条件及初始条件)线性的、边界规则的问题 数值分析法 精确解 近似解 非线性的、边界不规则的问题 解析法 图1-1 工程问题的求解思路图1-2 离散逼近有限单元法 有限差分法图1-3 有限元法与有限差分法比较近代,这一方法首先在航空结构分析中取得了明显的效果:一种称为框架分析法(framework method )被用来分析平面弹性体(将平面弹性体描述为杆和梁的组合体)(1941,Hrenikoff );在采用三角形单元及最小势能原理研究St.Venant 扭转问题时,分片连续函数被用来在子域中近似描述未知函数(1943, Courant )。
ANSYS有限元分析入门与应用指南
ANSYS有限元分析入门与应用指南第一章:ANSYS有限元分析概述ANSYS是一种常用于工程领域的有限元分析软件,主要用于对各种结构进行力学分析、流体动力学分析、热传导分析等。
本章将对ANSYS的基本原理、工作流程和应用领域进行介绍。
1.1 ANSYS的基本原理ANSYS基于有限元方法,将实际结构或系统离散为有限数量的单元,通过对单元进行各种物理特性的分析,最终得到整个结构的行为。
有限元方法是一种数值分析方法,可以有效解决传统方法难以处理的复杂问题。
1.2 ANSYS的工作流程ANSYS的工作流程包括几个关键步骤:前处理、求解和后处理。
前处理阶段主要负责模型的建立和单元网格的划分,求解阶段进行物理场的计算和求解,后处理阶段对结果进行可视化和分析。
1.3 ANSYS的应用领域ANSYS可应用于各个工程领域,如固体力学、流体力学、热传导、电磁场等。
在航空航天、汽车工程、建筑结构、电子设备等领域都有广泛的应用。
第二章:ANSYS建模与前处理在使用ANSYS进行有限元分析之前,需要对模型进行建模和前处理工作。
本章将介绍ANSYS建模的基本方法和前处理的必要步骤。
2.1 模型建立ANSYS提供了多种建模方法,包括几何建模、CAD导入、脚本编程等。
用户可以根据需要选择合适的建模方法,对模型进行几何设定。
2.2 材料定义和属性设置在进行有限元分析之前,需要为材料定义材料性质和属性。
ANSYS提供了多种材料模型,用户可以根据具体需求进行选择和设置。
2.3 网格划分网格划分是有限元分析中非常重要的一步,它决定了模型的离散精度和计算效果。
ANSYS提供了多种单元类型和划分算法,用户可以根据需要进行合理的网格划分。
第三章:ANSYS求解与后处理在进行前处理完成后,就可以进行有限元分析的求解和后处理了。
本章将介绍ANSYS的求解方法和后处理功能。
3.1 求解方法ANSYS提供了多种求解方法,如直接法、迭代法等。
根据模型的复杂程度和求解要求,用户可以选择合适的方法进行求解。
第一节有限元分析概述
第一节有限元分析概述有限元分析是一种数值计算方法,用于求解连续物体的力学问题。
它是将连续体划分成有限个小元素,利用元素间的相互关系来近似描述物体的行为。
有限元分析可以用于求解各种力学问题,如固体力学、流体力学、热传导等。
有限元分析的基本步骤包括建立模型、离散化、求解和分析结果。
首先,需要根据实际问题建立一个几何形状和边界条件的模型。
然后,将模型离散化为有限个小元素,每个元素具有一些简单的形状和几何特征。
接下来,需要确定每个元素内部的应力和变形的形式,这通常与所采用的数学模型有关。
然后,根据力学原理和边界条件,可以通过数值方法求解每个元素的应力和变形。
最后,可以对求解结果进行后处理,分析模型的响应,并检查结果的合理性。
有限元分析的优点之一是可以处理复杂的几何形状。
因为问题的几何形状是通过离散化成有限个小元素来描述的,所以可以处理各种形状的物体,包括曲线、曲面和体积。
同时,有限元分析还可以考虑非线性和不均匀性。
对于具有非线性特性的材料或结构,可以通过数值方法来求解其行为。
此外,有限元分析还可以处理多物理场的耦合问题,如流固耦合、热力耦合等。
然而,有限元分析也有一些局限性。
首先,离散化过程中需要选择合适的元素类型和大小。
选择不当的元素可能导致结果的不准确性。
其次,有限元分析需要耗费大量的计算资源。
由于模型通常包含大量的节点和单元,需要进行大规模的计算,对计算机的存储和计算能力有一定的要求。
最后,有限元分析的结果需要进行验证和验证。
由于模型的简化和假设,有限元分析的结果可能与实际情况存在一定的差异,需要通过实验数据进行验证和验证。
总的来说,有限元分析是一种有效的数值计算方法,用于求解连续体的力学问题。
它可以处理复杂的几何形状、非线性和不均匀材料,以及多物理场的耦合问题。
然而,它也有一定的局限性,需要合适的离散化、大量的计算资源和验证结果的步骤。
在实际应用中,需要根据具体问题的性质和要求,选择适当的数值方法和参数,以获得准确可靠的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元方法的优缺点
1.有限元方法的优点 (1)可以模拟各种几何形状复杂的结构,得出其近似解。 (2)解题步骤可以系统化、标准化,能够开发出灵活通用的计算机 程序。 (3)边界条件和结构模型具有相对独立性,可以从其他CAD软件中导 入创建好的模型。 (4)不需要适用于整个结构的插值函数,而是每个单元本身有各自 的插值函数,对复杂结构也能适用。 (5)有限元法很容易处理非均匀连续介质,可以求解非线性问题和 进行耦合场分析。 (6)有限元法可以与优化设计方法相结合,以便发挥各自的优点。
Adina 除了可以做到结构、流体、热的耦合分析 ,而且是唯一能够做到真正流固耦合的软件。
第一章
绪论
有限元法的定义 有限元法是近似求解一般连续场问题的数值方法。 它先应用于机械、建筑结构的位移场和应力场分析, 后很快广泛应用于求解电磁学中的电磁场、传热学中 的温度场、流体力学中的流体场等连续场问题。 例如,弹性体受力后内部各个点的应力分布规律, 物体受热后内部各个点温度的变换规律等,都可以用 数学物理方程来描述,有限元法可以求解这些数学物 理方程的近似数值解。 目前,数值分析方法主要有有限元法、有限积分 法、差分法等,其中有限元法应用最广。
目前,在工程技术领域,数值分析方法主 要有有限元法、边界元法和有限差分法等。 边界元只在定义域的边界上划分单元,用 满足控制方程的函数去逼近边界条件。与有限 元相比,具有单元个数少,数据准备简单等优 点。但对于非均匀介质等问题难以应用。 有限差分法求解偏微分方程时,将每一处 导数通过泰勒展开由有限差分近似公式代替, 把求解偏微分方程的问题转换成求解代数方程 的问题。
有限元分析的作用 任何具有一定使用功能的构件(称为变形体) 都是由满足要求的材料所制造,在设计阶段,就 需要对该构件在可能外力作用下的内部状态进行 分析,以便核对所使用的材料是否安全可靠,以 避免造成重大安全事故。描述可承力构件的力学 信息一般有三类: (1)构件中因承载在任意位置上所引起的移动 (称为位移(displacement)); (2)构件中因承载在任意位置所引起的变形状态 (称为应变(strain)); (3)构件中因承载在任意位置所引起的受力状态 (称为应力(stress))
有限元分析软件ansys,nastran,marc,abaqus Ansys融结构、流体、电场、磁场、声场分析于一体的 大型通用有限元分析软件。它能与多数CAD软件接口, 实现数据的共享和交换。主要线性和流体 Nastran在1966年美国国家航空航天局(NASA)为了满 足当时航空航天工业对结构分析的迫切需求主持开发 大型应用有限元程序。 Marc是功能齐全的高级非线性有限元软件,具有极强 的结构分析能力。可以处理各种线性和非线性结构。 Abaqus致力于更复杂和深入的工程问题,其强大的非 线性分析功能在设计和研究的高端用户群中得到了广 泛的认可。
有限元法在机械工程领域得到了广泛的应用
1.静力学分析。分析机械结构承受静载荷作用下 的应力、应变和变形情况。 2.模态分析。分析结构的固有频率和振型。 3.动力学分析。包括谐响应分析和瞬态响应分析 ,用于分析结构在随时间呈正弦规律或任意规律 变化的载荷作用下的响应。 4.热应力分析。分析结构因温度分布不均而产生 的热应力。 5.其他分析,如接触分析、稳定性分析等。
有限元方法的基础是变分原理和加权余量 法,其求解思想是把计算域划分为有限个互不 重叠的单元,在每个单元内选择一些合适的节 点作为求解函数的插值点,将微分方程中的变 量改写成由各变量或其导数的节点值与所选用 插值函数组成的线性表达式,借助于变分原理 或加权余量法,将微分方程离散求解。采用不 同的权函数和插值函数形式,便构成不同的有 限元方法。
有限元法的基本步骤 从未知量的角度来看,有限元法可以分为三 类,即位移法、力法和混合法。 位移法:以节点位移为基本未知量的求解方法; 力法:以节点力为基本未知量的求解方法; 混合法:一部分以节点位移,另一部分以节点力 作为基本未知量的求解方法。
本教程采用应用范围最广的位移法。用位移法求 解问题的步骤如下: (1) 结构离散化; (2)单元分析:①选择位移模式。②应用弹性力 学中的几何方程和物理方程建立力和位移的方程 式,计算单元刚度矩阵。③计算等效节点力; (3)单元集成; (4)引入约束条件,求解线性方程,得出节点位 移; (5)由节点位移计算单元的应力与应变。
有限元分析的目的:针对具有任意复杂几 何形状变形体,完整获取在复杂外力作用下它 内部的准确力学信息,即求取该变形体的三类 力学信息。 在准确进行力学分析的基础上,设计师就 可以对所设计对象进行强度(strength)、刚度 (stiffness)等方面的评判,以便对不合理的 设计参数进行修改,以得到较优化的设计方案; 然后再次进行方案修改后的有限元分析,以进 行最后的力学评判和校核,确定出最后的设计 方案。
有限元法的缺点
1.有限单元的计算,尤其是复杂问题的分析,所 耗费的计算时间、内存和磁盘空间等计算资源是 相当惊人的; 2.对无限求解域问题没有较好的处理方法; 3.尽管现有的有限元软件多数使用了网格自适应 技术,但在具体应用时,采用什么类型的单元, 多大的网格密度等都要完全依赖使用者的经验。