数值分析考试目标及考试大纲

合集下载

西南石油大学-硕士研究生招生考试大纲-937_数值分析

西南石油大学-硕士研究生招生考试大纲-937_数值分析

数值分析考试科目大纲
一、考试性质
数值分析是硕士研究生入学考试科目之一,是硕士研究生招生学校自行命题的选拔性考试。

要求考生理解数值计算的基本概念,基本理论,熟练掌握数值计算的基本方法;要求考生理解同一种问题多种数值计算方法的差异;要求考生具有综合运用所学数值计算方法解决实际问题的能力。

二、考试形式和试卷结构
(一)试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。

(二)答题方式
答题方式为闭卷,笔试,可携带计算器。

试卷由试题和答题纸组成。

答案必须写在答题纸相应的位置上。

(三)试卷题型结构
1. 填空题:5小题,每小题3分,共15分。

2. 计算题:6-8小题,共112-123分。

3. 简答题:2-4小题,共4-8分。

4. 证明题:1-2题,共8-15分。

三、考试内容
(一)误差分析
1。

数值分析期末考试复习提纲10级

数值分析期末考试复习提纲10级
三次Lagrange插值多项式为:
17 1 x( x 1)( x 2) ( x 2)( x 1)( x 2) 24 4 2 17 ( x 2) x( x 2) ( x 2) x( x 1). 3 8 L3 ( x)
f (0.6) ≈L3(0.6) = -0.472. 误差:
( x x0 )( x x1 )
数值分析期末考试复习提纲
•考试范围:1—7章所学内容
•各章约占比例:第一章5%,第二章20%,第三章15%,
第四章18%,第五章12%,第六章15%,
第七章15%, •难易程度:易15%,中等75%,难10%。 •考试类型:填空题20%,计算题70%,证明题10%。 •参考依据:课后作业题(重点),上课所讲部分习题和例题。
f [ x , 2 0 , 21 ,
(7) f ( ) 6 ,2 ] 1, 7!
f [ x, 2 , 2 ,
0
1
,2 ]
7
f
(8)
( ) 0. 8!
n次Newton插值公式:
N n ( x) f ( x0 ) ( x x0 ) f [ x0 , x1 ] ( x x0 )( x x1 ) f [ x0 , x1, x2 ]
x2 f ( x2 ) x3 f ( x3 ) x4 f ( x 4 )
例5 设f(x)=2x2-1,求差商 f [0,1,2,3]= i x0 x1 x2
xi xi ] f (xi) f [xi −1, xi]
0
. 可用性质3
经计算得 (xi, f(xi)): (0, -1), (1, 1), (2, 7), (3, 17)。差商表如下
例 2: 设

贵州师范大学计算数学《数值分析》考研复试大纲

贵州师范大学计算数学《数值分析》考研复试大纲

贵州师范大学硕士研究生入学考试大纲(复试)(科目名称:数值分析)一、考查目标本《考试大纲适用于贵州师范大学数学科学学院数学专业硕士研究生入学考试复试。

数值分析是高等院校数学与应用数学、信息与计算科学等理工科专业的一门专业核心必修课程。

它是一门内容丰富,研究方法深刻,有自身理论体系的课程。

其研究对象是解决各种数学问题的数值计算程序、方法与相关理论。

1、考试目的测试考生对数值计算方法的基本原理和基本方法的掌握,以及对数值分析的理解及基本应用能力。

考生应该掌握拉格朗日插值方法、数值积分、数值微分、方程求根、线性代数方程组的数值解法,并有应用这些方法解决和分析数值计算中常见问题的基本能力。

《数值分析》是我校数学科学学院招收全日制硕士研究生而设置的具有选拔性质的复试科目,其目的是考察学生是否具备本学科计算数学专业硕士研究生学习所要求的水平,为我校数学科学学院择优选拔硕士研究生提供依据。

2、考试的基本要求要求学生了解和掌握这门课程所涉及的各种常用的数值计算公式、数值方法的构造原理及适用范围,为今后用计算机去有效地解决实际问题打下基础。

(1)掌握算法的基本原理和思想,包括算法的构造、算法处理的技巧、误差分析、收敛性和稳定性等基本理论。

(2)掌握误差与有效数字定义、函数插值与逼近的方法、积分与微分的数值计算方法、线性方程组的数值解法、非线性方程根的求解方法。

(3)掌握各种算法的理论分析;了解主要算法的设计思路。

二、考试形式与试卷结构(一)试卷成绩及考试时间本试卷满分为100分。

考试时间为180分钟。

(二)答题方式闭卷,笔试;所有题目全部为必答题。

(三)试卷内容数值计算中的误差、拉格朗日插值方法、数值积分、数值微分、方程求根、线性代数方程组的数值解法(四)试卷题型结构计算题、证明题。

三、考查范围1、数值计算中的误差了解误差的四种来源,特别是截断误差和舍入误差。

理解误差,误差限,有效数字的概念以及它们之间的相互关系。

数值分析 教学大纲

数值分析 教学大纲

数值分析教学大纲一、课程简介数值分析是一门研究数值计算方法和数值计算误差的学科,它旨在通过数学模型和算法,利用计算机对现实问题进行数值求解。

本课程主要介绍数值分析的基本原理、方法与应用,培养学生对数值计算的理论和实践能力。

二、教学目标1. 理解数值分析的基本概念和任务,了解数值计算的重要性和应用领域。

2. 熟练掌握数值计算中常用的数值方法和算法,能够灵活运用于实际问题的求解。

3. 培养学生的数学建模和问题求解能力,提高数值计算的准确性和效率。

4. 培养学生的团队合作和沟通能力,培养创新意识和实践能力。

三、教学内容1. 数值计算误差与有效数字:了解数值计算的误差来源和评估方法,掌握有效数字的概念和计算方法。

2. 插值与逼近:掌握插值和逼近的基本原理和方法,能够利用插值和逼近方法拟合实际数据。

3. 数值微积分:熟练掌握数值微积分的基本方法和算法,能够求解函数的数值积分和数值微分。

4. 非线性方程的数值解法:了解非线性方程的求根方法和算法,能够利用迭代法和牛顿法求解非线性方程。

5. 线性方程组的数值解法:掌握线性方程组的直接求解和迭代求解方法,能够解决大规模线性方程组的数值问题。

6. 数值积分与常微分方程数值解:熟练掌握数值积分和常微分方程数值解的基本原理和方法,能够求解实际问题的数值积分和数值解。

7. 特征值与特征向量的数值计算:了解特征值和特征向量的数值计算方法,能够求解实对称矩阵的特征值和特征向量。

8. 数值优化方法:掌握数值优化的基本原理和方法,能够利用优化算法求解实际问题的最优解。

四、教学方法1. 理论讲授:通过课堂讲解,系统介绍数值分析的基本理论和方法,让学生掌握知识框架。

2. 示例分析:通过实际问题的案例分析,演示数值分析方法的应用过程和解题技巧。

3. 课堂练习:安排课堂练习和小组讨论,加深学生对知识点的理解和应用。

4. 编程实践:要求学生通过编写程序,运用数值分析方法解决实际问题,提升实践能力和算法设计能力。

《数值分析》考试大纲科目代码2002

《数值分析》考试大纲科目代码2002

《数值分析》考试大纲科目代码:基本内容与要求:1.数值分析的研究对象和内容2.误差知识与算法知识3.向量范数和矩阵范数一、线性方程组的解法1.消元法,包括:顺序消元法、选列主元消元法;2.矩阵三角分解法. 包括:直接三角分解法、选主元的分解、稀疏方程组的解法;3.病态方程组。

包括:矩阵条件数与方程组的性态、病态线性方程组的处理;4.迭代解法。

包括:简单迭代法及其收敛性、迭代法、-迭代法、迭代法。

二、矩阵特征值与特征向量的计算1.幂法和反幂法2.矩阵的分解三、非线性方程与方程组的迭代解法1.非线性方程的迭代法。

包括:简单迭代法的收敛性及收敛速度、迭代法2.非线性方程组的迭代法。

包括:简单迭代法及收敛性、迭代法和离散迭代法四、插值与逼近1.代数插值。

包括:一元函数的插值和插值、插值余项、分段低次插值2.插值。

包括:插值多项式的构造、余项估计和分段三次插值。

3.样条插值。

包括:样条插值的概念、三次样条插值的三弯矩方法4.正交多项式。

包括:正交多项式的定义、性质5.函数的最佳平方逼近及最小二乘拟合。

包括:最佳平方逼进的基本理论、正交多项式系在最佳平方逼近中的应用、曲线拟合、离散型正交函数系在最小二乘拟合中的应用6.曲面插值和拟合五、数值积分1.数值积分的基本概念2.插值型求积公式3.求积公式的收敛性及数值稳定性4.复化求积公式5.型求积公式六、常微分方程初值问题的数值解法1.显式单步法。

包括:显式单步法的一般形式、-法及其相容性、收敛性和稳定性分析。

2.线性多步法。

包括:线性多步法的一般形式、预估-校正法、相容性、收敛性和稳定性分析。

3.常微分方程初值问题的数值解法。

包括:算法的计算公式、稳定性分析。

4.。

(整理)《数值分析》期末复习纲要.

(整理)《数值分析》期末复习纲要.

《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。

特点:可正可负,带量纲。

(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。

注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。

2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。

数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。

P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。

(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。

迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。

主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。

(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。

618数学分析

Word-可编辑2023年年全国硕士研究生统一入学考试数学分析科目考试大纲一、考查目标要求考生控制数学分析课程的基本概念、基本定理和基本主意,能够运用数学分析的理论分析、解决相关问题。

二、考试形式和试卷结构1、试卷满分及考试时光本试卷满分150分,考试时光为180分钟。

2、答题方式答题方式为闭卷、笔试3、试卷题型结构全卷普通由十个大题组成,详细分布为计算题:5~6小题,每题10分,约50~60分分析论述题(包括证实、研究、综合计算):5~6大题,每题15~20分,约75~100分三、考查范围本课程考核内容包括实数理论和延续函数、一元微积分学、级数、多元微积分学等等。

第一章实数集与函数1.了解邻域,上确界、下确界的概念和确界原理。

2.控制函数复合、基本初等函数、初等函数及常用特性。

(单调性、周期性、奇偶性、有界性等)3.控制基本初等不等式及应用。

第二章数列极限1.熟练控制数列极限的ε-N定义。

2.控制收敛数列的常用性质。

3.熟练控制数列收敛的判别条件(单调有界原理、迫敛性定理、Cauchy准则、压缩映射原理、Stolz变换等)。

4.能够熟练求解各类数列的极限。

第三章函数极限千里之行,始于足下1.深刻领略函数极限的“ε-δ”定义及其它变式。

2.熟练控制函数极限存在的条件及判别。

(归结原则,柯西准则,左、右极限、单调有界等)。

3.熟练应用两个重要极限求解较复杂的函数极限。

4.理解无穷小量、无穷大量的概念;会应用等价无穷小求极限;认识等价无穷小、同阶无穷小、高阶无穷小及其性质。

第四章函数延续性1.控制函数在某点及在区间上延续的几种等价定义,尤其是ε-δ定义。

2.认识函数间断点及类型。

3.熟练控制闭区间上延续函数的三大性质及其应用。

4.熟练控制区间上一致延续函数的定义、判断和应用。

5.知道初等函数的延续性。

第五章导数和微分1.控制导数的定义、几何意义,领略其思想内涵;认识单边导数概念及应用。

2.控制求导四则运算法则、熟记基本初等函数的导数。

博士研究生入学考试《数值分析(机电院)》考试大纲

博士研究生入学考试《数值分析(机电院)》考试大纲第一部分考试形式和试卷结构一、考试方式:考试采用闭卷笔试方式,试卷满分为100分。

二、考试时间:180分钟。

三、试卷内容结构:约占 60%,主观题约占 40%。

四、试卷题型结构:试卷由三部分组成:选择/判断、填空、分析/计算。

其中:1、选择/判断题,约占20%。

测试考生对本课程基本概念、基本知识和数值计算常用算法设计与分析方法的掌握程度。

2、填空题,约占40%。

测试考生运用数值计算相关基础知识和基本方法,开展计算、简要分析以及求解实际问题的能力。

3、分析、计算题,约占40%。

测试考生综合运用数值计算理论、典型方法解决综合问题,并开展相关计算方法收敛性以及误差分析等能力。

第二部分考察的知识及范围1.误差度量与数值算法设计误差基本概念:误差来源与分类,截断误差、舍入误差、绝对误差、相对误差,有效数字以及数值稳定性。

函数计算误差分析:一元函数误差估计,四则运算误差估计。

数值算法设计原则:简化计算步骤以节省计算量(秦九韶算法)、减少有效数字损失,选择数值稳定的算法。

2.函数的插值方法以及误差估计插值问题的基本概念:插值问题的描述,插值多项式的存在和唯一性,差商、差分的概念以及性质。

拉格朗日插值:线性插值与抛物插值,n次拉格朗日插值,插值余项公式。

牛顿插值:均差的概念与性质,牛顿插值公式及其余项,差分的概念与性质。

埃尔米特插值:两点三次埃尔米特插值及其余项,n点埃尔米特插值,非标准埃尔米特插值及其余项。

分段低次插值:分段线性插值,分段三次埃尔米特插值。

三次样条插值:三次样条函数建立,三次样条插值方法。

3.函数逼近与曲线拟合正交多项式:函数内积、欧几里德范数,正交函数序列,正交多项式,勒德让多项式,切比雪夫多项式。

最佳平方逼近:最佳平方逼近问题及解法,基于正交函数、勒德让多项式、切比雪夫多项式的最佳平方逼近。

最小二乘法:最小二乘曲线拟合问题的提出和解法,最小二乘计算,最小二乘法的应用(算术平均、超定方程组)。

数学分析考试大纲.doc

《数学分析》考试大纲一、课程性质和目的《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。

它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及有关的《泛函分析》、《微分几何》等限选课程及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。

通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。

整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。

二、课程内容充分条件,必要条件,充要条件,绝对值,不等式,函数,单调函数,周期函数,奇偶函数,复合函数,反函数,初等函数,数列极限,数列极限的性质,单调有界数列,子数列,函数极限,函数极限的性质,函数极限与数列极限的关系,两个重要极限,无穷小量与无穷大量,闭区间套定理,上确界与下确界,确界存在定理,有限覆盖定理,致密性定理,柯西收敛准则,连续,左连续,右连续,间断点,函数在一点连续的性质,中间值定理,有界性定理,最大值与最小值定理,反函数的连续性定理,一致连续性定理,初等函数的连续性,导数,求导法则,微分,微分与导数的关系,高阶导数,高阶微分,参数方程求高阶导数,费尔马定理,洛尔定理,拉格朗日定理,柯西定理,洛必达法则,泰勒公式,单调性判别法,极值,凹凸性,拐点,曲线的渐近线,函数作图,不定积分,换元法,分部积分法,有理函数积分法,三角函数有理式积分,无理函数的积分,平面图形的面积,立体的体积,平面曲线的弧长,曲线的曲率,上极限,下极限,数项级数,正项级数,任意项级数,绝对收敛,条件收敛,无穷乘积,无穷积分,瑕积分,反常积分的收敛与发散,反常积分的计算,柯西主值,函数列,函数项级数,一致收敛,非一致收敛,一致收敛级数的性质,幂级数的收敛域,幂级数的性质,幂级数的展开,富里埃级数,富里埃级数的展开,平面点集,多元函数的极限,多元函数的连续性,偏导数,全微分,方向导数,复合函数的偏导数,一阶全微分形式的不变性,高阶偏导数,高阶全微分,泰勒公式,多元函数的极值,隐函数存在定理,空间曲线的切线与法平面,曲面的切平面与法线,条件极值,含参变量的定积分,含参变量反常积分的一致收敛,含参变量反常积分的分析性质,欧拉积分,二重积分,三重积分,第一型曲线积分,第二型曲线积分,格林公式,平面曲线积分与路径无关的条件,第一型曲面积分,第二型曲面积分,奥高公式,斯托克斯公式。

数值分析考试大纲

西南科技大学本科课程考试大纲《数值分析》课程考试大纲一、本课程考试目的《数值分析》是根据国家教育部关于“数值计算方法”课程的基本要求,为理工科大学的本科高年级所开设的必修课,它着重学习以数学问题为对象,相关模型为背景,其研究适用于工程计算、科学计算的数值计算方法及相关的控制理论。

通过本门课程的学习,使学生具有必要的、正确的、科学思维方法,具有掌握常用的基本的数值计算能力和应用能力,为后继应用计算机进行工程、科学计算打下必要的应用型基础。

二、考试题型及分数分配填空题、选择题(4题、20分)、计算题(6题、60分)、证明题(1题、10分)。

三、课程考核办法平时成绩(包括课堂考勤、课堂练习、课后作业及上级练习等)30%,期末考试(闭卷) 70%。

第一章数值分析中的误差理论及分析主要内容、教学及复习要点:1.了解数值分析中所研究的对象、模型,所用方法和主要特点.2.了解误差产生的原因及四种分类.3.重点掌握近似数精确度的三种具体表示法及相应函数下的绝对误差,相对误差和有效数字.4.熟悉、掌握数值计算中应注意的一些问题.第二章解线性方程组的直接方法主要内容、教学及复习要点:1.理解高斯消去法的基本思想,掌握高斯列主元消去法的具体计算步骤。

2.重点掌握杜氏分解,具体分解方法和步骤;掌握利用杜氏分解求方程组解的计算公式。

3.掌握解三对角方程的追赶法。

4.熟悉向量范数和矩阵范数的概念,并掌握几种常用的向量与矩阵范数的计算。

5.理解方程组的“状态”和条件数,会判断其状态并求条件数。

6.掌握求解超定线性方程组的最小二乘法。

第三章解线性方程组的迭代方法主要内容、教学及复习要点:1.了解迭代法的一般形式,理解迭代格式收敛的定义,会构造相应问题的迭代格式。

理学院2.重点掌握Jacobin迭代格式的分量形式及矩阵形式,以及用J迭代法求解线性方程组近似解的步骤。

3.重点掌握高斯—赛德尔迭代格式的分量形式及矩阵形式,以及用高斯—赛德尔迭代法求解线性方程组近似解的步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试目标及考试大纲
本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。

通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。

本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。

考试内容包括以下部分:
绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。

非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。

解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。

解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。

插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。

曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。

最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。

本段加黑斜体内容理论推导可以淡化,但概念需要理解。

数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。

正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。

本段加黑斜体内容理论推导可以淡化,但概念需要理解。

常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

本套题库均采用闭卷考试,卷面总分为100分。

试题形式分为判别正误、多项选择、填空、解答和证明等多种题型。

其中判断题、多项选择题和填空题覆盖整个内容范围,题量多而广,重点集中在基本概念、公式和方法的构建与处理思想等方面,此类题型主要用于考查学生对整体内容的理解与掌握情况;解答题重点放在主要的计算技术和方法的具体实现过程,主要考查学生对主要计算技术、技巧和方法理解与掌握情况;证明题主要集中在主要的计算技术和方法的分析过程,主要考查学生的理论分析能力和知识的综合运用能力。

本课程的考试方法与要求:期末闭卷考试,按时完成上机习题。

学习合格条件:考试卷面成绩 60且上机习题符合要求,二者缺一不可。

综合成绩:原则上=卷面成绩,但可参考上机习题完成情况作微调。

相关文档
最新文档