一次泵变流量系统技术研究1

合集下载

建筑动力设计中一次泵变流量系统的关键问题探究

建筑动力设计中一次泵变流量系统的关键问题探究

2012年第30期(总第45期)科技视界Science &Technology VisionSCIENCE &TECHNOLOGY VISION科技视界0引言中央空调水系统首要的目的是为各空调末端提供消除余热或补偿热损耗所需的冷水或热水,然后在满足这个要求的前提下尽可能地节能,即以最少的能耗提供最好的服务。

为达到以上要求,冷水系统经过了大约70年的发展,并且还在继续完善。

在这个发展过程中总是不断的遇到新问题如:系统冷水温差过小、水系统阻力损失过大、水系统管网水力不平衡等问题,诸如此类的问题,使得系统越来越复杂,但这些问题的不断解决最终推动了变流量技术的发展。

1冷水机组的最小流量在一定的流量变化范围内冷水机组实行变流量运行,对主机性能的影响不大,但对于冷水机组的最小流量可以达到多少,业内的观点分歧还比较大。

有的冷水机组厂商推荐其主机的最小流量可以低于30%,而有的厂商推荐其主机的最小流量不宜低于70%,但主机可以在50%流量时安全运行,当流量低于50%时,主机就会自动停机保护起来。

而暖通界的大多数的设计专家认为最低到50%就可以了。

关键一点,有很多专家出于安全考虑,认为变频的范围越窄,可能对于系统越安全;另一方面,就算主机可以变得那么多,但是真正用到30%到40%可能不一定经济,频率很低的时候水泵的全效率也会很低,并不合理。

2冷水机组的流量变化率在一次泵变流量的系统中,在主机的运行方面,其流量的运行范围的只是一个重要因素,更考验主机关键的并不是这个因素,考验主机的是流量变化率,即每一分钟主机能够承受的流量变化是多少。

当一台主机已经满载运行的时候,随着末端负荷增加,这时应该要增加一台主机,当第二台主机并联开启时,已经在运行的那台主机会在短时间内有一半的流量卸载(假若两台主机同等大小),由于蒸发器中水流量的较快变化会引起控制不稳定和压缩机的回液与停机,造成机组保护性停机。

3旁通阀和旁通管选择及控制在变流量一次泵水系统中,为了确保冷水机组水流量高于其最小允许流量,在供回水干管之间必须设置旁通管和旁通阀(它的存在不利于系统的节能)。

探讨冷冻水一次泵变流量系统的研究

探讨冷冻水一次泵变流量系统的研究

探讨冷冻水一次泵变流量系统的研究摘要分析了一次泵变流量系统中用户侧和冷热源侧流量和温差变化不同步的原因,指出了变化不同步带来的问题,根据不同的水泵控制形式,给出了不同的旁通控制方法,并给出了各种旁通控制法的旁通流量计算公式。

关键词一次泵变流量系统旁通流量AbstractAnalyses the causes for out-of-step changes in flow rate and temperature difference of userside and cold/heat source side. Points out the problems caused by the out-of-step changes. Presents differentbypass control methods and corresponding calculating formulas for bypass flow rate according to differentpump control methods.Keywordsvariable primary flow system, Bypass flow1概述一次泵定流量系统是指系统用户侧的流量变化而冷热源侧的流量恒定的一次泵空调冷水系统,为了平衡用户侧和冷热源侧的流量,系统中需要设置旁通管。

一次泵变流量系统是指系统用户侧和冷热源侧的流量都随负荷变化而变化的一次泵空调冷水系统,用户侧和冷热源侧的流量一般被认为是同步变化的,因此很容易认为该系统可以取消旁通管。

该问题是一次泵变流量系统研究的一个热点问题,业内主要存在两种截然不同的观点。

一种观点认为,冷水机组存在一个流量变化下限,当流量小于下限值时,冷水机组有冻裂等危险,因此认为系统需要设置旁通管;而另一种观点认为,实际工程的流量通常不会小于这个流量下限,当设置多台冷水机组并联运行时,流量下限更小,因此认为旁通管可以取消。

建筑动力设计中一次泵变流量系统的关键问题探究

建筑动力设计中一次泵变流量系统的关键问题探究

建筑动力设计中一次泵变流量系统的关键问题探究【摘要】变流量水系统是在末端设备处(如风机盘管、组合式空调箱等空气处理器)设电动二通阀,阀门的开启度由室内温度控制,对通过末端盘管的水流量进行调节,从而保证室内温度在允许范围内波动,在冷冻机房内通过加设变频器对水泵进行调速来实现输送系统水流量的变化,使冷冻机房冷冻水输出量与末端设备的需求量一致。

由于水泵的功率与水泵转速的三次方成正比,因此,采用水泵变频调速控制的变流量空调水系统理论上具有很大的节能空间。

变流量系统的推广对节约能源,缓解我国电力瓶颈制约具有重要意义。

【关键词】建筑动力;流量调节;建筑节能;可持续发展;变流量技术;变频技术0 引言中央空调水系统首要的目的是为各空调末端提供消除余热或补偿热损耗所需的冷水或热水,然后在满足这个要求的前提下尽可能地节能,即以最少的能耗提供最好的服务。

为达到以上要求,冷水系统经过了大约70年的发展,并且还在继续完善。

在这个发展过程中总是不断的遇到新问题如:系统冷水温差过小、水系统阻力损失过大、水系统管网水力不平衡等问题,诸如此类的问题,使得系统越来越复杂,但这些问题的不断解决最终推动了变流量技术的发展。

1 冷水机组的最小流量在一定的流量变化范围内冷水机组实行变流量运行,对主机性能的影响不大,但对于冷水机组的最小流量可以达到多少,业内的观点分歧还比较大。

有的冷水机组厂商推荐其主机的最小流量可以低于30%,而有的厂商推荐其主机的最小流量不宜低于70%,但主机可以在50%流量时安全运行,当流量低于50%时,主机就会自动停机保护起来。

而暖通界的大多数的设计专家认为最低到50%就可以了。

关键一点,有很多专家出于安全考虑,认为变频的范围越窄,可能对于系统越安全;另一方面,就算主机可以变得那么多,但是真正用到30%到40%可能不一定经济,频率很低的时候水泵的全效率也会很低,并不合理。

2 冷水机组的流量变化率在一次泵变流量的系统中,在主机的运行方面,其流量的运行范围的只是一个重要因素,更考验主机关键的并不是这个因素,考验主机的是流量变化率,即每一分钟主机能够承受的流量变化是多少。

一级泵变流量系统控制方法研究

一级泵变流量系统控制方法研究

一级泵变流量系统控制方法研究作者:魏锁鹏陆朴荣张丽蓉来源:《甘肃科技纵横》2024年第04期摘要:建筑的供暖、通风与空调系统中,合理设计并高效运行是解决空调耗能的关键。

在中央空调一次泵变流量水系统实际的运行过程中,水泵往往不能按照设计要求进行变频,因而达不到理想的节能效果。

文章通过研究一级泵变流量系统部分负荷下管网特性与阻力系数的变化,采用定性分析法,分析自然温降法、温差控制法、压差控制法、最小阻力法这4种控制方法的原理、特点、局限性及适用范围,以期指导选择出在水泵运行过程中合理的控制方法,从而实现空调水系统的节能运行。

关键词:一级泵;变流量;控制;节能;低碳中图分类号:TU831 文献标志码:A作者简介:魏锁鹏(1978-),男,大学本科,高级工程师,注册设备工程师(暖通空调),主要研究方向:供热通风与空调工程设计、审核等。

0 引言公共建筑的全年能耗中,供暖空调系统的能耗约占10%~50%[1],国家标准《近零能耗建筑技术标准》(GB/T 51350—2019)的实施,大力推动了节能建筑的建设与发展。

近零能耗建筑设计技术路线强调通过建筑自身的被动式、主动式设计,大幅度降低建筑供热供冷的能耗需求,使能耗控制目标绝对值降低[2]。

在主动式设计中,空调变流量水系统设计和运行是空调节能的关键。

空调变流量冷冻水系统分为一级泵压差旁通变流量系统、一级泵变频变流量系统和二级泵变流量系统[3]。

一级泵系统冷水机组变流量运行时,空调水系统的控制要求是供、回水总管之间的旁通调节阀可采用流量、温差或压差控制,水泵的台数和变速控制宜根据系统压差变化控制[4]。

文章对一级泵压差旁通变流量系统及一级泵变频变流量系统,以冷源侧阻力数不做调整(即不做加减机、不调整支路阀门)为例,探讨部分负荷下各系统的阻力变化,以及各控制方法的特点。

1 一级泵变流量部分负荷系统特性1.1 管网与水泵特性一级泵压差旁通变流量系统原理图见图1。

该系统要求流过蒸发器的冷冻水流量不变,因此冷冻水泵无法变速调节,系统在末端调节流量引起的盈虧通过设置旁通来补偿,通过在供回水干管间设置由压差控制的旁通回路(旁通管及压差电动阀)实现部分负荷下地分流。

一次泵变流量系统(word文档良心出品)

一次泵变流量系统(word文档良心出品)

随着设计水平及机械加工水平的进步,冷水机组的效率越来越。

这使得冷水机房的能耗结构发生了较大的变化。

水泵的能耗比例已经成为一个比较重要部分,所以如何在水泵的节能措施上去的取得进展已成为一项重要课题。

通常来说,空调系统是按照满负荷设计的,当负荷变化时,虽然冷水机组可以根据负荷调节相应的冷量输出,但是常规冷水系统在在冷水机组的蒸发器侧的流量配置是固定的,定流量的冷冻水泵能耗没有跟随主机的部分负荷运行而变化水量。

也没跟着冷水机组减载。

近年来在电子及自控技术的辅助下,冷水机组的制造技术得到有效提高,尤其是机组对负荷变化的响应时间大大缩短。

先进的冷水机组可以在极大的范围内变流量运行;同时,与通过供水温度来控制机组负荷一样,变蒸发侧水流量控制机组负荷运行,同样能够保证出水温度在允许的偏差范围内正常运行。

因此,当负荷变化时,可以使冷水机组的蒸发器侧流量随用户的需求而变化,从而节约蒸发器侧水泵的能耗,同时可使用流量保护措施使机组在流量允许的范围内运行。

在管路系统固定不变的前提下,变频水泵的效率特性和水系统的阻力特性接近,理论上水泵的能耗与流量成3次方的关系,系统的阻力随着部分负荷时流量的下降而下降[(水量1/水量2)2=水阻1/水阻2]。

如果蒸发侧的流量允许随着负荷的变化而变化,那么蒸发侧的水泵就无需全年保持夏季设计日的满载流量,在部分负荷运行时段,水泵如冷水机组一样,部分负荷时流量减小,与此同时水泵的能耗大幅降低从而达到节能的目的。

目前,较通行的水系统设计通常有两种方式:1.一次泵定流量系统2.二次泵变流量系统。

相对于这两一次泵变流量系统中选择可变流量运行的冷水机组,当机组运行时,蒸发器的供回水温差基本恒定,蒸发侧流量随负荷侧流量的变化而改变,从而达到“按需供应”,并使得降低水泵在部分负荷时的供水量成为可能,最终降低系统运行能耗。

末端冷量由冷冻水量调配,冷水机组生产的冷量由流经蒸发器的水流量和相对固定的温差决定。

一次泵变流量系统研究现状综述

一次泵变流量系统研究现状综述

一次泵变流量系统研究现状综述【摘要】本文对一次泵变流量系统进行了综述,包括其基本原理、应用领域、研究方法、发展趋势、优势与劣势等方面的内容。

通过对该系统的分析,可以发现其在工业领域具有广泛的应用前景,并且在能源节约和环保方面有着重要作用。

未来发展方向包括提高系统的智能化程度、降低成本和提高系统的稳定性。

而重点研究方向则需要注重系统的优化设计和性能提升。

为了实现系统的创新,需要不断探索新的技术和方法,推动一次泵变流量系统向更高水平发展。

【关键词】一次泵变流量系统、研究现状、基本原理、应用领域、研究方法、发展趋势、优势、劣势、未来发展方向、重点研究方向、创新思路。

1. 引言1.1 一次泵变流量系统研究现状综述一次泵变流量系统是一种能够根据需要自动调节流量的系统,能够显著提高系统的效率和节能性能。

目前,在工业生产、农业灌溉、城市供水等领域得到广泛应用。

随着科技的不断发展,一次泵变流量系统的研究也在不断深入。

目前,关于一次泵变流量系统的研究主要集中在以下方面:一是系统的基本原理研究,包括系统的结构设计、工作原理和控制方法等;二是系统在各个领域的应用研究,包括在工业生产中的应用、农业灌溉中的应用等;三是系统的研究方法,包括数值模拟、实验验证等方法;四是系统的发展趋势,包括智能化、自适应等方向;五是系统的优势与劣势,包括节能、稳定性等方面。

一次泵变流量系统的研究现状较为丰富,但仍存在许多问题有待解决。

未来,可以从提高系统的智能化水平、优化控制方法、降低成本等方面进行研究,以进一步推动一次泵变流量系统的发展。

2. 正文2.1 一次泵变流量系统的基本原理一次泵变流量系统的基本原理是指通过对泵的转速或出口阀门的开度进行调节,来实现泵的流量输出的调节。

在一次泵变流量系统中,通常会采用变频器或调速器来控制泵的转速,或者采用调节阀门的开度来实现流量的调节。

通过改变泵的转速或阀门的开度,可以改变泵的输出流量,从而实现系统中流体的输送和控制。

一次泵变流量水系统模拟和存在问题分析

一次泵变流量水系统模拟和存在问题分析提纲:1.泵变流量水系统模拟的原理和方法2.存在问题的分析和解决方法3.影响泵变流量水系统效率的因素4.常见的泵变流量水系统故障及处理方法5.未来泵变流量水系统设计的趋势1.泵变流量水系统模拟的原理和方法泵变流量水系统是一种以电脑控制的方式调整水泵运行的水系统。

它的原理是通过对变频器的控制,达到控制水泵的流量和压力的目的。

泵变流量水系统的模拟通常使用计算机仿真软件来进行。

在模拟过程中,需要对系统的元器件进行建模,并设置泵运行的条件和工作情况。

通过对模拟结果的观察和分析,可以得到泵变流量水系统的性能、优点和缺点等关键信息。

2.存在问题的分析和解决方法泵变流量水系统存在以下问题:(1)压力波动大,影响水质和水压稳定性。

(2)温度变化会对系统的运行稳定性造成影响。

(3)水泵的噪声和振动都较大,需要通过合理设计和处理。

针对这些问题,可以通过以下方法进行解决:(1)采用合适的泵变流量水系统设计并设定泵的最佳工作条件。

(2)选择高质量的泵和管道,以减少噪声和振动。

(3)对泵房进行适当的隔音处理,也可采用柔性连接器或减震器等辅助装置,减少泵的振动和噪声。

3.影响泵变流量水系统效率的因素泵变流量水系统效率的因素有以下几个方面:(1)管道直径和管道布局的合理性:管道分支、弯头等不合理的管道设置会降低泵系统的效率。

(2)泵的类型和性能:不同类型的泵的工作效率、流量和压力不同。

(3)系统的水位和水压:水位过高、压力过大都会影响泵的效率。

(4)水泵的驱动方式:不同的驱动方式会影响泵的效率和运行稳定性。

(5)电压和电流稳定性:电压和电流稳定对保持泵的稳定性和效率至关重要。

4.常见的泵变流量水系统故障及处理方法泵变流量水系统常见故障有以下几种:(1)系统压力过高或过低:泵运行不稳定,可能是泵的进出口管道有堵塞或者泵不适宜运行条件不适当等因素造成,需要清洗管道或进行更换操作。

(2)泵封漏玻璃纤维及胶垫密封:泵封漏玻璃纤维及胶垫密封故障比较常见,可通过更换封装件解决。

关于一-二次泵变流量系统的探讨

关于一\二次泵变流量系统的探讨摘要以实际工程项目为例,分析选择一次泵或二次泵系统的优越性,并对该项目水系统形式进行确定,进而总结出大型中央空调系统一次泵或二次泵选择的原则。

关键词一次泵二次泵变流量总投资运行费用☆艾爱,女,1984.01,本科,学士,工程师,设计师0000引言引言引言引言一次泵、二次泵变流量系统是目前暖通行业中央空调水系统常用的两种形式,但具体工程设计中如何选用这两种系统并没有统一的结论,《实用供热空调设计手册》和相关文献中仅给出一些笼统的概念,难以指导复杂的工程。

本文将结合具体工程,分析综合造价、技术、经济性三方面因素,来总结一次泵和二次泵系统选择的原则。

1111一次泵变流量系统与二次泵变流量系统简介一次泵变流量系统与二次泵变流量系统简介一次泵变流量系统与二次泵变流量系统简介一次泵变流量系统与二次泵变流量系统简介1.11.11.11.1一次泵变流量系统一次泵变流量系统一次泵变流量系统一次泵变流量系统一次侧配置变频泵,冷水机组配置电动阀,冷水机组与水泵不必一一对应,启停可分开控制,旁通管设置压差旁通阀,系统末端设置平衡阀。

变频水泵的转速一般由最不利环路的末端压差变化来控制。

其典型配置如下图所示:图1一次泵变流量系统原理图1.21.21.21.2二次泵变流量系统二次泵变流量系统二次泵变流量系统二次泵变流量系统冷水机组配置电动阀,水泵与机组联动控制,旁通管设置压差旁通阀,系统末端设置平衡阀。

一次泵克服冷水机组蒸发器到平衡管的一次环路的阻力,二次泵克服从平衡管到负荷侧的二次环路的阻力。

二次泵宜根据系统最不利环路的末端压差变化为依据,通过变频调速来保持设定的压差值。

其典型配置如下图所示:图2二次泵变流量系统原理图2222分析工程实例分析工程实例分析工程实例分析工程实例以武汉著名园区光谷金融港大型中央空调系统为例。

该项目总建筑面积524700m2,地上建筑面积403700m2,地下建筑面积121000m2,共30栋楼。

一次泵分区并联变流量,二次泵变流量

一次泵分区并联变流量,二次泵变流量一次泵分区并联变流量,二次泵变流量一、一次泵分区并联变流量1.1 什么是一次泵分区并联变流量?一次泵系统是指供水系统的原始泵站,它将水从供水站点输送到各个用水单位。

而一次泵分区并联变流量是指在不同用水量的情况下,通过控制一次泵的数量和运行状态来实现变化的流量输出。

这种方式能够更加精准地满足不同用水单位的需求,提高供水系统的效率和节能。

1.2 一次泵分区并联变流量的优势采用一次泵分区并联变流量的方式,能够实现以下优势:- 实现用水需求的精准匹配,避免浪费;- 调节供水系统的压力和流量,保证供水的稳定性;- 提高泵站的运行效率,延长设备的使用寿命;- 节约能源,降低运行成本。

1.3 实施一次泵分区并联变流量的关键技术在实施一次泵分区并联变流量时,需要考虑以下关键技术:- 流量控制技术,包括流量传感器、调节阀等设备的选择和布置;- 运行控制技术,确保泵站在不同负荷下的稳定运行;- 自动化控制技术,实现智能化的监控和运行管理。

1.4 一次泵分区并联变流量的应用案例在城市供水系统、工业生产中以及建筑物的供水系统中,一次泵分区并联变流量技术都有着广泛的应用。

通过实施该技术,可以实现供水系统的智能化管理,提高供水效率,降低运行成本,为社会和企业带来实实在在的经济和环保效益。

二、二次泵变流量2.1 什么是二次泵变流量?二次泵系统是指在供水系统的用水单位内部,用于进一步提升水压和流量的泵站。

而二次泵变流量是指通过控制二次泵的运行状态和速度,实现不同用水量下的变化流量输出。

这种方式能够更好地满足用水单位的需求,提高供水系统的灵活性和稳定性。

2.2 二次泵变流量的优势采用二次泵变流量的方式,能够实现以下优势:- 适应不同用水单位的需求,保证用水的稳定性和压力;- 提高供水系统的灵活性和响应速度,更好地应对突发情况;- 降低用水单位的能耗,减少供水系统的运行成本;- 提高供水系统的可靠性和安全性,降低维护和维修成本。

一次泵变流量


2.3.3、由于冷冻机针对其蒸发器水流量变化速率有一定要求,相应地冷冻水泵对此也有具体限定,要求实现稳定变化,一般来讲,VPF系统水流量变化速率设定为每分钟流量改变不超过10%,由此类推,变频器工作将与此保持同步。
2.3.4、冷冻水泵的变频控制是VPF系统一重要环节,其控制原理可简述为:以供回水总管末端最不利的压差设定值作为控制目标,以该处的压差测量值作为过程检测变量,以变频调速水泵作为控制系统的执行机构,对冷冻水供水进行PID调节控制,控制目标是使过程检测变量趋近于设定值。
在目前实际运用中,针对泵机组合形式,冷冻水泵启停数量的控制可根据用户侧水流量实际需求同时结合单台水泵设计流量值确定,与前面的水泵控制手法比,水泵的保养和节能状况略为逊色,但回避了技术支持及前期增加投入的问题,作为一折衷的方法因较为实用而为人们所采纳。
2.2、冷冻水泵的选择
根据设备设计安装位置、空间及承压,结合设计流量及扬程,决定选用何种类型水泵及其所配机械密封,选泵时,水泵设计工作点尽可能在高效区偏右一点区域,以实现水泵保持在高效区变频运行,此点与常规选泵有异,传统选泵往往将水泵设定工作点确定于高效区偏左一点区域。
事实远非如此,VPF系统的设计复杂性相当大,笔者认为设计首先面对的是如何保护冷冻机组,即要维持蒸发器最低流量以及水流量变化的速率控制问题,其次是如何保证整个VPF系统运行的经济性及可靠性等。客观地看,VPF系统最大的缺点在于其控制的复杂性,设计人员应结合工程特性,因地制宜,妥善解决控制问题,确保该技术在良好的工作环境中健康发展。
1.1、五年前冷水机组蒸发器管内速度一般为3英尺/秒~11英尺/秒,目前冷冻机制造厂商经过试验证明,冷水机组可以通过改变换热管管型和换热管回程数实现蒸发器内水流速度低至1.5英尺/秒,这对VPF系统设计无疑是个好消息,我们可以在不增加旁通流量的同时大大扩展了冷冻机组的有效操作能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次泵变流量系统技术的应用研究论文上传:otuoccdd1982论文作者:李光华 陆琳莉 您是本文第143位读者摘要: 从应用技术角度出发,针对一次泵变流量系统设计的诸多环节予以探讨,提出了完善的一次泵变流量系统所需的必要条件及设计注意要点。

关键词: 一次泵变流量系统VPF 冷冻水泵 变频 旁通阀为什么要上传论文?如何上传论文?一次泵变流量系统(Variable-Primary-Flow System ,以下简称VPF 系统)诞生的历史并不长,空调行业人士针对该系统的认识存在一渐进接受的过程。

近几年来随着空调DDC 控制技术的迅速发展,冷冻机组技术性能的不断提高,VP F 系统技术的先进性、可靠性及经济性已为市场所接受,不容置疑,VPF 系统的成功与否首先取决于设计,其中包括合理选用设备并实现其完美组合,设备控制和辅助控制元件之间的协调等。

笔者试图从实际运用角度出发,分析VPF 系统与传统变流量系统之间的差异,针对VPF 系统的各个设计环节或要点予以说明。

一、VPF 系统的构成简介目前,VPF 系统尚无严格的定义,笔者就其基本特征作一概述,通过调节用户端二通阀改变流经末端设备的冷冻水流量以适应末端用户空调负荷的变化,同时采用一定的手段,使空调系统的总循环水量与末端的需求量相吻合,通过冷冻机蒸发器的水流量确保在安全流量范围内,维持冷冻机蒸发温度和蒸发压力的相对稳定。

二、VFP 系统控制原理基本要点表面上VPF 系统并不复杂,设备管路配置与传统设计形式差异不大,系统运行原理较为简单明了,根据外网负荷的变化,通过变频调节水泵转速,使系统循环水量维持在刚好满足负荷需求的水平,保证负荷侧(包括最不利点)获得足够的循环压差并尽可能降至最低,以期降低水泵运行能耗的目的。

事实远非如此,VPF 系统的设计复杂性相当大,笔者认为设计首先面对的是如何保护冷冻机组,即要维持蒸发器最低流量以及水流量变化的速率控制问题,其次是如何保证整个VPF 系统运行的经济性及可靠性等。

客观地看,VPF 系统最大的缺点在于其控制的复杂性,设计人员应结合工程特性,因地制宜,妥善解决控制问题,确保该技术在良好的工作环境中健康发展。

VPF 系统自控复杂程度较常规系统不可同日而语,换而言之,VPF 系统的成功与否,很大程度取决于自控设计的完善和设备及辅件选择的合理。

三、VPF系统设计要点及设备选用原则一个完善的VPF系统,需要整套精细化控制方案,为实现预定的控制目标,应针对系统设计方案各环节周密考虑。

1、冷冻机配置的选择1.1、五年前冷水机组蒸发器管内速度一般为3英尺/秒~11英尺/秒,目前冷冻机制造厂商经过试验证明,冷水机组可以通过改变换热管管型和换热管回程数实现蒸发器内水流速度低至1.5英尺/秒,这对VPF系统设计无疑是个好消息,我们可以在不增加旁通流量的同时大大扩展了冷冻机组的有效操作能力。

根据相关资料,冷冻机蒸发器最小水流量限值应小于或等于冷冻机设计流量值的60%。

1.2、冷冻机对于冷冻水流速变化的速率较为敏感,每分钟流量改变过大将造成冷冻机的停机保护,故设计选择冷冻机时应重视其水流量最大变化速率的限制,应考虑设备相应的宽容度问题,这对系统的稳定运行无疑是重要的,一般来说冷冻机蒸发器每分钟流量改变不应超过10%,极限为30%。

1.3、通常空调设计中,常常出现多台冷冻机组并联运行的情况,针对VPF系统,冷冻机尽可能选择同一规格型号,如规格型号无法保持一致的话,建议各冷冻机蒸发器额定水阻力尽可能保持在相等的水平,这样,当外网空调负荷导致空调冷冻水流量发生变化时,流经各冷冻机蒸发器的水流量可基本实现同步等比例变化。

2、冷冻泵及其控制2.1、泵机配置的对应关系问题,在具体工程设计中,常见冷冻水泵与冷冻机的对应关系往往有两种形式。

冷冻水泵单独与冷冻机一一对应串联,在传统设计中经常出现,其优点明显,各冷冻机蒸发器水流量直观上可得到可靠的保证,按常见的自控方法,由空调用户端实际瞬间总负荷辅以冷冻机工作累计时间决定冷冻机启停,而冷冻水泵启停与冷冻机相对应实现联锁,应该讲该种配置方法从自控角度上看较为简便,但此种设计须有一个前提,即冷冻机及相应的冷冻水泵均须为同一规格产品,如冷冻机及水泵存在规格大小不一并存的情况,在系统变流量过程中,各冷冻机并联回路必然产生水力不平衡的问题,即大泵将对小泵产生干扰,令水泵的能源消耗在不平衡方面,而非系统工作方面,同样大小水泵的同步变频控制也难以实现。

同一规格的冷冻水泵呈并联形式,单母管与冷冻机组配接,冷冻水泵与冷冻机在控制方面不呈一一对应关系,这是目前国外较为流行的设计方式,冷冻机启停数量依旧由用户端空调瞬间总负荷决定,而冷冻水泵启停数量的控制完全脱离冷冻机,根据用户端空调水流量实际需求值并同时结合水泵效率,马达效率及变频器效率分析决定水泵启停台数。

换而言之,冷冻机运行台数不一定对等于冷冻泵运行台数,这是一种较先进的控制手法,其优点通用性强,针对大小冷冻机组合的情况,避免了冷冻泵变频工作时相互干扰的问题,与图1相比,冷冻水泵运行能耗得到了最大程度的节省,缺点是将增加一定成本。

冷冻机应配设联锁启闭的电动阀,水泵变频控制方面需泵厂提供全套水泵工作水力曲线用以编程,功率感应器亦在增设范围,目前国内能承担此项机电一体化工作的单位为数不多,相信在不远的将来,随着市场的需求及技术水平的不断提高,这种比较完善的控制方法将逐渐为人们所接受。

在目前实际运用中,针对泵机组合形式,冷冻水泵启停数量的控制可根据用户侧水流量实际需求同时结合单台水泵设计流量值确定,与前面的水泵控制手法比,水泵的保养和节能状况略为逊色,但回避了技术支持及前期增加投入的问题,作为一折衷的方法因较为实用而为人们所采纳。

2.2、冷冻水泵的选择根据设备设计安装位置、空间及承压,结合设计流量及扬程,决定选用何种类型水泵及其所配机械密封,选泵时,水泵设计工作点尽可能在高效区偏右一点区域,以实现水泵保持在高效区变频运行,此点与常规选泵有异,传统选泵往往将水泵设定工作点确定于高效区偏左一点区域。

马达的功率须覆盖水泵在实际应用中可能的工作区域,同样变频器功率亦应覆盖水泵运行的输入功率。

此外,由于变频水泵在低速时可能产生扭力上的振动,水泵联轴器的中间垫片选用EPPM材质为佳。

2.3、冷冻水泵的变频控制2.3.1、冷冻水泵最小流量:随着用户端空调负荷的减少,空调水流量相应减少,当流量太小时,水泵容易产生热能堆积,径向、轴向推力增加,从而容易损害水泵的轴承、轴封,影响水泵寿命,须设置一最小流量的限制以防止低流量造成的负面效果,根据有关资料,建议最小流量为水泵最佳效率点流量的25%。

2.3.2、水泵的最低转速:为确保水泵马达的正常散热,水泵转速不应低于正常标准值的30%,如水泵转速低于30%,变频器效率下降,水泵效率亦减小,而马达效率则剧跌,变频水泵水电效率=水泵效率*马达效率*变频器效率,显而易见,低转速带来的能源节省已被更低的水电效率所带来的能耗所抵消,在空调实际应用过程中,水泵转速低于30%标准值是毫无意义的,故水泵变频控制器应设定频率变化下限。

2.3.3、由于冷冻机针对其蒸发器水流量变化速率有一定要求,相应地冷冻水泵对此也有具体限定,要求实现稳定变化,一般来讲,VPF系统水流量变化速率设定为每分钟流量改变不超过10%,由此类推,变频器工作将与此保持同步。

2.3.4、冷冻水泵的变频控制是VPF系统一重要环节,其控制原理可简述为:以供回水总管末端最不利的压差设定值作为控制目标,以该处的压差测量值作为过程检测变量,以变频调速水泵作为控制系统的执行机构,对冷冻水供水进行PID 调节控制,控制目标是使过程检测变量趋近于设定值。

简而言之,与一/二次泵变频控制原理比,VPF系统水泵压差控制基本点相似,但增加了水量变化速率,最小转速限定等控制环节。

此外,冷冻水泵采用温差控制方法的工程时有出现,从理论上讲,温差控制法同样可以实现节能目的。

但这类设计有一定限制,外网各空调用户负荷均需按同一规律性同步变化,否则容易出现空调管网水力失衡问题,影响空调品质,事实上具体工程很少存在这种理想情况,即便空调末端配设电控阀,由于空调系统负荷-流量非线性程度因工程而异,经济节能性受到一定影响,笔者建议尽量不采取此类方法。

2.3.5、冷冻水泵是采用全变频还是一变多定的形式,目前国内存在不同看法,笔者认为就VPF系统而言,一变多定这一传统形式节能性较合变频形式为差,定速泵的的存在,往往导致定速泵与变速泵并联运行时,变速泵高速运行维持较高压力导致能耗增加,同时一变多定形式也容易造成变速泵的磨损,目前变频器价格较为合理,故笔者认为冷冻水泵采用全变频形式较为稳妥。

3、旁通管及其控制阀门的配置原则冷冻机蒸发器最小水流量的数值由冷冻机生产厂商根据设计工作提供,一般不小于50%设计额定流量,出于安全因素考虑,通常确定为蒸发器标准水流量的60%,此项数值在VPF系统设计中至关重要,必须由冷冻机生产厂家商予以确认,从而确保VPF系统的正常工作。

在VPF系统设计中,旁通管及其控制调节阀门是一重要环节,其唯一的作用就是确保流经每台工作的冷冻机蒸发器的冷冻水流量在任何情况下均不低于设备所要求的最小流量,基于此点,笔者认为设计人员应注意旁通管规格确定,控制阀门的选择以及系统响应时间等诸多要素,以期达到稳定运行之目的。

3.1、旁通管规格及其设置原则如何恰当地选择旁通管口径,原则上该旁通管的流通能力须保证冷冻机蒸发器的最低水流量,在最不利的情况下,末端空调空调流量趋于极低值时,旁通管将承担单台冷冻机保证正常运行所需的最低流量,根据有关专业单位的实际操作经验,旁通管长度尽可能控制在空调供回水总管管径约3~5倍,在其最大流量的情况下,水损失尽可能低于1.5英尺水柱,管径相应予以确定,当冷冻机采用大小搭配的形式时,旁通管宜根据最大型号冷冻机所要求的最低流量确定管径,以确保系统的宽容度,同时保留以传统模式(一次水泵均全部定速)工作的可能性。

3.2、旁通控制调节阀门的选用及控制VPF系统冷源侧旁通管应相应配设合适的高质量的等比例调节控制阀门和电动驱动器,须注意的是,普通蝶阀不能提供合适的水流曲线。

VFP系统中较少采用,同样电动驱动器的选择应确保其扭距可克服阀门关闭压差。

旁通阀的选型不能根据旁通管管径确定,而是根据计算而得的阀门系数Cv值选择,同时辅以校验阀门水流速度,原因是水流速度过高容易产生气蚀和噪音,一般来讲,流速不可超过16英尺/秒(事实上有些品牌的压差调节阀还要保守,最高为10英尺/秒),根据设计经验,阀门前后压差一般在2~3Psi之间,而旁通阀的流量为最大规格冷冻机的最低流量,正常情况,阀门选择50~60的开启度,而非90度(即全开)。

相关文档
最新文档