36探索三角形全等的条件练习二
初中数学 探索三角形全等的条件练习题

探索三角形全等的条件练习题1、已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。
2、已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?3、已知AB =CD ,BE =DF ,AE =CF ,问AB ∥CD 吗?4、已知在四边形ABCD 中,AB =CD ,AD =CB , 问AB ∥CD 吗?说明理由。
5、已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,问ABD ≌⊿ACE .吗?为什么?6、已知CD ∥AB ,DF ∥EB ,DF =EB ,问AF =CE 吗?说明理由。
7、已知BE =CF ,AB =CD , ∠B =∠C .问AF =DE 吗?8、已知AD =CB , ∠A =∠C ,AE =CF ,问EB ∥DF 吗?说明理由。
9、已知,M 是AB 的中点,∠1=∠2,MC =MD ,问∠C =∠D 吗?说明理由。
10、已知,AE =DF ,BF =CE ,AE ∥DF ,问AB =CD 吗?说明理由。
11、已知∠1=∠2,∠3=∠4,问AC =AD 吗?说明理由。
12、已知∠E =∠F ,∠1=∠2,AB =CD ,问AE =DF 吗?说明理由。
A C DB 12 3 4A B C D E F 1 2AB C DF E A B D EF D C FEA B A D E B C 1 2A D C EF BA CD BEF BA D F EC M A B CD 1 2 D C FE A B13、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。
14、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15、已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。
16、已知CE ⊥AB ,DF ⊥AB ,AC ∥DB ,AC =BD ,问CE =DF 吗?说明理由。
第3讲探索三角形全等的条件(二)

(1)一个锐角和这个角的对边对应相等;( )
(2)一个锐角和斜边对应相等;
()
(3)两直角边对应相等;
()
(4)一条直角边和斜边对应相等. ( )
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SA根据全等三角形的判定来判断.
4、【答案】A 【解析】解:∵OM=ON,CM=CN,OC 为公共边, ∴△MOC≌△NOC(SSS).∴∠MOC=∠NOC 故选:A.
5【答案】AH=CB; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为 D、E, ∴∠BEC=∠AEC=90°, 在 Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在 Rt△AEH 和 Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, 所以根据 AAS 添加 AH=CB 或 EH=EB; 根据 ASA 添加 AE=CE. 可证△AEH≌△CEB.
【总结升华】直角三角形全等可用的判定方法有 5 种:SAS、ASA、AAS、SSS、HL.
例 3、如图,AB⊥AC 于 A,BD⊥CD 于 D,若 AC=DB,则下列结论中不正确的是( )
A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD 【答案与解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合 已知条件与全等的判定方法逐一验证. 解:∵AB⊥AC 于 A,BD⊥CD 于 D ∴∠A=∠D=90°(A 正确) 又∵AC=DB,BC=BC ∴△ABC≌△DCB(HL) ∴∠ABC=∠DCB(B 正确) ∴AB=CD 又∵∠AOB=∠C ∴△AOB≌△DOC(AAS) ∴OA=OD(D 正确) C 中 OD、OB 不是对应边,不相等. 故选 C. 【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全 等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
探究三角形全等的判定方法压轴题六种模型全攻略(解析版)

专题08探究三角形全等的判定方法压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一用SAS 证明两三角形全等】 (1)【考点二用ASA 证明两三角形全等】 (6)【考点三用AAS 证明两三角形全等】 (9)【考点四用SSS 证明两三角形全等】 (11)【考点五用HL 证明两直角三角形全等】 (13)【考点六添一个条件使两三角形全等】 (16)【过关检测】 (18)【典型例题】【考点一用SAS 证明两三角形全等】例题:(2023秋·江苏·八年级专题练习)已知:如图,AB AD AC AE ==,,12∠=∠.求证:ABC ADE△△≌【答案】见解析【分析】先证明DAE BAC ∠=∠,从而可以利用SAS 来判定ABC ADE △≌△.【详解】证明:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE V 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ABC ADE ≌.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL)是解题的关键.【变式训练】1.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△,∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2.(2023秋·浙江杭州·八年级校考开学考试)如图所示,已知ABC 和DAE ,D 是AC 上一点,AD AB =,DE AB ∥,DE AC =,求证:AE BC =.【答案】见解析【分析】由平行线的性质可得ADE BAC ∠=∠,根据全等三角形的判定和性质即可找证明.【详解】∵DE AB ∥,∴ADE BAC ∠=∠,∵在△ADE 和BAC 中,AD BA ADE BAC DE AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADE BAC ≌ ,∴AE BC =.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,由“SAS ”证得ADE BAC △△≌是解答本题的关键..3.(2023春·四川成都·七年级统考期末)如图在ABC 中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若10040A C ∠=︒∠=︒,,求DEC ∠的度数.【答案】(1)证明见解析(2)60︒【分析】(1)根据BE 平分ABC ∠,可得ABE DBE ∠∠=,进而利用SAS 证明ABE DBE △≌△即可;(2)根据全等三角形的性质可得100BDE A ∠=∠=︒,再由三角形外角的性质即可求解.【详解】(1)解:∵BE 平分ABC ∠,∴ABE DBE ∠∠=.∵AB DB BE BE ==,,∴()SAS ABE DBE ≌△△;(2)解:∵ABE DBE △≌△,∴60DEC BDE C ∠=-∠=︒∠.【点睛】本题主要考查了全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.4.(2023春·山东济南·七年级统考阶段练习)如图,AB BD ⊥,BC BE ⊥,AB DB =,BC BE =,AC 与DE 交于点P ,BC 与DE 交于点O .(1)ABC 与DBE 全等吗?为什么?(2)试说明AC 与DE 的位置关系.【答案】(1)全等;理由见解析(2)AC DE ⊥;理由见解析【分析】(1)根据SAS 证明ABC DBE ≌即可;(2)根据全等三角形的性质得出C E ∠=∠,根据三角形内角和定理得出180C COP CPO E BOE OBE ∠+∠+∠=∠+∠+∠=︒,得出90CPO OBE ∠=∠=︒,即可证明结论.【详解】(1)解:全等;理由如下:∵AB BD ⊥,BC BE ⊥,∴90ABD CBE ∠=∠=︒,∴ABD CBD CBE CBD ∠+∠=∠+∠,∴ABC DBE ∠=∠,∵AB DB =,BC BE =,∴ABC DBE ≌.(2)解:AC DE ⊥;理由如下:∵ABC DBE ≌,∴C E ∠=∠,∵180C COP CPO E BOE OBE ∠+∠+∠=∠+∠+∠=︒,(1)求证:AEC DFB △△≌;(2)若6AEC S = ,求四边形BECF 的面积.【答案】(1)见解析(2)9【分析】(1)由AE DF ∥,得A ∠∴AEC S = 12EH AC ,12BCE S EH = ∵13AB CD BC ==,∴43AC BC =,∵6S =,【考点二用ASA 证明两三角形全等】例题:(2023春·广东惠州·八年级校考期中)如图,BC EF ∥,点C ,点F 在AD 上,AF DC =,A D ∠=∠.求证:ABC DEF ≌△△.【答案】见解析【分析】首先根据平行线的性质可得ACB DFE ∠=∠,利用等式的性质可得AC DF =,然后再利用ASA 判定ABC DEF ≌△△即可.【详解】证明:∵BC EF ∥,ACB DFE ∴∠=∠,AF DC =,AF CF DC CF ∴+=+,即AC DF =,在ABC 和DEF 中,A D AC DF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC DEF ≌△△.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1.(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD BE =,A EDF ∠=∠,.E ABC ∠=∠求证:AC DF =.【答案】见解析【分析】由AD BE =知AB ED =,结合A EDF ∠=∠,E ABC ∠=∠,依据“ASA ”可判定ABC ≌DEF ,依据两三角形全等对应边相等可得AC DF =.【详解】证明:AD BE = ,AD BD BE BD ∴+=+,即AB ED =,在ABC 和DEF 中,ABC E AB ED A EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABC DEF ∴△≌△,AC DF =∴.【点睛】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.2.(2023·浙江温州·温州市第八中学校考三模)如图,在ABC 和ECD 中,90ABC EDC ∠=∠=︒,点B 为CE 中点,BC CD =.(1)求证:ABC ECD ≌△△.(2)若2CD =,求AC 的长.【答案】(1)见解析(2)4,见解析【分析】(1)根据ASA 判定即可;(2)根据()ASA ABC ECD ≌△△和点B 为CE 中点即可求出.【详解】(1)证明:∵90ABC EDC ∠=∠=︒,BC CD =,C C ∠=∠,∴()ASA ABC ECD ≌△△(2)解:∵2CD =,()ASA ABC ECD ≌△△,∴2BC CD ==,AC CE =,∵点B 为CE 中点,∴2===BE BC CD ,∴4CE =,∴4AC =;【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定条件是解答本题的关键.【考点三用AAS 证明两三角形全等】例题:(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E 在ABC 边AC 上,AE BC =,BC AD ∥,CED BAD ∠=∠.求证:ABC DEA△△≌【答案】证明见解析【分析】根据平行线的性质,得到DAC C ∠=∠,再根据三角形外角的性质,得出D BAC ∠=∠,即可利用“AAS ”证明BC DEA A ≌ .【详解】证明:BC AD Q ∥,DAC C ∴∠=∠,CED BAD ∠=∠ ,CED D DAC ∠=∠+∠,BAD DAC BAC ∠=∠+∠,D BAC ∴∠=∠,在ABC 和DEA △中,BAC D C DAC BC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS BC DEA ∴A ≌ .【点睛】本题考查了全等三角形的判定,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定定理是解题关键.【变式训练】1.(2023·浙江温州·统考二模)如图,AB BD =,DE AB ∥,C E ∠=∠.(1)求证:ABC BDE ≅ .(2)当80A ∠=︒,120ABE ∠=︒时,求EDB ∠的度数.【答案】(1)见解析(2)40°【分析】(1)根据平行线的性质,利用三角形全等的判定定理即可证明;(2)根据三角形全等的性质和平行线的性质即可求解【详解】(1)解:∵DE AB ∥,∴BDE ABC ∠=∠,又∵E C ∠=∠,BD AB =,∴ABC BDE ≅ .(2)解:∵80A ∠=︒,ABC BDE ≅ ,∴80A BDE ∠=∠=︒,∵120ABE ∠=︒,∴40ABD ∠=︒,∵DE AB ∥,∴40EDB ∠=︒.【点睛】本题考查了平行线的性质,三角形全等的判定和性质,熟练掌握各知识点,利用好数形结合的思想是解本题的关键.2.(2023秋·八年级课时练习)如图,已知点C 是线段AB 上一点,DCE A B ∠∠∠==,CD CE =.(1)求证:ACD BEC △≌△;(2)求证:AB AD BE =+.【答案】(1)见解析(2)见解析【分析】(1)由DCE A ∠=∠得D ACD ACD BCE ∠+∠=∠+∠,即D BCE ∠=∠,从而即可证得ACD BEC △≌△;(2)由ACD BEC △≌△可得AD BC =,AC BE =,即可得到AC BC AD BE +=+,从而即可得证.【详解】(1)证明:DCE A ∠∠= ,D ACD ACD BCE ∠∠∠∠∴+=+,D BCE ∴∠=∠,在ACD 和BEC 中,A B D BCE CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ACD BEC ∴△≌△;(2)解:ACD BEC △≌△,AD BC ∴=,AC BE =,AC BC AD BE ∴+=+,AB AD BE ∴=+.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.【考点四用SSS 证明两三角形全等】例题:(2023·云南玉溪·统考三模)如图,点B E C F ,,,在一条直线上,AB DF AC DE BE CF ===,,,求证:ABC DFC △≌△.【答案】见解析【分析】根据题意,运用“边边边”的方法证明三角形全等.【详解】证明:∵BE CF =,∴BE CE CF CE +=+,即BC EF =,在ABC和DFE △中AB DF AC DE BC FE =⎧⎪=⎨⎪=⎩∴(SS )S ABC DFE △≌△.【点睛】本题主要考查三角形全等的判定,掌握全等三角形的判定方法解题的关键.【变式训练】1.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.2.(2023春·全国·七年级专题练习)如图,已知90E F ∠=∠=︒,点B C ,分别在AE AF ,上,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)求证:DE DF =.【答案】(1)见解析(2)见解析【分析】(1)直接根据SSS 证明即可.(2)根据(1)得∠∠EAD FAD =,然后证明AED AFD ≌即可.【详解】(1)解:证明:在ABD △和ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴()ABD ACD SSS ≌△△.(2)解:由(1)知()ABD ACD SSS ≌△△,∴∠∠EAD FAD =,在AED △和AFD △中,E F EAD FAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AED AFD AAS △≌△,∴DE DF =.【点睛】本题考查了全等三角形的性质与判定,熟记全等三角形的性质与判定是解题关键.【考点五用HL 证明两直角三角形全等】例题:(2023·全国·九年级专题练习)如图,在ABC 和DCB △中,BA CA ⊥于A ,CD BD ⊥于D ,AC BD =,AC 与BD 相交于点O .求证:ABC DCB △≌△.【答案】见解析【分析】由HL 即可证明Rt Rt ABC DCB ≌.【详解】证明:∵BA CA ⊥,CD BD ⊥,∴90A D ∠=∠=︒,在Rt ABC △△和Rt DCB △△中,AC DB BC CB =⎧⎨=⎩,∴()Rt Rt HL ABC DCB ≌△△.【点睛】本题考查了全等三角形的判定,熟练掌握直角三角形全等的判定是解题的关键.【变式训练】1.(2023春·广东河源·八年级统考期中)如图,点A ,D ,B ,E 在同一直线上,,,90AC EF AD BE C F ︒==∠=∠=.(1)求证:ABC EDF ≅ ;(2)57ABC ∠=︒,求ADF ∠的度数.【答案】(1)见解析(2)123︒【分析】(1)先说明AB DE =,再根据HL 即可证明结论;(2)由(1)可知57FDE ABC ∠=∠=︒,再利用平角的性质即可解答.【详解】(1)解:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,在Rt ABC △和Rt EDF 中,,,AC EF AB ED =⎧⎨=⎩∴()HL ABC EDF ≅ .(2)解:∵ABC EDF ≅ ,∴57FDE ABC ∠=∠=︒,∴180********ADF FDE ∠=︒-∠=︒-︒=︒.【点睛】本题主要考查了全等三角形的判定与性质、平角的性质等知识点,熟练掌握全等三角形的判断与性质是解题的关键.2.(2023春·七年级单元测试)如图,已知AD BC 、相交于点O ,AB CD =,AM BC ⊥于点M ,DN BC ⊥于点N ,BN CM =.(1)求证:ABM DCN △≌△;(2)试猜想OA 与OD 的大小关系,并说明理由.【答案】(1)见解析(2)OA OD =,理由见解析【分析】(1)根据HL 可证明ABM DCN △≌△;(2)根据AAS 证明AMO DNO ≌△△可得结论.【详解】(1)证明:∵BN CM =,∴BN MN MN CM +=+,即CN BM =,∵AM BC ⊥,DN BC ⊥,∴90AMB DNC ∠=∠=︒,在Rt ABM 和Rt DCN △中,AB CD BM CN =⎧⎨=⎩,∴()Rt Rt HL ABM DCN ≌△△;(2)解:OA OD =,理由如下:∵ABM DCN △≌△,∴AM DN =,在AMO 和DNO 中,AOM DNO AMO DNO AM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AMO DNO ≌△△,∴OA OD =.【点睛】本题考查了全等三角形的性质和判定,熟练掌握全等三角形的判定定理是解题的关键.【考点六添一个条件使两三角形全等】例题:(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD=【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.【变式训练】1.(2023·北京大兴·统考二模)如图,点B ,E ,C ,F 在一条直线上,AC DF ∥,BE CF =,只需添加一个条件即可证明ABC DEF ≌△△,这个条件可以是________(写出一个即可).【答案】AC DF =或A D ∠=∠或ABC DEF ∠=∠或AB DE (答案不唯一).【分析】根据SAS ,AAS 或ASA 添加条件即可求解.【详解】解:∵AC DF ,∴ACB DFE ∠=∠,∵BE CF =,∴BE EC CF EC +=+,即BC EF =,则有边角AS 两个条件,要添加一个条件分三种情况,(1)根据“SAS ”,则可添加:AC DF =,(2)根据“ASA ”,则可添加:ABC DEF ∠=∠或AB DE ,(3)根据“AAS ”,则可添加:A D ∠=∠,故答案为:AC DF =或ABC DEF ∠=∠或AB DE 或A D ∠=∠(答案不唯一).【点睛】本题考查了全等三角形的判定,解此题的关键是熟练掌握全等三角形的几种判断方法.2.(2023秋·八年级课时练习)如图,已知90A D ∠=∠=︒,要使用“HL ”证明ABC DCB △≌△,应添加条件:_______________;要使用“AAS ”证明ABC DCB △≌△,应添加条件:_______________________.【答案】AB DC =(或AC DB =)ACB DBC ∠=∠(或ABC DCB ∠=∠)【分析】根据:斜边与直角边对应相等的两个直角三角形全等,使ABC DCB △≌△,已知90A D ∠=∠=︒,BC BC =,添加的条件是直角边相等即可;要使用“AAS ”,需要添加角相等即可.【详解】解:已知90A D ∠=∠=︒,BC BC =,要使用“HL ”,添加的条件是直角边相等,故答案为:AB DC =(或AC DB =);要使用“AAS ”,需要添加角相等,添加的条件为:ACB DBC ∠=∠(或ABC DCB ∠=∠).故答案为:ACB DBC ∠=∠(或ABC DCB ∠=∠).【点睛】本题考查了全等三角形的判定.本题的关键是,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【过关检测】一、单选题1.(2023秋·全国·八年级专题练习)如图,DC AE ⊥,垂足为C ,且AC CD =,若用“HL ”证明ABC DEC ≌△△,则需添加的条件是()A .CE BC=B .AB DE =C .A D ∠=∠D .ABC E∠=∠【答案】B 【分析】根据“HL ”的判定方法进行判定即可.【详解】解:AB DE =,理由是:∵DC AE ⊥,∴90ACB DCE ∠=∠=︒,在Rt ABC △和Rt DEC △中,AB DE AC CD =⎧⎨=⎩,∴()Rt Rt HL ABC DEC ≌V V ,故选:B .【点睛】此题考查了根据“HL ”判定三角形全等,解题的关键是熟练掌握以上知识点.2.(2023春·四川雅安·七年级统考期末)如图,EF CF =,BF DF =,则下列结论错误的是()A .BEF DCF△≌△B .ABC ADE △≌△C .AB AD=D .DC AC=【答案】D 【分析】利用SAS 判断A 选项,利用AAS 判断B 选项,再利用全等三角形的性质逐一选项判断C 、D 即可.【详解】解:在BEF △和DCF 中,EF CF BFE DFC BF DF =⎧⎪∠=∠⎨⎪=⎩,()SAS BEF DCF \≌ ,故选项A 正确,不合题意;BEF DCF ≌ ,B D ∴∠=∠,BF DF = ,EF CF =,BF CF DF EF \+=+,BC DE ∴=,在ABC 和ADE V 中,A AB D BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ADE ∴△≌△,故选项B 正确,不合题意;ABC ADE △≌△,AB AD ∴=,故选项C 正确,不合题意;BEF DCF ≌ ,DC BE ∴=,证不出DC AC =,∴选项D 错误,符合题意;故选:D .【点睛】本题考查了全等三角形的判定和性质,熟记三角形全等判定方法:SSS 、SAS 、ASA 、AAS 是解题的关键.3.(2023春·河北保定·七年级校考阶段练习)如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △≌△,其判定依据是()A .ASAB .AASC .SSSD .SSA【答案】C 【分析】根据全等三角形判定的“SSS ”定理即可证得ADM AEM △≌△;【详解】∵AB AC =,点,D E 分别是,AB AC 的中点,,AD AE ∴=在ADM △和AEM △中.AD AE AM AM DM EM =⎧⎪=⎨⎪=⎩()ADM AEM SSS ∴ ≌故选:C【点睛】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键4.(2023秋·陕西榆林·八年级校考开学考试)如图,点A E F D ,,,在同一直线上,若AB CD ,AB CD =,AE FD =,则图中的全等三角形共有()A .0对B .1对C .2对D .3对【答案】D 【分析】由AE FD =可得AF DE =,由平行线的性质可得A D ∠=∠,根据SAS 推出BAF CDE ≌,BAE CDF △≌△,得到BE CF AEB DFC =∠=∠,,从而推出BEF CFE ∠=∠,再根据SAS 推出BEF CFE ≌.【详解】解:AE DF = ,AE EF DF EF ∴+=+,AF DE ∴=,∥ AB CD ,A D ∴∠=∠,在BAF △和CDE 中,AB DC A D AF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS BAF CDE ∴≌△△,在BAE 和CDF 中,AB DC A D AE DF =⎧⎪∠=∠⎨⎪=⎩,()SAS BAE CDF ∴ ≌,BE CF AEB DFC ∴=∠=∠,,180180AEB BEF DFC CFE ∠+=︒∠+∠=︒ ,,BEF CFE ∴∠=∠,在BEF △和CFE 中,BE CF BEF CFE EF FE =⎧⎪∠=∠⎨⎪=⎩,()SAS BEF CFE ∴ ≌,综上所述,全等三角形共有3对,故选:D .【点睛】本题主要考查了全等三角形的判定与性质、平行线的性质,熟练掌握三角形全等的判定与性质是解题的关键.二、填空题【答案】AF DE =或ABF DCE ∠=∠【分析】本题要判定ABF ≌DCE 条件即可.添边可以是AF DE =或添角可以是【详解】解:所添加条件为:AF =【答案】1290∠+∠=︒【分析】证明ABC ≌△△【详解】解:根据网格特点可知,∴ABC DEF ≌△△,∴2DEF ∠=∠,【点睛】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法.7.(2023秋·陕西榆林·八年级校考开学考试)如图,在∥交DE的延长线于点接DE,BF AC【答案】5【分析】由平行线的性质可得+=+=即可得到答案.BF CD AD CD AC∥,【详解】解:BF AC【答案】55【分析】先证明ABE ADG △△≌即可解答.【详解】解:∵180B ADC ∠+∠=【点睛】本题主要考查全等三角形的判定与性质,掌握运用SSS 和SAS 证明三角形全等是解答本题的关键.三、解答题9.(2023春·云南德宏·九年级统考期中)如图,点C ,E ,F ,A 在一条直线上,AF CE =,AD CB =,DE BF =.求证:A C ∠=∠.【答案】见解析【分析】首先根据AF CE =得到AE CF =,然后证明出()SSS ADE CBF ≌V V ,然后利用全等三角形的性质求解即可.【详解】证明:∵AF CE =,∴AF EF CE EF +=+,∴AE CF =,在ADE V 和CBF V 中,AD BC DE BF AE CF =⎧⎪=⎨⎪=⎩,∴()SSS ADE CBF ≌V V ,∴A C ∠=∠.【点睛】此题考查了全等三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定.10.(2023秋·陕西榆林·八年级校考开学考试)如图,在四边形ABCD 中,BC CD =,点E ,F 分别是BC ,CD 的中点,BAE DAF ∠=∠,B D ∠=∠.求证:AE AF =.【答案】见解析【点睛】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定定理是解题的关键.12.(2023秋·全国·八年级专题练习)如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10m BE =,3m BF =,求FC 的长度.【答案】(1)见解析(2)4m【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,根据“ASA ”即可证明ABC DEF ≌△△;(2)根据全等三角形的性质得BC EF =,则3m BF CE ==,然后根据FC BE BF CE =--即可求解.【详解】(1)∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 与DEF 中,ABC DEF AB DE A D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC DEF ≌△△;(2)∵ABC DEF ≌△△,∴BC EF =,∴BF CF CE CF +=+,∴BF EC =,∵10m BE =,3m BF =,∴10334m FC =--=.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.13.(2023·全国·八年级假期作业)如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,BC EF =.(1)求证:ABC DEF ≌△△;(2)若60A ∠=︒,88B ∠=︒,求F ∠的度数.【答案】(1)证明见解析(2)32︒【分析】(1)先证明AC DF =,再利用SSS 证明ABC DEF ≌△△即可;(2)先根据三角形内角和定理求出32ACB ∠=︒,再根据全等三角形对应角相等即可得到32F ACB ∠=∠=︒.【详解】(1)证明:∵AD CF =,∴AD CD CF CD +=+,即AC DF =,在ABC 和DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴()SSS ABC DEF △△≌;(2)解:∵60A ∠=︒,88B ∠=︒,∴18032ACB A B =︒--=︒∠∠∠,∵ABC DEF ≌△△,∴32F ACB ∠=∠=︒.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.14.(2023春·海南海口·七年级海师附中校考期末)如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,,AB AC AD AE ==,点C D E 、、三点在同一直线上,连接BD 交AC 于点F .(1)求证:ΔΔBAD CAE ≌;(2)猜想,BD CE 有何特殊位置关系,并说明理由.【答案】(1)证明见解析;(2)BD CE ⊥,理由见解析.【分析】(1)由“SAS ”可证BAD CAE ≌;(2)由全等三角形的性质可得ACE ABD ∠=∠,由三角形内角和定理可求解.【详解】(1)∵90BAC DAE ︒∠=∠=,∴BAC CAD EAD CAD ∠+∠=∠+∠,∴BAD CAE ∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔSAS BAD CAE ≌(2)猜想:BD CE ⊥,理由如下:由(1)知ΔΔBAD CAE ≌,∴,BD CE ABD ACE =∠=∠,∵,90AB AC BAC =∠=︒,∴45ABC ACB ︒∠=∠=,∴45ABD DBC ABC ︒∠+∠=∠=,∵ABD ACE ∠=∠,∴45ACE DBC ︒∠+∠=,∴90DBC DCB DBC ACE ACB ︒∠+∠=∠+∠+∠=,∴1801809090BDC DBC DCB ︒︒︒︒∠=-∠-∠=-=,(1)求BO的长;=,动点P从点(2)F是射线BC上一点,且CF AO运动,同时动点Q从点A出发,沿射线AC以每秒点同时停止运动,设运动时间为t秒,当AOPBOD ACD Ð=ÐQ ,AOP ACF \Ð=Ð,AO CF =Q ,∴当OP CQ =时,AOP FCQ ≌V V BOD ACD Ð=ÐQ ,AOP FCQ \Ð=Ð,AO CF =Q ,∴当OP CQ =时,AOP V 46t t ∴=-,(1)若,BD AC CF AB ⊥⊥,如图1所示,直接写出BAC BEC ∠+∠(2)若BD 平分,ABC CF ∠平分ACB ∠,如图2所示,试说明此时(3)在(2)的条件下,若60BAC ∠= ,试说明:EF ED =.【答案】(1)180︒(2)1902BEC BAC ∠=︒+∠,说明见解析(3)说明见解析由(2)得1902BEC BAC ∠︒∠=+=180FEB DEC BEC ∴∠=∠=︒-∠=EM 平分BEC ∠,1602BEM CEM BEC ∴∠=∠=∠=︒BD Q 平分,ABC CF ∠平分ACB ∠,FBE MBE DCE MCE ∴∠=∠∠=∠。
七年级数学探索三角形全等的条件2(1)

三角形全等的条件(含答案)-

三角形全等的条件点击要点判定三角形全等共有5种方法,分别是___SSS_______、_____SAS_____、____ASA______、___HL______、_____AAS______.例题 如图所示,AB 与CD 交于O ,AO=OB ,CO=DO ,EF 为O 与AD ,CB 分别交于E ,F ,求证∠AEO=∠BFO .[分析] 观察图形,分析已知条件和结论,欲证∠AEO=∠BFO ,只需证AD ∥BC ,•由已知条件易知△AOD ≌△BOC ,必有∠A=∠B ,这样就可证得AD ∥BC .证明:在△AOD 和△BOC 中,,,.AO OB AOD BOC OD OC =⎧⎪∠=∠⎨⎪=⎩所以△AOD ≌△BOC (SAS ).所以∠A=∠B ,所以AD ∥CB ,所以∠AEO=∠BFO .[老师点评] 解答本节习题应把握以下几个方面:(1)当有两边分别对应相等时,可有两条途径证全等,即再证一组边对应相等或证它们的夹角对应相等.(2)当有两个角对应相等时,也有两条途径证全等,即证其中一组对应角所对应的边相等或证它们的夹边对应相等.(3)如果是直角三角形可尝试斜边、直角边对应相等的办法证全等.(4)•两边和一边所对应的角分别对应相等以及三个角对应相等的两个三角形不能判定全等.中考展望本节是中考命题的重点,题型有填空题、选择题、证明题,•在今后的中考试题中证明三角形全等仍然是必考内容,主要以基础题和中档题为主,有时也与四边形结合出现在综合题中.随堂测评 时间:40分钟 满分:100分一、训练平台(1~4小题每题3分,5~6小题每题10分,共32分)1.Rt △ABC 和Rt △A ′B ′C ′中,∠C=∠C ′=90°,∠A=∠B ′,AB=A ′B ′,那么下列结论中正确的是( D )A .AC=A ′C ′B .BC=B ′C ′C .AC=B ′C ′D .∠A=∠A ′2.AD 是△ABC 的角平分线,自D 向AB ,AC 两边作垂线,垂足分别为E ,F ,•那么下列结论中错误的是( C )A .DE=DFB .AE=AFC .BD=CD D .∠ADE=∠ADF3.如图所示,BA ∥DC ,∠A=90°,AB=CE ,BC=•ED ,•则△CED•≌_ ____△ABC __,•AC=_CD______,∠B=_∠DEC_______.4.△ABC 和△A ′B ′C ′中,AD 是BC 边上的高,A ′D ′是B ′C ′边上的高,若AD=•A ′D ′,AB=A ′B ′,AC=A ′C ′,则∠C 和∠C ′的关系是_相等_______.5.如图所示,AB=CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE=BF .求证AB ∥CD .6.如图所示,AE⊥BC,DF⊥BC,E,F是垂足,且AE=DF,AB=DC,求证:∠ABC=•∠DCB.二、提高训练(1~4小题每题3分,5~6小题每题10分,共32分)1.如果两个三角形的两条边和其中一边上的高分别对应相等,•那么这两个三角形的第三边所对的角的关系是()A.相等 B.不相等 C.互余 D.互补或相等2.如图1所示,△ABC是不等边三角形,DE=BC,以D,E•为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出()A.8个 B.6个 C.4个 D.2个(1) (2) (3)3.如图2所示,AB,CD相交于点O,AD=BC,•请你补充一个条件使得△AOD•≌△COB,这个条件是________.4.如图3所示,AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,•△APD•和△BQC都为等边三角形,则图中共有_________对三角形全等.5.如图所示,AB=CD,AE=DF,CE=FB,求证AF=DE.6.如图所示,在△ABC中,∠B=∠C,D是BC中点,DE⊥AB,DF⊥AC,E,F为垂足,求证AD平分∠BAC.三、探索发现(共18分)如图所示,在△AFD和△BEC中,点A,E,F,C在同一直线上,有下面四个条件:①AD=CB;②AE=CF;③∠B=∠D;④AD∥BC.请用其中三个作为条件,•余下一个作为结论,编一道数学问题,并写出解答过程.四、拓展创新(共18分)如图所示,DC∥AB,且DC=12AB,E为AB的中点.(1)求证△AED≌△EBC:(2)观察图形,在不添加辅助线的情况下,除△EBC外,再写出两个与△AED的面积相等的三角形.※走近中考(不计入总分)如图所示,已知△ABC 的六个元素,则下面甲、乙、•丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙探究交流小课题:如何测量池塘的宽如图所示,有一池塘,如何测量池塘两端A ,B 的距离?探究:由于A ,B 两端的距离可以构造成某个三角形的一边,•因此可以通过三角形全等的知识来解决.方法:可先在本地上取一个可以直接到达A 和B 的点C ,连接AC•并延长到D ,•使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,量出DE 的长,因为,12,.AC CD BC CE =⎧⎪∠=∠⎨⎪=⎩所以△ACB 和△DCE 全等,所以DE=AB ,即量出DE 的长就是A ,B 的距离.答案:本课导学SSS SAS ASA AAS HL随堂测评一、1.C 2.C 3.△ABC CD ∠CED 4.相等或互补5.证明:因为C E=BF ,所以CE+EF =BF+EF ,即BE=CF ,在Rt △AEB 和Rt △DCF 中,,,AB CD BE CF =⎧⎨=⎩所以△ABE ≌△DCF ,所以∠B=∠C ,所以AB ∥CD . 6.证明:因为AE ⊥BC ,DF ⊥BC ,所以在Rt △ABE 和Rt △DCF ,,,AE DF AB DC =⎧⎨=⎩ 所以Rt △ABE ≌Rt △DCF ,所以∠ABC=∠DCB .二、1.D 2.C 3.∠A=∠C (答案不惟一) 4.45.证明:因为CE=BF ,所以CE+FE =BF+FE ,即CF=BE ,在△AEB 和△DFC 中,,,,AB CD AE DF BE CF =⎧⎪=⎨⎪=⎩所以△AEB ≌△DFC ,所以∠B=∠C ,在△ABF 和△DCE 中,,,,AB CD B C BF CE =⎧⎪∠=∠⎨⎪=⎩所以△ABF ≌△DCE ,所以AF=DE .6.证明:因为DF ⊥AC ,DE ⊥AB ,所以∠BED=∠CFD=90°,在△BDE 和△CDF 中,,,,B C BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩所以△BDE ≌△CDF ,所以DE=DF .在Rt △AED 和Rt △AFD 中,,,AD AD DE DF =⎧⎨=⎩所以Rt △AED ≌Rt △AFD ,所以∠BAD=∠CAD ,即AD 平分∠BAC .三、已知AE=CF ,∠B=∠D ,AD ∥BC ,求证AD=BC .证明:因为AE=CF ,所以AE+EF=CF+EF ,即AF=CE ,又因为AD ∥BC ,所以∠A=∠C ,在△ADF 和△CBE 中,,,,AF CE D B A C =⎧⎪∠=∠⎨⎪∠=∠⎩所以△ADF ≌△CBE (AAS ),所以AD=BC .四、证明:(1)因为DC=12AB ,E 为AB 中点, 所以AE=BE=CD ,因为DC ∥AB ,所以∠CEB=∠ECD ,在△BEC 和△DCE 中,,,,BE CD BEC ECD EC CE =⎧⎪∠=∠⎨⎪=⎩所以△BEC≌△DCE(SAS),所以DE=BC,∠DEC=∠BCE,所以DE∥BC,所以∠AED=∠B,在△AED和△EBC中,,,, AE BEAED B DE BC=⎧⎪∠=∠⎨⎪=⎩所以△AED≌△EBC.解:(2)△AC D,△ACE,△CDE(写出其中两个三角形即可).。
难点突破——三角形全等证明题练习50道(含详细解析)

难点突破——三角形全等证明题练习50道(含详细解析)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明:14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC + A B A C+(填“>”、“ <”或“=” ) (2)证明(1)中的结论.15.如图,在ABC ∆中,BD 是边AC 上的中线,BD BC ⊥于点B ,AE BD ⊥交BD 的延长线于点E ,30ABD ∠=︒,求证:2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P,试问APD∠的度数是否是定值?若是定值,求出并说明理由.18.已知等腰三角形ABC中,点D为BC中点,点E是BA延长线上一动点,点F是AC延长线上一动点连接DE、DF,且180∠+∠=︒.EDF BAC(1)如图1,若90+=;BAC∠=︒,求证:AE AC AF(2)如图2,若120∠=︒,AE、AC、AF三条线段还满足(1)中的结论吗?若满足,BAC则直接证明;若不满足,请写出结论并证明.19.已知D为ABC⊥,垂足分别为点∆所在平面内一点,且DB DC=,DE AB⊥,DF ACE、F,DE DF=.(1)如图1,当点D在BC边上时,判断ABC∆的形状;并证明你的结论;(2)如图2,当点D在ABC∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).20.如图,在Rt ABC∠=︒,点P为AC边上的一点,延长BP至点D,使得AD APC∆中,90=,当AD AB⊥于E.⊥时,过点D作DE AC(1)求证:CBP ABP∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,垂足分别为M,N.⊥,ON AD求证:四边形AMON是筝形.29.如图,在ABC∠=∠,AC与BD交于点=,AED∆中AB AC∆中AE AD=,EAD BACO.(1)试确定ADC∠与AEB∠间的数量关系,并说明理由;(2)若65∠的度数.ACB∠=︒,求BDC30.如图,AD为ABC=.求=,FD CD ∆的高,E为AC上一点,BE交AD于F,且有BF AC证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由; ②求AMB ∠的度数.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.41.如图,在ABC∠,CE平分BCA∠,AD、CE交于点F,B∆中,60∠=︒,AD平分BAC=,连结FG.CD CG(1)求证:FD FG=;(2)线段FG与FE之间有怎样的数量关系,请说明理由;(3)若60B∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.42.已知BF平分ABC∆的外角ABE∠,D为射线BF上一动点.(1)如图所示,若DA DC∠=∠;=,求证:ABC ADC(2)在D点运动的过程中,试比较BA BC+的大小,并说明你的理由.+与DC DA43.如图,在ABC=,∠=︒,BD AC⊥于点D,点E在DB的延长线上,DE BCABC∆中,90=.12∠=∠,求证:DF AB44.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.45.如图,AB AC =,E 、D 分别是AB 、AC 的中点,AF BD ⊥,垂足为点F ,AG CE ⊥,垂足为点G ,试判断AF 与AG 的数量关系,并说明理由.46.如图,90ACB ∠=,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E .(1)求证:ACD CBE ∆≅∆;(2)已知5AD =,3DE =,求BE 的长.47.如图,AE 、BD 是ABM ∆的高,AE ,BD 交于点C ,且A E B E =,BD 平分ABM ∠.(1)求证:2BC AD =;(2)求M DE ∠的度数.48.在ABC∠交AB于D,E,F在AC,BC∠=︒,CD平分ACBA∆中,AB AC=,36上,且108∠=︒.EDF(1)求ADC∠的度数;(2)求证:AE BF BC+=.49.已知:如图,90∠的角平分线上,且点A到点⊥于点E,点A在FOCF∠=︒,AE OC=.B、点C的距离相等.求证:BF EC50.已知:如图,点C、D、B、F在一条直线上,且AB BD=,⊥,AB CD⊥,DE BD =.CE AF求证:(1)ABF CDE∆≅∆;(2)CE AF⊥.难点突破——三角形全等证明题练习50道(含详细解析)参考答案与试题解析一.解答题(共50小题)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.【解答】证明:(1)90A D ∠=∠=︒,ABC ∴∆和DCB ∆都是直角三角形.在Rt ABC ∆和Rt DCB ∆中,BC CB AB DC =⎧⎨=⎩, Rt ABC Rt DCB(HL)∴∆≅∆,ABC DCB ∴∠=∠;(2)Rt ABC Rt DCB ∆≅∆,AC DB ∴=,ACB DBC ∠=∠,MC MB ∴=,AM DM ∴=.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.【解答】证明:AC CE ⊥,DF CE ⊥,90C DFE ∴∠=∠=︒,CF BE =,CB FE ∴=,AB DE =,Rt ACB Rt DFE(HL)∴∆≅∆,A D ∴∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)【解答】(1)证明:AD 是ABC ∆的中线, BD CD ∴=,//BE CF ,FCD EBD ∴∠=∠,DFC DEB ∠=∠,在CDE ∆和BDF ∆中,FCD EBD DFC DEB CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CDF BDE AAS ∴∆≅∆,DE DF ∴=(2)可以得出AD BC ⊥,BAD CAD ∠=∠.(理由等腰三角形三线合一).4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.【解答】(1)证明://CD AB ,BAE ACD ∴∠=∠,ABE CAD ∠=∠,AB AC =,()ABE CAD ASA ∴∆≅∆;(2)解:AB AC =,65ABC ACB ∴∠=∠=︒,180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒, 又25ABE CAD ∠=∠=︒,502575BAD BAC CAD ∴∠=∠+∠=︒+︒=︒, //AB CD ,180********D BAD ∴∠=︒-∠=︒-︒=︒.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.【解答】证明:D 为BC 的中点,BD CD ∴=,DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒,在Rt BED ∆和Rt CFD ∆中,BD CD BE CF =⎧⎨=⎩,Rt BED Rt CFD(HL)∴∆≅∆, B C ∴∠=∠,AB AC ∴=,ABC ∴∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.【解答】证明:EAC BAF ∠=∠, BAC EAF ∴∠=∠,在ABC ∆和AEF ∆中,BAC EAF C F AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC AEF AAS ∴∆≅∆,AC AF ∴=.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).【解答】解:条件为AC AE =,理由是: 12∠=∠,12DAC DAC ∴∠+∠=∠+∠, BAC DAE ∴∠=∠,在ABC ∆和ADE ∆中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩()ABC ADE SAS ∴∆≅∆.8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.【解答】证明:(1)BE ,AD 是ABC ∆的高 190BCA ∴∠+∠=︒,290BCA ∠+=︒, 12∴∠=∠,(2)AP BC =,12∠=∠,BQ AC =, ()APC BCQ SAS ∴∆≅∆CP CQ ∴=.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .【解答】证明:(1)AE CF =, AE EF CF EF ∴+=+,即AF CE =. 又BF AC ⊥,DE AC ⊥, 90AFB CED ∴∠=∠=︒.在Rt ABF ∆与Rt CDE ∆中,AB CD AF CE =⎧⎨=⎩, Rt ABF Rt CDE(HL)∴∆≅∆;(2)Rt ABF Rt CDE ∆≅∆, C A ∴∠=∠,//AB CD ∴.10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .【解答】证明://AD BE , A B ∴∠=∠,在ACD ∆和BEC ∆中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩,()ACD BEC SAS ∴∆≅∆, DC CE ∴=, CF 平分DCE ∠,CF DE ∴⊥.11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.【解答】解:(1)CDE ∆是等腰直角三角形.理由如下: 90ACB ∠=︒,AC BC =, 45B BAC ∴∠=∠=︒,AE AB ⊥,904545CAE ∴∠=︒-︒=︒,B CAE ∴∠=∠,在ACE ∆和BCD ∆中,AE BDB CAE AC BC=⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,CD CE ∴=,ACE BCD ∠=∠,90ACD BCD ACB ∠+∠=∠=︒,90DCE ACD ACE ∴∠=∠+∠=︒,CDE ∴∆是等腰直角三角形;(2)存在1AD =.理由如下:AE AF =,45CAE ∠=︒,1(18045)67.52AEF AFE ∴∠=∠=︒-︒=︒,9067.522.5ADE ∴∠=︒-︒=︒,CDE ∆是等腰直角三角形,45CDE ∴∠=︒,22.54567.5ADC ∴∠=︒+︒=︒,在ACD ∆中,1804567.567.5ACD ∠=︒-︒-︒=︒, ACD ADC ∴∠=∠,1AD AC ∴==.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.【解答】证明:AB AC =,ABC ACB ∴∠=∠,BD AC ⊥,CE AB ⊥,90BDC CEB ∴∠=∠=︒,在BCE ∆和CBD ∆中,BEC CDB EBC DCB BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DBC ECB AAS ∴∆≅∆,CD BE ∴=,AB AC =,AD AE ∴=.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明: 12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.【解答】证明:12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.故答案为:12∠=∠,FBD ECA ∴∠=∠,FB CE =,BD AC =,()DBF ACE SAS ∴∆≅∆.14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC+(填“>”、“<”或“=”)+>AB AC(2)证明(1)中的结论.【解答】解:(1)结论:BE EC AB AC+>+.故答案为>.(2)理由:在AF上截取AH,使得AH AC=.AC AE∠=∠,AE AE=,CAF HAE=,∴∆≅∆,EAC EAH SAS()∴=,EC EH+>,EB EH BH∴+>+.EB EC AB AC15.如图,在ABC⊥于点B,AE BD∆中,BD是边AC上的中线,BD BC⊥交BD的延长线于点E,30=.AB BCABD∠=︒,求证:2【解答】证明:BD是AC上的中线,∴=,AD DCBD BC⊥,AE BD⊥,EBC AEB∴∠=∠=︒,90又ADE CDB∠=∠,∴∆≅∆,ADE CDB AAS()AE CB ∴=,90AEB ∠=︒,30ABD ∠=︒,2AE AB ∴=,即2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.【解答】解:(1)能,ABD ACE ∆≅∆,理由如下: ABC ∆和ADE ∆是两个形状相同,大小不同的等腰三角形, BAC DAE ∴∠=∠,AB AC =,AD AE =,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆;(2)ABD ACE ∆≅∆,B ACE ∴∠=∠,ACE ECD B BAC ∠+∠=∠+∠,35ECD BAC ∴∠=∠=︒.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 290α-︒或902α︒-或90︒ (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P ,试问APD ∠的度数是否是定值?若是定值,求出并说明理由.【解答】解:(1)如图1,点D 在点B 上方时,点E 在点A 右侧,AD BC =,DAE DBC ∠=∠,AE BD =, ()ADE BCD SAS ∴∆≅∆ADE BCD α∴∠==∠,90BDC AED α∠=∠=︒-, 290CDE ADE BDC α∴∠=∠-∠=-︒, 点D 在点B 上方时,点E 在点A 左侧, 90CDE ADE BDC ∠=∠+∠=︒;如图11-,点D 在点B 下方时,点E 在点A 右侧,AD BC =,DAE DBC ∠=∠,AE BD =, ()ADE BCD SAS ∴∆≅∆ADE BCD α∴∠==∠,90BDC AED α∠=∠=︒-, 902EDC BDC ADE α∴∠=∠-∠=︒-,点D 在点B 下方时,点E 在点A 左侧, 90CDE ADE BDC ∴∠=∠+∠=︒;故答案为:290α-︒或902α︒-或90︒;(2)APD ∠的度数是45︒,理由是:如图2,过F 作FM x ⊥轴于F ,使FM BC =,连接CM ,DM ,AD BC =,AD FM ∴=,AD x ⊥轴,//AD FM ∴,∴四边形ADM F 是平行四边形,//AF DM ∴,PDM APD ∴∠=∠,FM BC =,90CFM DBC ∠=∠=︒,CF BD =, ()CFM DBC SAS ∴∆≅∆,BCD CMF ∴∠=∠,DC CM =,90FCM CMF ∠+∠=︒,90FCM BCD ∴∠+∠=︒,90DCM ∴∠=︒,DCM ∴∆是等腰直角三角形,45CDM ∴∠=︒,45APD CDM ∴∠=∠=︒.18.已知等腰三角形ABC 中,点D 为BC 中点,点E 是BA 延长线上一动点,点F 是AC 延长线上一动点连接DE 、DF ,且180EDF BAC ∠+∠=︒.(1)如图1,若90BAC ∠=︒,求证:AE AC AF +=;(2)如图2,若120BAC ∠=︒,AE 、AC 、AF 三条线段还满足(1)中的结论吗?若满足,则直接证明;若不满足,请写出结论并证明.【解答】(1)证明:连接AD ,设AF 交DE 于G ,如图1所示: 90BAC ∠=︒,AB AC =,45B ∴∠=︒,点D 为BC 中点,12AD BC BD CD ∴===,45BAD CAD B ∠=∠=︒=∠,AD BC ⊥, 180EDF BAC ∠+∠=︒,180EAC BAC ∠+∠=︒, EDF EAC ∴∠=∠,AGE DGF ∠=∠,BED AFD ∴∠=∠,在BDE ∆和ADF ∆中,B CAD BED AFD BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE ADF AAS ∴∆≅∆,BE AF ∴=,AB AC =,BE AE AB =+,AE AC AF ∴+=;(2)解:不满足(1)中的结论,12AC AE AF +=;理由如下: 连接AD ,取AC 的中点G ,连接DG ,如图2所示: 120BAC ∠=︒,AB AC =,30ACB ∴∠=︒,60EAC ∠=︒,点D 为BC 中点,AD BC ∴⊥,60CAD ∠=︒,12DG AC AG CG ∴===,120DAE ∠=︒, ADG ∴∆是等边三角形,AD DG ∴=,60AGD ADG EDF ∠=∠=︒=∠, 120DGF DAE ∴∠=︒=∠,ADE GDF ∠=∠, 同(1)得:AED GFD ∠=∠,在ADE ∆和GDF ∆中,DAE DGF AED GFD AD GD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE GDF AAS ∴∆≅∆,AE GF ∴=,AG GF AF +=, ∴12AC AE AF +=;19.已知D 为ABC ∆所在平面内一点,且DB DC =,DE AB ⊥,DF AC ⊥,垂足分别为点E 、F ,DE DF =.(1)如图1,当点D 在BC 边上时,判断ABC ∆的形状;并证明你的结论;(2)如图2,当点D 在ABC ∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).【解答】解:(1)结论:ABC ∆是等腰三角形. 理由:DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒.在Rt EBD ∆与Rt FCD ∆中,DE DF DB DC =⎧⎨=⎩, Rt EBD Rt FCD(HL)∴∆≅∆,B C ∴∠=∠AB AC ∴=,ABC ∴∆是等腰三角形.(2)当点D 在ABC ∆内部时,(1)中的结论仍然成立. 理由:如图2,DE AB ⊥,DF AC ⊥, 90BED CFD ∴∠=∠=︒,在Rt EBD ∆与Rt FCD ∆中,DE DF DB DC =⎧⎨=⎩, Rt EBD Rt FCD(HL)∴∆≅∆,EBD FCD ∴∠=∠.DB DC =,DBC DCB ∴∠=∠,EBD DBC FCD DCB ∴∠+∠=∠+∠, 即ABC ACB ∠=∠,AB AC ∴=,ABC ∴∆是等腰三角形.20.如图,在Rt ABC ∆中,90C ∠=︒,点P 为AC 边上的一点,延长BP 至点D ,使得AD AP =,当AD AB ⊥时,过点D 作DE AC ⊥于E .(1)求证:CBP ABP ∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.【解答】(1)证明:90C ∠=︒, 90CBP BPC ∴∠+∠=︒, AD AB ⊥,90PBA BDA ∴∠+∠=︒, AD AP =,BDA DPA BPC ∴∠=∠=∠, CBP ABP ∴∠=∠;(2)解:设AB x =,4AB BC -=,4BC x ∴=-,在Rt ABC ∆中,由勾股定理得:222(4)8x x -+=, 解得:10x =,6BC ∴=,10AB =;作PF AB ⊥于F ,如图所示:在BCP ∆和BFP ∆中,90CBP ABP C BFP BP BP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()BCP BFP AAS ∴∆≅∆6BC BF ∴==,DE AC ⊥,90EAD ADE PAF EAD ∴∠+∠=︒=∠+∠,PAF ADE ∴∠=∠,在PAF ∆和ADE ∆中,PFA AED PAF ADE PA AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PAF ADE AAS ∴∆≅∆,1064DE AF AB BF ∴==-=-=.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==6BP ∴=BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆,C QPB ∴∠=∠,90APC C ∠+∠=︒,90APC QPB ∴∠+∠=︒,PC PQ ∴⊥;(2)存在x 的值,使得ACP ∆与BPQ ∆全等,①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:682t =-,2t xt =解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:6xt =,282t t =-解得:3x =,2t =.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.【解答】(1)证明:1239∠=∠=︒,12CAE CAE ∴∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC ∆和AED ∆中,BAC EAD AC AD C D ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC AED ASA ∴∆≅∆.(2)解:由(1)得::ABC AED ∆≅∆.AB AE ∴=,11(1801)(18039)70.522B AEB ∴∠=∠=︒-∠=︒-︒=︒, 13970.5109.5AEC B ∴∠=∠+∠=︒+︒=︒., 23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .【解答】证明:AD BC =,AD DC BC DC ∴+=+,AC BD ∴=,//AE BF ,A B ∴∠=∠,在ACE ∆和BDF ∆中,,,,AC BD A B AE BF =⎧⎪∠=∠⎨⎪=⎩()ACE BDF SAS ∴∆≅∆.ACE BDF ∴∠=∠.//CE DF ∴.24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.【解答】证明:(1)13∠=∠,13DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,1803E ACE ∠=∠︒-∠-∠,1802ACB ACE ∠=︒-∠-∠,23∠=∠,ACE ACE ∠=∠,ACB E ∴∠=∠,在ABC ∆与ADE ∆中BAC DAE AC AEE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC ADE ASA ∴∆≅∆,B D ∴∠=∠.(2)由(1)可得ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.【解答】证明:(1)在ABF ∆和ACE ∆中,AB AC BAF CAE AF AE =⎧⎪∠=∠⎨⎪=⎩,()ABF ACE SAS ∴∆≅∆,B C ∴∠=∠;(2)AB AC =,AE AF =,BE CF ∴=,在BOE ∆和COF ∆中,B C BOE COF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOE COF AAS ∴∆≅∆,OB OC ∴=,在ABO ∆和ACO ∆中,AB AC B C OB OC =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆,OAB OAC ∴∠=∠,即AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.【解答】证明:连接DE 、DF ,如右图所示,AB AC =,B C ∴∠=∠,在EBD ∆和DCF ∆中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩,()EBD DCF SAS ∴∆≅∆,DE DF ∴=,DG EF ⊥,DG ∴是等腰DEF ∆的中线,12EG EF ∴=.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.【解答】(1)证明:如图1,延长AC 交BN 于点F ,AC BC =,CAB CBA ∴∠=∠,又AB AM ⊥,90BAM ∴∠=︒,又//AM BN ,180BAM ABN ∴∠+∠=︒,90ABN ∴∠=︒,90BAF AFB ∴∠+∠=︒,90ABC CBF ∠+∠=︒,CBF AFB ∴∠=∠,BC CF ∴=,AC FC ∴=,又//AM BN ,DAF AFB ∴∠=∠,在ADC ∆和FEC ∆中,DAC EFC AC FC ACD FCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADC FEC ASA ∴∆≅∆,DC EC ∴=;(2)解:AD DC BE +=;理由如下:如图2,在EB 上截取EH EC =,连接CH ,AC BC =,60ABC ∠=︒,ABC ∴∆为等边三角形,60DEB ∠=︒,CHE ∴∆是等边三角形,60CHE ∴∠=︒,60HCE ∠=︒,120BHC ∴∠=︒,//AM BN ,180ADC BEC ∴∠+∠=︒,120ADC ∴∠=︒,60DAC DCA ∴∠+∠=︒,又180DCA ACB BCH HCE ∠+∠+∠+∠=︒,60DCA BCH ∴∠+∠=︒,DAC BCH ∴∠=∠,在DAC ∆与HCB ∆中,DAC HCB ADC CHB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DAC HCB AAS ∴∆≅∆,AD CH ∴=,DC BH =,又CH CE HE==,∴=+=+,BE BH HE DC AD即AD DC BE+=.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,ON AD⊥,垂足分别为M,N.求证:四边形AMON是筝形.【解答】证明:在ABC ∆和ADC ∆中AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,BAC DAC ∴∠=∠,又OM AB ⊥,ON AD ⊥,垂足分别为M ,N ,OM ON ∴=;90AMO ANO ∠=∠=︒,9090BAC DAC ∴︒-∠=︒-∠,AOM AON ∴∠=∠,即OA 平分MON ∠,又AM OM ⊥,AN ON ⊥,AM AN ∴=∴四边形AMON 是筝形.29.如图,在ABC ∆中AB AC =,AED ∆中AE AD =,EAD BAC ∠=∠,AC 与BD 交于点O .(1)试确定ADC ∠与AEB ∠间的数量关系,并说明理由;(2)若65ACB ∠=︒,求BDC ∠的度数.【解答】解:(1)ADC AEB ∠=∠,理由如下:BAC EAD ∠=∠BAC EAC EAD EAC ∴∠-∠=∠-∠即:BAE CAD ∠=∠在ABE ∆和ACD ∆中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS ∴∆≅∆ADC AEB ∴∠=∠(2)BOC ∠是ABO ∆和DCO ∆的外角BOC ABD BAC ∴∠=∠+∠,BOC ACD BDC ∠=∠+∠ABD BAC ACD BDC ∴∠+∠=∠+∠ABD ACD ∠=∠BAC BDC ∴∠=∠65ACB ∠=︒,AB AC =65ABC ACB ∴∠=∠=︒180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒50BDC BAC ∴∠=∠=︒30.如图,AD 为ABC ∆的高,E 为AC 上一点,BE 交AD 于F ,且有BF AC =,FD CD =.求证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.【解答】证明:(1)AD 为ABC ∆的边BC 上的高,BDF ∴∆和ADC ∆为直角三角形.90BDF ADC ∴∠=∠=︒.在Rt BFD ∆和Rt ACD ∆中,BF AC FD CD=⎧⎨=⎩, Rt ∴△Rt ACD(HL)BFD ∆≅∆;(2)BDF ADC ∆≅∆,DBF DAC ∴∠=∠.AFE ∠与BFD ∠是对顶角,90BDF AEF ∴∠=∠=︒,BE AC ∴⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 AC BD = ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由;②求AMB ∠的度数.【解答】解:(1)①AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,BOD AOC ∴∠=∠,在BOD ∆和AOC ∆中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩,()BOD AOC SAS ∴∆≅∆,AC BD ∴=;故答案为:AC BD =,②BOD AOC ∆≅∆,OBD OAC ∴∠=∠,40AOB ∠=︒,180********OAB OBA AOB ∴∠+∠=︒-∠=︒-︒=︒,又OAB OBA OAB ABD OBD ∠+∠=∠+∠+∠140OAB OBA OAB ABD OAC ∴∠+∠=∠+∠+∠=︒,140MAB ABM ∴∠+=︒,在ABM ∆中,180AMB MAB ABM ∠+∠+=︒,40AMB ∴∠=︒;故答案为:40︒;(2)①AC BD =,理由如下:90AOB COD ∠=∠=︒,AOB AOD COD AOD ∴∠+∠=∠+∠,BOD AOC ∴∠=∠,在BOD ∆和AOC ∆中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩,()BOD AOC SAS ∴∆≅∆,BD AC ∴=;②BOD AOC ∆≅∆,OBD OAC ∴∠=∠,又90OAB OBA ∠+∠=︒,ABO ABM OBD ∠=∠+∠,MAB MAO OAB ∠=∠+∠,90MAB MBA ∴∠+∠=︒, 又在AMB ∆中,180AMB ABM BAM ∠+∠+∠=︒,180()1809090AMB ABM BAM ∴∠=︒-∠+∠=︒-︒=︒.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.【解答】(1)证明:AB BE ⊥,90B ∴∠=︒,DE BE ⊥,90E ∴∠=︒,BF CE =,BF CF CE CF ∴+=+,即CB EF =,在Rt ABC ∆和Rt DEF ∆中,AC DF BC EF=⎧⎨=⎩, Rt ABC Rt DEF(HL)∴∆≅∆(2)解:65A ∠=︒,AB BE ⊥,906525ACB ∴∠=︒-︒=︒,由(1)知Rt ABC Rt DEF ∆≅∆,25ACB DFE ∴∠=∠=︒,50AGF ACB DFE ∴∠=∠+∠=︒33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.【解答】(1)证明:AD EC AB +=,AD BD AB +=BD EC ∴=,在BDE ∆和CEF ∆中BD EC B C BE CF =⎧⎪∠=∠⎨⎪=⎩,()BDE CEF SAS ∴∆≅∆,DE EF ∴=;(2)解:ABC ∆中,36A ∠=︒,1(18036)722B C ∴∠=∠=︒-︒=︒,由(1)知:BDE CEF ∆≅∆BDE CEF ∴∠=∠,又DEF CEF B BDE ∠+∠=∠+∠,72DEF B ∴∠=∠=︒.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.【解答】证明:(1)AD 是ABC ∆的高,45ACB ∠=︒,90ADB CDE ∴∠=∠=︒,ACD ∆是等腰直角三角形,AD CD ∴=,在ABD ∆和CED ∆中,AD CD ADB CDE DE DB =⎧⎪∠=∠⎨⎪=⎩,()ABD CED SAS ∴∆≅∆,BAD ECD ∴∠=∠;(2)如图,在EC 上截取EG BF =,ABD CED ∆≅∆,B CED ∴∠=∠,在BDF ∆和EDG ∆中,EG BF B CED DE DB =⎧⎪∠=∠⎨⎪=⎩,()BDF EDG SAS ∴∆≅∆,DF DG ∴=,BDF EDG ∠=∠,90FDG FDE EDG FDE BDF ADB ∴∠=∠+∠=∠+∠=∠=︒,DFG ∴∆是等腰直角三角形,45DFE ∴∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.【解答】证明:在ABD ∆和BAC ∆中,AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,ABD BAC ∴∆≅∆()SAS ,34∴∠=∠,DAB CBA ∠=∠,12∴∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.【解答】解:BAC DAE ∠=∠,BAD CAE ∴∠=∠,在ABD ∆与ACE ∆中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆;228ABD ∴∠=∠=︒;31ABD ∠=∠+∠,122∠=︒,350∴∠=︒.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 10 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .【解答】解:(1)作PA y ⊥轴于A ,PB x ⊥轴于B ,如图1所示:(5,5)P ,5PA PB OA OB ∴====,(0,5)A ∴,当5m =时,(0,5)M ,A ∴与M 重合,B 与N 重合,5ON OH ∴==,10OM ON ∴+=;故答案为:10;(2)当05m <<时,OM ON +的值不改变,理由如下:作PA y ⊥轴于A ,PB x ⊥轴于B ,如图2所示:则90APB ∠=︒,5PA PB ==,90MPN ∠=︒,APM BPN ∴∠=∠,在APM ∆和BPN ∆中,90PAM PBN PA PB APM BPN∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()APM BPN ASA ∴∆≅∆,AM BN ∴=,10OM ON OA AM OB BN OA OB ∴+=-++=+=;(3)当0m <时,OM 与ON 的数量关系为10OM ON =-,理由如下: 作PA y ⊥轴于A ,PB x ⊥轴于B ,如图3所示: 同(2)得:()APM BPN ASA ∆≅∆,AM BN ∴=,10OM AM OA BN OA ON OB OA ON ∴=-=-=--=-; 故答案为:10OM ON =-.38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.【解答】证明:射线BD 平分锐角ABC ∠,且平分钝角ADC ∠, 12∴∠=∠,34∠=∠,ADB CDB ∴∠=∠,在CBD ∆和ABD ∆中,21BD BD CDB ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CBD ADB ASA ∴∆≅∆,CD AD ∴=.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.【解答】证明:BF AC ⊥于点F ,CE AB ⊥于点E , 90BED CFD ∴∠=∠=︒,在BDE ∆和CDF ∆中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CDF AAS ∴∆≅∆,DE DF ∴=,D ∴在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆, AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;C BPQ ∴∠=∠,90C APC ∠+∠=︒,90APC BPQ ∴∠+∠=︒,90CPQ ∴∠=︒,PC PQ ∴⊥;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.41.如图,在ABC ∆中,60B ∠=︒,AD 平分BAC ∠,CE 平分BCA ∠,AD 、CE 交于点F ,CD CG =,连结FG .(1)求证:FD FG =;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若60B ∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.【解答】(1)证明:EC 平分ACB ∠, FCD FCG ∴∠=∠,CG CD =,CF CF =,()CFD CFG SAS ∴∆≅∆,FD FG ∴=.(2)解:结论:FG FE =.理由:60B ∠=︒,120BAC BCA ∴∠+∠=︒, AD 平分BAC ∠,CE 平分BCA ∠,1()602ACF FAC BCA BAC ∴∠+∠=∠+∠=︒, 120AFC ∴∠=︒,60CFD AFE ∠=∠=︒, CFD CFG ∆≅∆,60CFD CFG ∴∠=∠=︒,60AFG AFE ∴∠=∠=︒,。
1-3 探索三角形全等的条件-2021-2022学年八年级数学上册课后练(苏科版)(原卷版)

姓名: 班级1.3 探索三角形全等的条件本课重点(1)熟练掌握五种全等三角形的判定本课难点 (2)全等三角形的判定的综合运用全卷共25题,满分:120分,时间:120分钟一、单选题(每题3分,共30分)1.(2021·山东济南市·七年级期末)如图,测河两岸A ,B 两点的距离时,先在AB 的垂线BF 上取C ,D 两点,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC △≌△ABC ,从而得到ED =AB ,测得ED 的长就是A ,B 的距离,判定△EDC ≌△ABC 的依据是:( )A .ASAB .SSSC .AASD .SAS2.(2021·浙江九年级期末)如图,在ABC 与DEF 中,点B ,E ,C ,F 在同一条直线上,,//=BE CF AB DE ,下列所添条件中不能判定ABC DEF △≌△的是( )A .AC DF =B .AB DE =C .AD ∠=∠ D .ACB F ∠=∠3.(2021·江苏南京市·九年级专题练习)如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点B ,D ,E 在同一条直线上,若∠CAE +∠ACE +∠ADE =130°,则∠ADE 的度数为( )A .50°B .65°C .70°D .75°4.(2021·重庆万州区·八年级期末)如图,在MPN △中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( )A .3B .4C .5D .65.(2021·河南焦作市·九年级二模)已知锐角AOB ∠,如图,(1)在射线OA 上取点C ,E ,分别以点O 为圆心,OC ,OE 长为半径作弧,交射线OB 于点D ,F ;(2)连接CF ,DE 交于点P .根据以上作图过程及所作图形,下列结论错误..的是( ) A .CE DF =B .PE PF =C .若60AOB ∠=︒,则120CPD ∠=︒ D .点P 在AOB ∠的平分线上6.(2021·成都市第十八中学校八年级期末)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD上一点,连接OM ,过点O 做ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B .2C .2D .227.(2021·全国七年级专题练习)如图所示,90E F ∠=∠=︒,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ≌,其中正确的是有( )A .1个B .2个C .3个D .4个8.(2021·北京九年级专题练习)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<- D .AB AD -与CB CD -的大小关系不确定9.(2021·北京九年级专题练习)数学课上,老师给出了如下问题:如图1,90B C ∠=∠=︒,E 是BC 的中点,DE 平分ADC ∠,求证:AB CD AD +=.小明是这样想的:要证明AB CD AD +=,只需要在AD 上找到一点F ,再试图说明AF AB =,DF CD =即可.如图2,经过思考,小明给出了以下3种辅助线的添加方式.①过点E 作EF AD ⊥交AD 于点F ;②作EF EC =,交AD 于点F ;③在AD 上取一点F ,使得DF DC =,连接EF ;上述3种辅助线的添加方式,可以证明“AB CD AD +=”的有( )A .①②B .①③C .②③D .①②③10.(2021·河南新乡市·新乡学院附属中学八年级月考)如图,点C 是线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,有以下5个结论:①AD=BE ;②PQ ∥AE ;③AP=DQ ;④DE=DP ;⑤∠AOB=60°.其中一定成立的结论有( )个A .1B .2C .3D .4二、填空题(每题3分,共24分)11.(2021·云南玉溪市·八年级期末)如图,某人将一块三角形玻璃打碎成三块,带第___块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是____.12.(2021·全国八年级) 如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ . 13.(2020·北京八年级期末)如图,在四边形ABCD 中,AC BC ⊥于点C ,且AC 平分BAD ∠,若ADC的面积为210cm ,则ABD △的面积为________2cm .14.(2021·江苏八年级期中)如图,在ABC 中,90A ∠=︒,AB AC =,BD 平分ABC ∠,CE BD ⊥于E ,若8BD =,则CE 为______.15.(2021·石家庄市第二十八中学八年级月考)如图, BD 是ABC ∆的角平分线,延长BD 至点E ,使DE AD =,若60ADB ∠=,78BAC ∠=, 则BEC ∠=__________.16.(2021·沙坪坝区·重庆八中七年级期中)如图所示,在ΔABC 中, AD 平分∠BAC ,点E 在DA 的延长线上,且EF ⊥BC ,且交BC 延长线于点F ,H 为DC 上的一点,且BH =EF , AH =DF , AB =DE ,若∠DAC +n∠ACB =90°,则n =__________.17.(2021·黑龙江哈尔滨市·八年级期末)如图所示,AD 为ABC 中线,D 为BC 中点,AE AB =,AF AC =,连接EF ,2EF AD =.若AEF 的面积为3,则ADC 的面积为______.18.(2021·浙江宁波市·八年级期末)如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______. 三、解答题(19-22题每题9分,其他每题10分,共66分)19.(2021·重庆巴蜀中学七年级期末)如图,点E 在△ABC 的边AC 上,且∠ABE =∠C ,AF 平分∠BAE 交BE 于F ,FD ∥BC 交AC 于点D .(1)求证:△ABF ≌△ADF ;(2)若BE =7,AB =8,AE =5,求△EFD 的周长.20.(2021·江苏镇江市·九年级二模)如图,在四边形ABCD 中,//AD BC ,点E 为对角线BD 上一点,A BEC ∠=∠,且AD BE =.(1)求证:AD DE BC +=;(2)若70BDC ∠=︒,求ADB ∠的度数.21.(2021·四川宜宾市·八年级期末)在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.22.(2021·广东广州市·八年级期末)如图1,△ABC 中,AB =AC ,∠BAC =90°,点D 是线段BC 上一个动点,点F 在线段AB 上,且∠FDB =12∠ACB ,BE ⊥DF .垂足E 在DF 的延长线上.(1)如图2,当点D 与点C 重合时,试探究线段BE 和DF 的数量关系.并证明你的结论;(2)若点D 不与点B ,C 重合,试探究线段BE 和DF 的数量关系,并证明你的结论.23.(2021·黑龙江佳木斯市·九年级三模)在ABC 中,90ABC ∠=︒,AB BC =,D 为直线AB 上一点,连接CD ,过点B 作BE CD ⊥交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD =,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD +=;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.24.(2021·福建三明市·八年级期中)如图1,△ABC 和△ABD 中,∠BAC =∠ABD =90°,点C 和点D 在AB的异侧,点E 为AD 边上的一点,且AC =AE ,连接CE 交直线AB 于点G ,过点A 作AF ⊥AD 交直线CE 于点F .(Ⅰ)求证:△AGE ≌△AFC ;(Ⅱ)若AB =AC ,求证:AD =AF +BD ;(Ⅲ)如图2,若AB =AC ,点C 和点D 在AB 的同侧,题目其他条件不变,直接写出线段AD ,AF ,BD 的数量关系 .25.(2021·湖北随州市·八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.附加题(1-2题,每题4分,3题6分,4-5题每题8分,共30分)1.(2021·全国七年级专题练习)如图,在△ABC 中,AD 是BC 边上的高,∠BAF=∠CAG=90°,AB=AF ,AC=AG .连接FG ,交DA 的延长线于点E ,连接BG ,CF . 则下列结论:①BG=CF ;②BG ⊥CF ;③∠EAF=∠ABC ;④EF=EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④2.(2021·湖南岳阳市·八年级期末)已知ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别为边AB 、AC 上的动点,且90EDF ∠=︒,连接EF ,下列说法正确的是______.(写出所有正确结论的序号)①270BEF CFE ∠+∠=︒;②ED FD =;③EF FC =;④12ABC AEDF S S =四边形3.(2021·河南商丘市·八年级期末)如图,在ABC 中,BC AC =,E 是射线BF 上一点,且CBE CAE ∠=∠,CD BF ⊥,垂足为D ,过点C 作CM AE ⊥,垂足为M ,连接CE ,2DE =,8AE =,3CD =,则下列结论:①CBD CAM ≌△△;②DE ME =;③30BDC S =△.其中正确的结论有_______(填序号).4.(2020·山东威海市·七年级期末)(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.5.(2020·武汉市二桥中学八年级月考)直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题: ①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.。
三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题(二)
复习回顾
到目前为止,你知道哪些判定三角形全等的方法?
学习过程
根据探索三角形全等的条件,至少需要三个条件,除了上述三种情况外,还有两边一角相等。
那么两边一角相等有两种可能的情况
(1)两边及夹角
三角形两边分别为2.5cm ,3.5cm ,它们所夹的角为40°,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?
通过以上的操作,得出结论:
两边和它们的夹角对应相等的两个三角形_______全等。
(填“一定或不一定”)
(2)两边及其一边的对角
三角形两边分别是2.5cm ,3.5cm ,其中2.5cm 长的边的对角为40°,情况会怎么样?
通过以上的操作,得出结论:
两边及其中一边的对角对应相等,两个三角形________全等。
(填“一定或不一定”)
巩固练习
1. 如图,若AB=AC,AD=AE ,___________,则可以根据公理SAS 证明△AD C ≌△AEB
则可以根据公理SAS 证明△AOB ≌△DOC
3. 如图,已知AD=AB
,∠DAC=∠BAC
证明:△ABC ≌△ADC
D C B
4.如图,BC=DA,∠BCA=∠DAC
证明:AB//CD
5.如图,已知AB=FE,AD=FC, ∠A=∠F 证明:ED//BC
6.已知,AC//DB,OC=OD,AE=BF.
证明:CE=DF
C
D
F
A C
E
D
O
B
F。