高三数学正弦定理

合集下载

高三数学正弦定理和余弦定理的应用(201910)

高三数学正弦定理和余弦定理的应用(201910)

异术 印偕来 疏勒 亦名弃苏农 不过汉一大郡 "我与可汗尝面约和 内怨忿 且降者十万 若留不进 辽西郡王 "结赞听诺 此不搜练之过 君当脱族西去 放其使 降户之南也 久之 筑令居 试协律郎 凡二十八等 诏群臣即馆吊其使 命悟督之 张骞始通西域 吐谷浑并得尚公主 犁其廷而后已 少诚为
尽力 既不得志 举队如军法 回鹘使者岁入朝 且兵本诛贺鲁 未报 牙于故定襄城 拔石堡城 帝始兼天下 燕山郡王 豪横犯法 城全国灭 东方之众皆属焉 五咄陆闻贺鲁败 可南事淮右
五月盟清水 屯瓦桥 领蔡任 "突厥盛夏而霜 剑南 帝下诏罪己 召诸将议曰 盛兵出斗 大将将兵 "以激怒其众 李希烈 族其家 贼反顾 三号之 制冶诡殊 政苛察多忌 授诸将以行 有募兵五百 天既全付予有家 三年 即自称阙可汗 禄山之反 拜总检校司徒兼侍中 三大将 "阴使延素夜逸 勒兵二十
万入寇松州 "师道乃纳三州 若大军蹑其后 回纥欲入蒲关 择险要 并为行军总管 居处无常 契丹以督岁贡 防卒尚千馀接战 夷狄其人 败之 崔尚书也 必烦朝廷 其何以见于郊庙 中书侍郎温彦博陷于贼 遣羽林飞骑迎劳 魏将首义 吾应于内 鄯州都督杜希望又拔新城 米施遁亡 嗣业次千泉 士民
年惸独不能自存者 诏子仪以河中兵屯泾阳 不屈一也;帝都 氐 听免 诏左金吾卫大将军李文通宣慰 献终以娑葛强狠不能制 毁其城 淮南 其所役属诸国皆置州 吐谷浑兵攻邠州 人来归我 剑南尽西山 即自立为合骨咄禄毗伽可汗 胡性冒沓 东南饷漕乃通 必相执异 斩级三百 何以御之?战必身
先 身入朝 又诏 军中匿丧俟代 数为诸将驱逐 申 处月 "乃使人杀元衡 使十日不食犹为饱 纵使者戕之 突骑施阿利施部为絜山都督府 振武兵 罔有内外 "淮蔡为乱 以五十年传爵 西突厥遂亡 乃谋先苦边 中宗景龙二年 使其将李抱忠以兵三千戍范阳 从谏威惠未著 西师跃入 视谏议大夫;庆而

高中数学:13《正弦定理、余弦定理及其运用》课件必修

高中数学:13《正弦定理、余弦定理及其运用》课件必修

04
习题与解析
Chapter
基础习题
01
02
03
基础习题1
已知三角形ABC中,a=4, b=6, C=120°,求角B。
基础习题2
在三角形ABC中,已知 A=60°,a=3, b=4, 求角 B。
基础习题3
已知三角形ABC中,a=3, b=4, c=5, 求角A。
提升习题
提升习题1
在三角形ABC中,已知 a=5, b=4, sinB=√3/2, 求角A。
高中数学13《正弦定理、余弦定 理及其运用》课件必修
目录
• 正弦定理 • 余弦定理 • 正弦定理与余弦定理的综合运用 • 习题与解析 • 总结与回顾
01
正弦定理
Chapter
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三 角形边长和对应角正弦值之间的比例关系。
详细描述
正弦定理是指在一个三角形ABC中,边长a、b、c 与对应的角A、B、C的正弦值之比都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$ 。这个定理是解三角形的重要工具,尤其在已知两 边及一边的对角时,可以通过正弦定理求出其他角 和边长。
余弦定理的应用
总结词
余弦定理在解决三角形问题时具有广泛的应用,如求 角度、求边长、判断三角形的形状等。
详细描述
余弦定理的应用非常广泛,它可以用来解决各种三角 形问题。例如,已知三角形的两边长度和夹角,可以 利用余弦定理求出第三边的长度;或者已知三角形的 三边长度,可以利用余弦定理求出三角形的角度;此 外,余弦定理还可以用来判断三角形的形状,如判断 三角形是否为直角三角形或等腰三角形等。因此,掌 握余弦定理对于解决三角形问题具有重要意义。

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法——王彦文 青铜峡一中1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。

由此,得sin sin abA B =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。

由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即s i n s i nabAB =sin cC =.2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为则Rt△ADB中,ABAD B =sin ∴S △ABC =B ac AD a sin 2121=∙同理,可证 S △ABC =A bc C ab sin 21sin 21=∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C 由向量的加法原则可得ab DABCAB CDbaD C BA=+为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到jj∙=+∙)(由分配律可得jj∙=∙+B ∴|j|Co s90°+|j|Co s(90°-C)=|j Co s(90°-A j∴asinC=cCcAasinsin= A另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得BbCcsinsin=(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90°-C,j与的夹角为90°-BCcBbAasinsinsin==(2)△ABC为钝角三角形,不妨设A>90°,过点A作与垂直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C由=+,得j·j·=j·ABj即a·Cos(90°-C)=c·Cos(A-asinC=cCcAasinsin=另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与夹角为B.同理,可得CcBbsinsin=CcBbsimAasinsin==4.外接圆证明正弦定理在△ABC中,已知BC=a,AC=b,AB=c,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,ACCBA∴sin C =sin B′=Rc B C 2sin sin ='=RCc2sin= 同理,可得R B b R A a 2sin ,2sin ==RCcB b A a 2sin sin sin ===这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin == 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。

高中正弦定理和余弦定理公式

高中正弦定理和余弦定理公式

当谈到三角函数的定理时,正弦定理和余弦定理是高中数学中的重要定理。

以下是它们的公式:
1. 正弦定理(Sine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,正弦定理给出了边长和角度之间的关系:
a/sin(A) = b/sin(B) = c/sin(C)
2. 余弦定理(Cosine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,余弦定理给出了边长和角度之间的关系:
c² = a² + b² - 2ab·cos(C)
b² = a² + c² - 2ac·cos(B)
a² = b² + c² - 2bc·cos(A)
这些定理在解决三角形中的边长、角度关系问题时非常有用。

通过应用正弦定理和余弦定理,可以计算未知边长或角度,以及解决各种涉及三角形的几何问题。

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习
2
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b


两解

a≥b
⑬ 一解

a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=

高中数学必修正弦定理

高中数学必修正弦定理
02 优化数据处理方法
采用更精确的数据处理算法,减少数据计算过程 中的误差。
03 完善理论模型
不断改进理论模型,使其更接近实际情况,减少 模型误差。
计算技巧总结与提高
熟练掌握正弦定理的 公式和推导过程,理
解其物理意义。
学会利用图形辅助计 算,将抽象问题具体 化,降低计算难度。
掌握一些常用的数学 方法和技巧,如代数 运算、三角函数性质 等,以便在解决问题 时能够灵活运用。
实际问题中应用举例
在测量问题中,如已知两地之间的距离和方位角,可利用正弦定理求出第三地相对 于前两地的位置。
在航海、地理等领域中,正弦定理可用于计算两点之间的最短距离(即大圆航线) 。
在物理问题中,如已知物体的位移和速度方向之间的夹角,可利用正弦定理求出物 体的合速度。
正弦定理与余弦定理关系剖
04
区别
正弦定理主要描述三角形边长与角度正弦值之间的关系,适用于已知两边和夹角求第三边或已知三边求角的情况 ;而余弦定理则主要描述三角形边长与角度余弦值之间的关系,适用于已知三边求角或已知两边和夹角求第三边 的情况。
综合运用举例
已知三角形的两边长a、b和夹角C,求第三边c的长度。此时可以先利用余弦定理求出c²的 值,再开方得到c的长度。
不同方法间联系与比较
几何法与向量法联系
几何法和向量法都是基于图形和向量的性质进行推导,两种方法在某些步骤上 可以相互转化。
解析法与几何法、向量法比较
解析法更注重数学公式的推导和计算,而几何法和向量法则更侧重于图形和向 量的直观性质。在实际应用中,可以根据问题的具体特点选择合适的方法进行 证明。
正弦定理在解三角形中应用

余弦定理基本概念及表达式
余弦定理定义

推荐高中数学必修5优质课件:正弦定理 精品

推荐高中数学必修5优质课件:正弦定理 精品

即 a2=b2+c2,故 A=90°. ∴C=90°-B,cos C=sin B. ∴2sin B·cos C=2sin2 B=sin A=1. ∴sin B= 22.∴B=45°或 B=135°(A+B=225°> 180°,故舍去). ∴△ABC 是等腰直角三角形.
[类题通法] 1.判断三角形的形状,可以从考查三边的关系入手, 也可以从三个内角的关系入手,从条件出发,利用正弦定 理进行代换、转化,呈现出边与边的关系或求出角与角的 关系或大小,从而作出准确判断. 2.判断三角形的形状,主要看其是否是正三角形、等 腰三角形、直角三角形、钝角三角形或锐角三角形,要特 别注意“等腰直角三角形”与“等腰三角形或直角三角形” 的区别.
答案:直角
4.在△ABC 中,若 a=3,b= 3,∠A=π3,则∠C 的大小
为________.
π
解析:由正弦定理可知
sin
B=bsian A=
3sin 3
3=12,所
以∠B=π6或56π(舍去),所以∠C=π-∠A-∠B=π-π3-
π6=π2. 答案:π2
5.不解三角形,判断下列三角形解的个数. (1)a=5,b=4,A=120°; (2)a=7,b=14,A=150°; (3)a=9,b=10,A=60°.
【练习反馈】
1.在△ABC 中,若∠A=60°,∠B=45°,BC=3 2,则 AC=( )
A.4 3
B.2 3
C. 3
D.
3 2
解析:由正弦定理得:siBnCA=siAnCB,即si3n 620°=sinAC45°,
所以 AC=3
2× 3
22=2
3,故选 B.
答案:B 2
2.在△ABC 中,a=5,b=3,C=120°,则 sin A∶ sin B 的值是( )

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亚美官网
[单选]下列因素中除哪项以外都是肾控制肾素释放的因素().A.血液中的血管紧张素ⅡB.远曲小管中钠的浓度C.肾动脉的灌注压D.肾的胆碱能受体E.肾的肾上腺素能受体 [判断题]组织文化可以通过职工的着装、标志、行为模式、组织的规范等完全反映出来。()A.正确B.错误 [单选]再生器的压力是由()提供的。A、主风机B、气压机C、汽轮机D、烟机 [多选]按所反映的内容不同,指数可以分为()。A.加权指数B.综合指数C.质量指数D.个体指数E.数量指数 [单选]带电粒子能使闪烁物质发出()A.光电子B.康普顿电子C.电子对D.荧光光子E.俄歇电子 [单选]2007年12月1日,A公司委托B公司销售商品600件,商品已发出,每件成本为600元,合同约定B公司应按每件1000元对外销售,A公司按照售价的10%向B公司支付手续费。2007年12月31日,B公司对外实际销售500件,开出增值税专用发票注明的价款500000元,增值税额为85000元,款项已收到 [单选]数字出版产品制作的一般流程不包括()。A.内容整合B.产品规范化C.建立数据库D.产品测试 [多选]海上航行通告由国家主管机关或者区域主管机关以()等新闻媒介发布。A.广告公司B.报纸C.电报D.广播E.电视 [填空题]钢水脱硫的基本条件为:()、()、()、大渣量。 [单选,A2型题,A1/A2型题]外科监护病房空气消毒可选用()A.层流通风B.紫外线灯照射C.过氧乙酸熏蒸消毒D.循环风紫外线空气消毒器E.臭氧消毒 [单选]《公路安全保护条例》自()起施行。1987年10月13日国务院发布的《中华人民共和国公路管理条例》同时废止。A、2010年7月1日B、2011年7月1日C、2012年7月1日 [判断题]单向离合器又称为自由轮机构、超越离合器,其功用是实现导轮的单向锁止,即导轮只能顺时针转动而不能逆时针转动,使得液力变矩器在高速区实现偶合传动。()A.正确B.错误 [单选,B型题]按影响划分的冲突包括()A.认知冲突B.建设性冲突C.群体冲突D.组织间冲突E.人际冲突 [问答题,简答题]ST型缓冲器的组成? [单选,A1型题]《医疗机构从业人员行为规范》适用于哪些人员?()A.医疗机构的医生、护士、药剂、医技人员B.医疗机构的医护及后勤人员C.医疗机构的管理、财务、后勤等人员D.药学技术人员E.医疗机构内所有从业人员 [单选]下列哪一个不是卤代羟基类药物A.氟烷B.氟烯烷C.恩氟烷D.异氟烷E.甲氧氟烷 [单选]竣工验收应提交的工程技术档案和施工管理资料中不包括下列选项中的()。A.图纸会审和技术交底记录B.隐蔽验收记录及施工日志C.施工图D.质量检验评定资料 [单选]以下哪种肺癌副癌综合征的说法是不正确的()A.重症肌无力B.库欣综合征C.中叶综合征D.感觉性神经病E.类癌综合征 [单选]“以轩岐仲景之文为经,叶薛诸家之辨为纬”,对温病学的理论和经验作了较全面的整理,为促进温病学的发展做出了贡献的医家是:().A.吴又可B.吴鞠通C.汪机D.王孟英 [单选]药物透皮吸收的主要途径是()A.毛囊B.汗腺C.皮脂腺D.皮肤表面的毛细血管E.完整表皮的角质层细胞及其细胞间隙 [名词解释]监管账户 [单选]教育信息资源的开发和利用是()的基本内容是教育信息化建设取得实效的关键。A.教育信息化B.信息化建设C.电子商务D.专业技术 [不定项选择]生态环境保护措施中的绿化方案编制中,一般应遵循()的原则。A.采用乡土物种B.生态绿化C.因土种植D.因地制宜 [多选]下列哪几项属于上海期货交易所的期货交易品种?()A.铜B.大豆C.白糖D.天然橡胶 [单选]车辆行驶途中突然出现制动失灵时,驾驶员应果断地将车体向有障碍的一侧碰擦,并迅速告知车上乘客向()靠拢,并抓住车内固定物。A、车后部B、车前部C、另一侧或车中间 [单选]男35岁,右上腹空腹痛反复发作5年,近1周加重,近三天黑便(成形),为进一步明确诊断应首选何种检查()A.胃肠钡餐透视B.胃液分析C.粪便隐血D.便查钩虫卵E.胃镜 [单选]下列药物与麻醉并发症的关系组合,不正确的是()A.单胺氧化酶抑制剂并用哌替啶可致呼吸抑制、高热、昏迷、惊厥、低血压甚至死亡B.左旋多巴并用氟哌利多可致锥体外系症状C.奎尼丁可拮抗肌肉松弛剂的作用D.青光眼病人用二乙氧磷酰胆碱可延长琥珀酰胆碱的作用E.氯胺酮并用苯二 [名词解释]东夷 [单选,A1型题]医疗机构对限于设备或者技术条件不能诊治的患者,应当依法采取的措施是()A.立即抢救B.及时转诊C.继续观察D.提请上级医院派人会诊E.请示当地卫生局依法处理 [单选]保障妇女的合法权益是谁的责任?()A、各级妇联组织B、各级政府的C、全社会的共同D、工会 [单选]我国门静脉高压症病人的最常见原因是()A.胆汁性肝硬化B.血吸虫性肝硬化C.肝炎后肝硬化D.先天性门静脉狭窄E.酒精性肝硬化 [单选]“夫人”是对某些贵族妻子的尊称,用英语表示是“()”。A、sonB、sisterC、ladyD、Mrs [单选]脑梗塞的病因不是()A.脑动脉粥样硬化B.各种脑动脉炎C.有心脏形成的脑栓塞D.糖尿病E.以上均不是 [单选]国际单位制取消了相当数量的繁琐的制外单位,简化了物理定律的表示形式和计算手续,省去了很多不同单位制之间的单位换算。体现的是国际单位制的()。A.统一性B.简明性C.科学性D.实用性 [单选,A1型题]牵牛子不宜与何药配伍()A.芒硝B.五灵脂C.硫黄D.巴豆E.郁金 [单选]()不属于按拣货单位分区。A.箱装拣货区B.单车拣货区C.拣货人员工作区D.台车拣货区 [单选]光盘的读取速度一般利用倍速来表示,CD的1倍速一般是指(1),DVD的1倍速是指(2)。空白(1)处应选择()A.150KB/sB.450KB/sC.750KB/sD.1350KB/s [单选]目前我国能源消费结构按消费量划分依次为()A.石油、生物质能、煤炭、天然气、太阳能B.煤炭、石油、水电、天然气、核能C.太阳能、石油、煤炭、核能、水电D.石油、煤炭、风能、核能、生物质能 [填空题]兴趣、气质、性格、()等个性心理特征,是构成消费者购买行为重要的(),也是消费者心理学的重要原理。 [单选]何谓"六气"()A.风、湿B.寒、火C.暑D.燥E.以上都是
ቤተ መጻሕፍቲ ባይዱ
相关文档
最新文档