系统辨识:随机过程的特征估计
系统辨识算法

系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。
系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。
系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。
二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。
1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。
常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。
最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。
最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。
递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。
2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。
常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。
频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。
时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。
小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。
三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。
1. 控制工程系统辨识算法在控制系统设计中起到关键作用。
通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。
例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。
2. 信号处理系统辨识算法在信号处理领域有重要应用。
通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。
例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。
系统辨识的基本概念优选演示

• 1.3.2 平稳随机过程与各态历经性
• 1.3.3 随机过程的谱分解及谱密度函数
• 1.4 白噪声与伪随机码 • 1.4.1 白噪声及其产生 • (1)白噪声的基本概念
• (2)白噪声的产生办法
zi=(azi-1+C)(mod m),i=1,2,… (1.4.11)
0≤zi≤m-1
(1பைடு நூலகம்4.12)
图1.4.7 2Δ<τ<3Δ 的情况
(以4级M序列为例)
• 1.5 • 1.5.1 • 实现系统辨识的过程可以分为以下几个步骤: • ①选定一类代表被辨识系统的数学模型。
• (2)离散系统的参数模型
• 1.2.2 非参数模型 • (1)连续系统的非参数模型
• 离散系统的非参数模型
• 1.3 随机信号的描述与分析 • 1.3.1 • (1)随机过程的概念 • (2)随机过程的数字特征
图1.3.1 样本总体 构成随机过程
图1.3.2 自相关函数测量示意图
xi=zi/m,i=1,2,…
(1.4.13)
图1.4.1 白噪声过程 的自相关函数
图1.4.2 白噪声过程的谱密度
• 1.4.2 伪随机码的产生及其性质 • (1)伪随机噪声的性质
有色噪声(相关噪声)
• 噪声序列中每一时刻的噪声和另一时刻的噪 声相关
• 有色噪声序列可看成由白噪声序列驱动的线
性环节的输出白噪声
(k)
G(z1)
有色噪声
e(k)
e (k) C D ( (z z 1 1) )(k) 1 1 1 .5 z0 1 .5 z0 1 .7 z0 2 .2 z0 2 .1 z 3 (k)
程序ex1_WhiteNoise_ColoredNoise.m
第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

1第六章 数据预处理及相容性检验6.1 前言航行器航行试验数据用于参数辨识之前,需要对试验数据进行预处理和数据相容性检验,目的在于尽可能消除含在数据中的各种噪声和系统误差,以提高辨识结果的准确度。
数据预处理包括:数据野值的识别、剔除与补正;数据加密;数据平滑与微分平滑;滤除高频噪声及以传感器位置校正等。
数据相容性检验的主要功能是将数据中的常值误差,特别是零位漂移误差辨识出来并重新建立没有常值误差的试验数据。
本章还以某型航行器的实测数据预处理为例,给出了具有实际应用意义的数据处理技术及结果。
6.2 数据处理的理论基础6.2.1 信号的分类用数学来描述待辨识系统的某一组输入和某一组输出时间函数间的关系是辨识的基础。
在选择信号的描述方法时,必须考虑信号表示的两个方面:①要表现出信号载有信息的属性;②要给出研究过程信息传递特性的方法。
按时间函数的特点来表达信息,可将信号分为连续信号和采样信号。
在许多情况下,信号的记录可以采用这两种信号中的任一种。
两种信号的记录均有各自的特点,但是利用计算机对记录的信号作处理时,往往需要采样信号,即使采用连续信号,也必须对信号作采样处理。
采样运算是线性运算,即当我们用算子ψ(.)表示这一运算时,对一切α和β,信号u(t)和y(t)均有ψαβαψβψ[()()][()][()]u t y t u t y t +=+(6-2-1)按幅度划分,信号可以分为模拟信号、量化信号和二进制信号。
二进制信号是量化信号的极限情况,量化运算是非线性运算。
因此,在处理量化信号时,这种非线性造成许多数学上的困难。
确定性信号与随机信号也是系统建模和参数辨识中常用的信号分析方式。
由于工程的实际环境,对随机信号的讨论更具有实际意义。
6.2.2 随机信号的描述为了讨论问题的方便,在此我们首先介绍随机信号的一些统计性质。
与确定性信号不一样,对随机信号询问其幅度的瞬时值是没有多少意义的,所以最有用的量是那些关于统计性质的量,如谱密度、数学期望值、方差和相关函数等。
系统辨识课件方崇智

e
ˆ (假设的数学关系) f
系统的 实际输 出
(1)数学模型
• 数学模型和真实系统的区别
不可测干扰 可测 输入
u, d , f z
可测 输出
可测 输入
e
综合误差
ˆ (假设的数学关系) f
ˆ , e拟合u, z关系 u, z f
可测 输出
(1)数学模型
• 数学模型的两类形式及其用途
可测 输入
第6章 模型阶次辨识 内 容:Hankel矩阵法、F-Test定阶法。
第7章 系统辨识在实际中注意的问题
参考书:
1.方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京 2.李言俊,张科编著,《系统辨识理论及应用》,国防工业出版社,北京 3.蔡季冰编著,《系统辨识》,北京理工大学出版社,北京
预修课程:自动控制原理,概率统计与随机过程
e
综合误差
可测 输出 •系统分析 •系统设计
ˆ (假设的数学关系) f
ˆ f
•预测(预测控制) •性能监测与故障诊断 •仿真
ˆ z
•在线估计和软测量 •模型评价与系统辨识
(1)数学模型
• 数学模型的近似性和外特性等价
u u
d f
e ˆ f u
z
近似性
ˆ f
ˆ z
d
u u
从黑箱角度出 发,外特性等价 (统计意义)
(1)设计辨识实验,获取实验数据
数据集是辨识的三要素之一
min J fˆ , K ( z (1)
z ( L), u(1)
u( L), )
数据集性质→影响辨识结果,u →数据集,因 此要设计辨识实验(重点设计u)
(1)设计辨识实验,获取实验数据
《系统辨识》课件

23
第二章
过渡响应法和频率响应法
§21 过渡响应法(时域法) 采用非周期试验信号,通过系统的动态响应研究系 统的模型。 一、非参数模型的辨识 在时域中建立线性系统非参数模型时,用很简便的 方法就可得到脉冲响应曲线,阶跃响应曲线、方波响应 曲线或它们的离散采样数据表。 脉冲响应:可以采用幅值相当大,宽度很窄的方波 来近似δ 函数 。 对于线性系统,脉冲响应,阶跃响应和方波响应之 24 间是可以相互转换的。
过程的非线性与时变性(有助于模型类的选择)
噪声水平(以便用多大的输入,使得观测量有多
大的信噪比)
变量之间的延迟(滞后环节参数) 2)输入信号的选择(阶跃、方波、脉冲、PRBS)。
16
第一章
概
述
3)采样速度的选择(要采集数据就有采样速度选择 问题)。实际上先采用较短的采样间隔,在数据分析时, 可根据需要隔几个取一个数据。 4)试验长度的确定(试验时间问题)。辨识精度与 试验时间的长短有关。 2、模型结构确定 根据辨识的目的及对被辨识系统的先验知识,确定
系统辨识
电气工程与自动化学院 陈 冲
1
课程主要内容
第一章
第二章 第三章 第四章 第五章
概
述
过渡响应法和频率响应法 辨识线性系统脉冲响应函数的相关分析法 线性系统参数估计的最小二乘法 线性系统的状态估计法
结束
2
第一章
一、建模的必要性 二、模型 三、建模方法
概
述
四、系统辨识的内容(或步骤)
随机过程的基本概念和分类

随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。
它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。
本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。
1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。
在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。
根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。
离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。
连续时间的随机过程是在连续时间上的函数,例如天气的变化。
在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。
随机过程可以用概率分布函数来表达。
对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。
对于离散时间的随机过程,概率分布可以用概率质量函数来描述。
概率分布函数可以通过研究随机过程的瞬时状态来推导。
随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。
2. 随机过程的分类随机过程可以按照多种方式进行分类。
以下是一些常见的分类方式。
2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。
马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。
根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。
离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。
2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。
这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。
平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。
MATLAB中常见的自动化建模方法介绍

MATLAB中常见的自动化建模方法介绍随着科技的不断进步,自动化建模在各个领域中变得越来越重要。
MATLAB作为一种强大的数学建模与仿真工具,为研究人员和工程师们提供了许多自动化建模方法。
本文将介绍几种常见的MATLAB中的自动化建模方法,包括系统辨识、机器学习和优化方法。
一、系统辨识系统辨识是在无法直接获得系统模型的情况下,通过对系统输入和输出数据的观测来估计系统模型。
MATLAB提供了多种用于系统辨识的函数和工具箱,其中最常用的是System Identification Toolbox。
System Identification Toolbox提供了参数估计、模型结构选择和模型验证等功能。
在MATLAB中,使用系统辨识工具箱进行模型辨识一般包括以下步骤:收集系统输入和输出数据、选择适当的模型结构、参数估计和模型验证。
通过这些步骤,研究人员可以获得一个能够准确描述系统动态特性的模型。
二、机器学习机器学习是一种通过让计算机从数据中学习,并且在新的数据上做出预测或决策的方法。
在MATLAB中,有多种机器学习算法可供选择,包括支持向量机(SVM)、人工神经网络(ANN)和决策树等。
支持向量机是一种基于统计学习理论的二分类器,其主要思想是通过在高维特征空间中找到一个最优超平面来实现数据分类。
MATLAB中的Support Vector Machines Toolbox提供了一系列用于支持向量机模型的训练和应用的函数。
人工神经网络是一种模拟人脑神经元网络的算法,它可以通过学习样本数据来进行分类、回归、聚类等任务。
MATLAB中的Neural Network Toolbox提供了一系列用于构建、训练和应用神经网络的函数和工具。
决策树是一种通过对数据进行分割来实现分类的方法。
决策树模型通过一系列的判定条件将数据分为不同的类别。
在MATLAB中,可以利用Classification Learner App来构建和训练决策树模型,同时还可利用TreeBagger函数进行随机森林模型的构建和训练。
第一讲随机过程的概念

随机过程的基本知识
引例:热噪声电压
一、随机过程的定义
定义1 设E是一随机实验,样本空间S={e},T为参数集
若对每个eS ,X(e,t)都是实值函数, 则称{X(e,t),t T}
为随机过程,简记为X(t),t T 或X(t),也可记为X(t).
称族中每一个函数称为这个随机过程的样本函数。
样本函数: xi (t ) a cos( t i ) , i (0 , 2 )
状态空间:I=(-a,a)
例3: 掷骰子试验
伯努利过程 (伯努利随机序列)
以上都是随机过程,状态空间都是:I={1,2,3,4,5,6}
二、随机过程的分类
离散型随机过程
1. 依状态离散还是连续分为:
s, t 0, C X ( s, t ) DX [min{s, t }].
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的协方差函数.
⑤ Rx(s,t)=E[X(s)X(t)]为{X(t),tT}的自相关函数, 简称相关函数
诸数字特征的关系:
X (t ) f ( x, t )
称 f ( x, t ) 为随机过程的一维密度函数 称{ f ( x, t ), t T } 为一维密度函数族.
X t 0 ,其中 X Y ( t ) te 例4 设随机过程
e( ) ,求
{Y (t ),t 0}的一维密度函数
y P( X ln ) , t 解: F ( y; t ) P[Y (t ) y ] P(te y ) 0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 随机过程的特征估计
实验报告
1、产生一组均值为1,方差为4 的正态分布的随机序列(1000 个样本),估计该序列的均值与方差。
解:MATLAB代码:
R=NORMRND(1,2,1,1000) %产生均值为1方差为4的正态分布的1000个随机序列
mean(R) %返回序列R的均值
V AR(R) %返回序列R的方差
figure(1);
subplot(2,1,1)
stem(R); %绘制离散R序列
title('序列R')
subplot(2,1,2)
hist(R,15); %绘制R序列的分布
title('序列R的分布')
输出结果:
均值:ans = 1.0911
方差:ans =4.2540
从输出结果中可以看到,输出的均值和方差接近所给值,R序列的分布图可接近正态分布。
2、按如下模型产生一组随机序列:
x(n)=0.8x(n-1)+w(n)
其中w(n)为均值为1,方差为4 的正态分布白噪声序列。
估计过程的自相关函数与功率谱。
解:MATLAB代码:
Fs=1; %采样频率
n=0:1/Fs:1000;
%生成均值为1方差为4的正态分布白噪声序列
w=randn(1,1000);
w=w/std(w);
w=w-mean(w);
a=1; %均值为1
b=4; %方差为4
w=a+sqrt(b)*w;
x=zeros(1,1000);
x(1)=w(1);
for n=2:1000
x(n)=0.8*x(n-1)+w(n);
end
nfft=1000;
cxn=xcorr(x,'unbiased'); %计算x(n)的自相关函数figure(1);
subplot(3,1,1);
plot(cxn); %绘制自相关函数图
title('信号x的自相关函数')
%自相关法功率谱估计
CXk=fft(cxn,1000);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
subplot(3,1,2)
plot(k,plot_Pxx);
title('信号x的功率谱');
%周期图法功率谱估计
window=boxcar(length(x));%矩形窗
[Pxx,f]=periodogram(x,window,nfft,Fs);%直接法
Subplot(3,1,3)
plot(f,10*log10(Pxx))
title('周期图法得到的功率谱')
3、设信号为x(n)=sin(2πf1n)+2cos(2πf2n)+w(n),n=1,2,....,N,其中f1=0.05,f2=0.12,w(n)为正态白噪声,试在N=356 和1024 点时,分别产生随机序列x(n)、画出x(n)的波形并估计x(n)的相关函数和功率谱。
解:当N=356时,
MATLAB代码:
Fs=1000; %采样频率
n=0:1/Fs:1;
xn=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(size(n)); %产生xn的随机序列
nfft=356;
subplot(3,1,1)
plot(n,abs(xn)) %绘制xn的波形
title('x(n)=sin(2πf1n)+2cos(2πf2n)+w(n)的信号')
%自相关法功率谱估计
cxn=xcorr(xn,'unbiased'); %计算自相关函数
CXk=fft(cxn,nfft); %傅立叶变换
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
subplot(3,1,2)
plot(k,plot_Pxx) %绘制功率谱图
title('自相关法得到的功率谱')
%周期图法功率谱估计
window=boxcar(length(xn));%矩形窗
[Pxx,f]=periodogram(xn,window,nfft,Fs);
Subplot(3,1,3)
plot(f,10*log10(Pxx))
title('周期图法得到的功率谱')
结果输出:
当N=1024时,
MATLAB代码:
Fs=1000;
n=0:1/Fs:1;
xn=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(size(n)); nfft=1024;
subplot(3,1,1)
plot(n,abs(xn))
title('x(n)=sin(2πf1n)+2cos(2πf2n)+w(n)的信号') cxn=xcorr(xn,'unbiased');
CXk=fft(cxn,nfft);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
subplot(3,1,2)
plot(k,plot_Pxx)
title('自相关法得到的功率谱')
window=boxcar(length(xn));%矩形窗
[Pxx,f]=periodogram(xn,window,nfft,Fs);%直接法Subplot(3,1,3)
plot(f,10*log10(Pxx))
title('周期图法得到的功率谱')。