初中数学整式、分式的化简求值

合集下载

初中数学化简求值专题

初中数学化简求值专题

初中数学化简求值专题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-初中数学化简求值个性化教案3、整体代入例练:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x1的值 例练:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,8225++x bx a 的值.例练: 若ab=1,求11+++b ba a 的值 例练:已知y xy x y xy x y x ---+=-2232311,求的值 4、归一代入例练:已知a=3b,c=4a 求代数式cb a cb a -++-65292的值5、利用性质代入例练:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值6、取特殊值代入例练:设a+b+c=0,abc >0,求ac b ++b a c ++c ba +的值是 A -3 B 1 C 3或-1 D-3或-1解决本类问题的关键在于化简,可能是单方向化简然后求值,即通过整式乘除,因式分解化简成一个最简单的代数式,然后代入字母对应的数字解决问题;也可能是双向化简,即从条件和问题同时入手化简。

找到两者对应关系后进行代入求值。

代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值 2.利用乘法公式求值3.设参数法与换元法求值4.利用非负数的性质求值5.利用分式、根式的性质求值举例分析1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x-1=0,所以6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x-1)+1=(3x 2+3x-1)(2z 2+3x+1)+1=0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,① 求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1, 所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.例6:已知1,0,x y z a b ca b c x y z++=++=求222222x y za b c++的值u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m 2x 2+m 2y 2-2mxy-2mny+y 2+n 2=0,(m 2x 2-2mxy+y 2)+(m 2y 2-2mny+n 2)=0,即 (mx-y)2+(my-n)2=0. 5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明. 例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算. 同样(但请注意算术根!) 将①,②代入原式有一般题型1、先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1.3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.※5、先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba ba b a b 3a -++-- 7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–3 11、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (x x 1--2),其中x =2. 13、先化简,再求值:,其中.※14、先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中32x =.17、先化简。

第9章 分式—分式的化简求值 22--23学年沪科版数学七年级下册

第9章 分式—分式的化简求值  22--23学年沪科版数学七年级下册

=
1
1

(代入 + = 4)
1
15
1
配方常见的式子有 + = , − = , 2 +
1
2
1
1
= ( + )2 −2 = ( − )2 +2等,要熟练掌握
并会灵活运用配方法. 次数高的要降幂,构造完
1
所以原分式的值为 15 .
全平方式,代入求值即可.
【例】若 + = 2019, + = 2020, + = 2021,且 =
分式化简的基
本理论知识
分式的基本性质:分子分母同乘除一个
不为0的整式,分式不变.
约分:把分式的分子和分母的公因式约去
通分:把异分母化成同分母
分式的四则运算
化简:用因式分解的方法化简分子分母
分式的化简求值
分式化简的
基本步骤
分式化简求值
的常见方法
通分:根据分式的基本性质,把几个异分母的
分式分别化成与原来的分式相等的同分母的分
− 2

1
将 = 4代入得
2(−)
+3 2×1+3

4

1
−2
−2
4

=
= −2, 所以原分式的值为−2
方法总结:一般题干给出条件难以得出可以直接代入的简易结论,我们可以将整个条件看成一个整体,
化简分式时向着这个式子的方向去化简,然后整体直接代入即可求值.
配方法
1

【例】已知 + =
将条件等式整
体代入即可求

方法总结:当条件式为等式时,

新人教版-八年级(初二)数学上册-分式章节-分式的化简求值(1).讲义教师版

新人教版-八年级(初二)数学上册-分式章节-分式的化简求值(1).讲义教师版

内容 基本要求略高要求较高要求分式的概念 了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质 理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算 理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题一、比例的性质: ⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c⋅÷=⨯=⋅乘方:()n nn nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)知识点睛中考要求分式的化简求值(1)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、化简后直接代入求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】化简后直接代入求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【巩固】先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考例题精讲【解析】()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】13【例3】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例4】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【巩固】先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式2223221a a a a a a +--⎛⎫=+⨯⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例5】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例6】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【巩固】先化简:22222a b ab b a a ab a⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时,①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【巩固】已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x . 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例7】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a =【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a a a a a a a +++=÷--÷-+4(3)(2)(2)5(34)(2)2a a a a a a +-+-=÷-++ 4(3)2(34)(2)(3)(3)a a a a a a ++=⋅-+-+4(34)(3)a a =-- 当4a =时,原式441(34)(3)(344)(43)2a a ===--⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算 的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 【答案】12【例8】 已知22a b ==a bb a-的值. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b =+=∴4a b +=,a b -=,1ab =而a b b a -22()()a b a b a b ab ab -+-==∴a b b a -=()()a b a b ab+-==【答案】【例9】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例10】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b ÷+.其中1a =, b =. 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【巩固】先化简,再求值:22112b a b a b a ab b⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例11】 先化简,再求值:22211x yx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例12】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】化简后直接代入求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++-()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b ca b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例13】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab +=得2b a =原式2a ba b-=+当2b a =时,原式42a aa a-=+1=-【答案】1-【例14】 已知:34x y =,求2222222x y xy y x xy y x xy -+÷-+-的值【考点】直接换元求值(分式)【难度】3星 【题型】解答 【关键词】【解析】2222222()()()32()()4x y xy y x y x y y x y x x xy y x xy x y x x y y -++-+÷=÷==-+--- 【答案】34【巩固】已知x y z ,,满足235x y z z x ==-+,则52x yy z-+的值为( ) A.1 B.13C.13-D.12【考点】直接换元求值(分式) 【难度】4星 【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B ;由235x y z z x ==-+得332y x z x ==,,∴55312333x y x x y z x x --==++ 【答案】13【例15】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】直接换元求值(分式)【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++--22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例16】 已知221547280x xy y -+=,求xy的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【巩固】已知22690x xy y -+=,求代数式 2235(2)4x yx y x y+⋅+-的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例17】 已知x =,求351x x x ++的值.【考点】条件等式化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例18】 已知123a b c a c ==++,求ca b+的值. 【考点】直接换元求值(分式) 【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例19】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】第9届,华罗庚金杯总决赛1试【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【巩固】已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===-- 【答案】52【巩固】已知分式1x y xy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】 【解析】由题可知:()()()1.1x y m xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①② 由②得:11x y x y n m xy xy--+==-=---. ∴m n =-,∴0m n +=.所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例20】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x +--==.由222nx y -=,得:222122y y n x x ++==. ∵1y ≠-,∴0n ≠, ∴()()()231121y y y m n x x +-+=÷()()()231121y y x x y +-=⋅+()312x y -=. 【答案】()312x y -【例21】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【巩固】已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z 【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =.【答案】::7:5:1x y z =【例22】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】直接换元求值(分式)【难度】5星【题型】解答【关键词】黄冈市初中数学竞赛 【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y = 586412520032051211578525x y m n y y y y +++=+++=+++= 【答案】1157【例23】 设有理数a b c ,,都不为0,且0a b c ++=, 则222222222111b c a c a b a b c +++-+-+-的值为___________。

【中考抢分通关秘籍】通关秘籍03 整式和分式化简求值(解析版)

【中考抢分通关秘籍】通关秘籍03 整式和分式化简求值(解析版)

通关秘籍03 整式和分式化简求值目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!易错点一 整式化简中整体代入求值【例1】(23-24八年级上·四川巴中·期末)先化简,再求值:()()()22262a a b a b a b b b -++-+-÷⎡⎤⎣⎦,其中210a b -+=.【答案】23b a --,2-. 【分析】本题考查了整式的运算,先进行括号内的单项式乘以多项式,平方差公式和合并同类项运算,再多项式除以单项式运算即可,把210a b -+=变形为21b a -=,然后利用整体代入求值即可,熟练掌握运算法则及整体代入是解题的关键. 【详解】解:原式()2222462a ab b a b b =-+--÷,()24262b ab b b =--÷,23b a =--,∵210a b -+=, ∴21b a -=,【例2】(2024·江苏盐城·模拟预测)已知2230x x --=,求代数式()()()2(1)433x x x x x -+-+-+的值.【答案】1 【分析】本题主要考查了整式的混合运算、代数式求值等知识点,根据整式的运算法则进行化简是解此题的关键. 由2230x x --=可得223x x -=,然后再运用整式的混合运算法则化简原式,然后将223x x -=整体代入计算即可. 【详解】解:∵2230x x --=, ∴223x x -=,∴()()()2(1)433x x x x x -+-+-+2222149x x x x x =-++-+- 2368x x =--()2328x x =-- 338=⨯-1=.【例3】(2024·浙江宁波·模拟预测)(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭;(2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 【答案】(1)3;(2)13. 【分析】本题考查了实数的运算,整式的混合运算.(1)根据负整指数幂的性质,化简绝对值,特殊角的锐角三角函数值计算即可; (2)由已知求得241x x -=,再对所求式子利用乘法公式化简,再整体代入求解即可.【详解】解:(1)212tan 6012-⎛⎫︒+ ⎪⎝⎭14=3=;(2)∵2410x x --=,利用整式的运算法则,乘法公式进行化简,再整体代入求值.∴241x x -=,∴()()()22311x x x --+-2241129x x x -+=-+ 201231x x -+=()20431x x -+=3110=⨯+ 13=.易错点二 分式化简后取值要使分式有意义【例1】(2024·陕西榆林·一模)先化简:21221121x x x x x ++⎛⎫-÷ ⎪--+⎝⎭,再在1-,1,2中选择一个合适的数代入求值.【详解】解:21121x x x -÷ ⎪--+⎝⎭ ()()22111111x x x x x x +-+⎛⎫=-÷ ⎪--⎝⎭- ()()212121x x x x --=⋅-+ 21x x x -=+,【例2】(2024·浙江宁波·模拟预测)先化简,再求值:211121m m m m ⎛⎫-÷ ⎪+++⎝⎭,并从1-,0,1选一个合适的数代再求值. 【例3】(2024·湖北黄冈·模拟预测)先化简,再求值:()()21111aa a ⎡⎤+÷⎢⎥--⎢⎥⎣⎦,化简后从23a -<<的范围内选一个你喜欢的数作为a 的值代入求值.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,选择自己喜欢的数代入求值事,一定要注意使分式有意义.题型一 整式的运算【例1】(2024·江苏宿迁·一模)计算:()1012024tan 302π-⎛⎫+-︒ ⎪⎝⎭.【例2】(2024·广东深圳·()101220246cos304π-⎛⎫--+--︒ ⎪⎝⎭.负指数幂,零次幂,立方根,特殊角的三角函数值,再算乘法,最后算加减即可求解.1.(2024·四川内江·一模)计算:2202501(1)3tan 30(2024)2022|2π-⎛⎫-++︒--+ ⎪⎝⎭. 【答案】2024 【分析】本题考查了特殊角三角函数值的混合运算,根据负整数指数幂,零指数幂,特殊角的三角函数值进行计算即可求解.【详解】解:2202501(1)3tan 30(2024)20222π-⎛⎫-++︒-- ⎪⎝⎭14312022=-+++2024=.2.(2024·甘肃白银·一模)计算:()21sin 45202412-︒---⎛⎫ ⎪⎝⎭-.【详解】解:()01sin 45202412⎛⎫︒---- ⎪⎝⎭)114-+6=【点睛】本题主要考查特殊角的三角函数值,零次幂,绝对值,负整数次幂运算,掌握相关运算法则是解题的关键.题型二 整式化简后直接代入求值【例1】(2024·广西·一模)先化简,再求值:()()()23332x x x x x +-+-÷,其中4x =.【答案】29x -,1-【分析】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.根据平方差公式及多项式除以单项式法则分别计算乘除,再相加即可.【详解】解:()()()23332x x x x x +-+-÷()2292x x x =-+-29x =-,【例2】(2024·广西南宁·一模)先化简,再求值:()()()22224x y x y x y y⎡⎤+-+-÷⎣⎦,其中1x=,1y=-.【答案】21x y,+-【分析】本题考查整式的混合运算及因式分解的应用,熟知乘法公式、整式的四则运算法则和因式分解的方法是正确解决本题的关键.按整式运算法则或先运用因式分解化简再代入计算即可.【详解】解:化简方法一:()()()22224x y x y x y y⎡⎤+-+-÷⎣⎦()()2224x y x y x y y⎡⎤=++-+÷⎣⎦()244x y y y⎡⎤=+⨯÷⎣⎦2x y=+化简方法二:()()()22224x y x y x y y⎡⎤+-+-÷⎣⎦()()22224444x xy y x y y⎡⎤=++--÷⎣⎦()222244+44x xy y x y y=++-÷()24+84xy y y=÷244+84xy y y y=÷÷2x y=+当1x=,1y=-时,原式()1211=+⨯-=-.1.(2024·湖南长沙·一模)先化简,再求值:()()()()222a b a b a b a a b-++---,其中20241a b==-,.【答案】2ab,4048-【分析】整式的混合运算,正确掌握相关运算法则是解题关键.根据平方差公式及多项式除以单项式法则分别计算乘除,再相加求解.本题主要考查了整式的化简求值,先根据完全平方公式,平方差公式和单项式乘以多项式的计算法则去括号,然后合并同类项即可.【详解】解:()()()()222a b a b a b a a b -++---22222224a ab b a b a ab =-++--+2ab =,当20241a b ==,时,原式()2202414088=⨯⨯-=-.2.(2024·湖南娄底·一模)先化简,再求值:()()()()22224x y x y x y x x y -+-+--,其中=1x -,2y =. 【答案】2243x y +,16【分析】此题主要考查整式的化简求值,解题的关键是熟知整式的混合运算法则.先根据完全平方公式、平方差公式将多项式展开,再去括号、合并同类项,最后代入值计算即可. 【详解】解:()()()()22224x y x y x y x x y -+-+-- 原式222224444x xy y x y x xy =-++--+ 2243x y =+当=1x -,2y =时, 原式()224132=⨯-+⨯412=+16=题型三 分式中化简后直接代入求值【例1】(2024·广东湛江·一模)先化简,再求值:22692333x x x x x x x ⎛⎫-+++÷- ⎪-+⎝⎭,其中3x =.【例2】(2024·安徽合肥·一模)先化简,再求值: 22111x x x x x +-⎛⎫-÷ ⎪+⎝⎭,其中2x =-.1.(2024·湖北孝感·一模)先化简,再求值:526222m m m m -⎛⎫+-÷⎪--⎝⎭,其中3m =-+ 【详解】解:222m m m ⎛⎫+-÷⎪--⎝⎭ ()()2252226m m m m m +---=⋅--利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再把x 值代入求值.()292223m m m m --=⋅-- ()()()332223m m m m m +--=⋅--32m +=,当3m =-+=2.(2024·江苏淮安·模拟预测)先化简,再求值:22469111x x x x -+⎛⎫-÷⎪+-⎝⎭,其中3x =+【详解】解:2469111x x x x -+⎛⎫-÷⎪+-⎝⎭()()()23141111x x x x x x -+⎛⎫=-÷ ⎪+++-⎝⎭ ()()()211313x x x x x +--=⋅+- 13x x -=-,当3x =原式=1.题型四 分式中化简后整体代入求值【例1】(2024·江苏宿迁·一模)先化简,再求值:223x x xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足210x y +-=. 【答案】()22x y +,2【例2】(2024·广东东莞·一模)先化简,再求值:232()121x x x x x x --÷+++,其中x 满足220180x x +-=.1.(2024·浙江宁波·一模)(1()045tan 602cos30tan303π︒+︒-︒︒+- (2)已知11a a -=,求()2225161122444a a a a a a a a -⎡⎤---÷-⎢⎥--++⎣⎦的值.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,整体代入求值.【分析】(1)直接把各特殊角的三角函数值代入进行计算即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再对已知整理成21a a=+,然后整体代入计算即可求出值.【详解】2332321223313313=+-⨯+131113=+;(2)()252a aaa⎡--⎢-⎣a题型五分式中化简与三角函数值求值【例1】(新考法,拓视野)(2024·辽宁盘锦·模拟预测)先化简,再求值:22931693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中112cos603x -⎛⎫=+︒ ⎪⎝⎭.【详解】解:2931693x x x x -⎛⎫÷- ⎪+++⎝⎭()()()2333333x x x x x +-+-=÷++ ()()()23333x x x x x +-=÷++ ()()()23333x x x x x +-+=⋅+ 3x x-=, 当1412cos6132023x -⎝︒=+=⨯⎫+ ⎪⎭=⎛时,原式43144-==.【例2】(2024·新疆伊犁·一模)先化简,再求值:2211211m m m m ⎛⎫÷+ ⎪-+-⎝⎭,其中3tan301m =︒+.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再根据负指数幂,零次幂,立方根,特殊角的三角函数值,代入求值.【详解】解:2211211m m m m ⎛⎫÷+ ⎪-+-⎝⎭()2211111m m m m m -⎛⎫÷+ ⎪--⎝⎭-=()2211m mm m =÷-- ()2211m m mm -⋅-=1mm =-,3tan 301311m =︒+==,把1m =代入得:原式1===1.(2024·黑龙江哈尔滨·一模)先化简,再求代数式24211339a a a a -+⎛⎫-÷⎪++⎝⎭的值,其中2cos301a =︒+.题型六 分式中化简与不等式(方程)组求值【例1】(新考法,拓视野)(2024·四川达州·模拟预测)先化简,再求值:222221211a a a a a a a +++⎛⎫-÷ ⎪-+⎝⎭,从不等式组31511325134x x x x -+⎧-≤⎪⎨⎪-+⎩<的整数解中选择一个适当的数作为a 的值代入求值.【例2】(2024·四川达州·一模)先化简,再求值:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a ,其中a ,b 满足()230a b +-=,利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再求出新的数值,代入求值.【详解】解:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a()()()222a b a b b a a ab a b a b ⎛⎫+-=÷- ⎪ ⎪---⎝⎭ 22b a ba a ab a b a b +⎛⎫=÷- ⎪---⎝⎭22b a b aa ab a b +-=÷-- ()2b b a a b a b =÷-- ()2b a b a a b b -=⨯- b a=, ()230a b +-=,∴22030a b a b -+=⎧⎨+-=⎩, 解得:1383a b ⎧=⎪⎪⎨⎪=⎪⎩,∴2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a 81833b a ==÷=.1.先化简,再求值:28213331a a a a a a a ++⎛⎫+-÷- ⎪+++⎝⎭,其中a 为不等式组121224a a -≤-⎧⎪⎨-≤-⎪⎩的整数解.题型七 分式中化简过程正误的问题【例1】(新考法,拓视野)(2024·浙江宁波·一模)先化简,再求值:21424a a ++-,其中2a =.小明解答过程如下,请指出其中错误步骤的序号,并写出正确的解答过程. 原式=()()222114424a a a a ⋅-+⋅-+-……① 24a =-+……② 2a =+……③当2a =时,原式【答案】小明的解答中步骤①开始出现错误,正确解答见解析 【分析】此题考查了分式的化简求值,先利用分式的加法法则计算,得到化简结果,再把字母的值代入计算即可. 【详解】【例2】(2024·山西临汾·一模)(1)计算:()21183522-⎛⎫-⨯---+⨯ ⎪⎝⎭;(2)下面是小明同学化简分式2239211933a a a a a a a ⎛⎫-++-÷⎪-++⎝⎭的过程,请认真阅读.完成下列任务: 解:原式()()()332113333a a a a a a a a ⎡⎤-++=-÷⎢⎥+-++⎣⎦……第一步利用分式运算法则进行化简,注意分式最后要约分得到最简结果.3211333aa a a a a ++⎛⎫=-÷⎪+++⎝⎭……第二步 1331a a a a ++=⋅++……第三步 1=.……第四步任务:①第一步变形用的数学方法是______; ②第二步运算的依据是______;③第______步开始出错,错误的原因是:______; ④化简该分式的正确结果是______.1=;(2)任务:①第一步变形用的数学方法是因式分解; ②第二步运算的依据是分式的基本性质;③第三步开始出错,错误的原因是去括号时,第二项没有改变符号;1.(2024·山西晋城·一模)(1)计算:12111122225-⎛⎫⎛⎫+⨯--÷ ⎪ ⎪⎝⎭⎝⎭(2)下面是小宇同学进行分式化简的过程,请认真阅读并完成相应任务.224216926a a a a a -+÷-+++()()()222231(3)2a a a a a -++=⋅-++……第一步()2213a a -=-+……第二步 ()22333a a a a -+=-++……第三步 ()()223a a =--+……第四步7a =-……第五步任务一:填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是____________. ②第______步开始出现错误.任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请根据平时学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【详解】解:(1)原式212254=+⨯-⨯2310=+- =5-(2)任务一:①三,分式的基本性质(或分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变); ②四()()()()22223123a a a a a -++=⋅-++ ()2213a a -=-+ ()22333a a a a -+=-++ ()2233a a a ---=+ 73a a -=+ 则正确结果为73a a -+; 任务三:最后结果化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;有去括号时注意符号的变化混淆.。

初中数学分式的化简求值专项训练题7(附答案详解)

初中数学分式的化简求值专项训练题7(附答案详解)

解:原式= +
=
=
当 x=0 时,原式= 1 . 2
= 1 , x2
4. 2 ,1. x2
【解析】
【分析】
先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.
【详解】
原式=((xx 11))((xx
1)(x 1)•
1)(x x2
1)
2
(x 1)(x 1)
=(x 1)(x 1)•
∴当 x 6 时,原式 6 2 1 6 2 2
【点睛】 本题考查了分式的化简求值及一元二次方程的解法,解题的关键是掌握相应的运算法则,注 意 x 的值要使得原代数式有意义.
11. 1 , 2 x2 2
【解析】 【分析】 先按分式混合运算的相关运算法则将原式化简,再代入 x 的值按二次根式的除法法则计算即 可. 【详解】
原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以
这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将 x 的值代入进行二次根式化
简.
【详解】
解:原式
=
x
x
12
x
1 x2 x2 1
1
x
x
12
x x 1 x 1x 1
x
x
12
x 1x 1 x x 1
1 x 1
.
当 x 2 1时,原式
21.先化简,再求值:
x3 x2 1
x2
x
2x 1 3
1 x 1
+1
,其中
x=﹣6.
22.先化简,再求值:
÷ ,其中 x=2sin30°+2 cos45°.
23.如果 a2+2a-1=0,求代数式 (a 4 ) a2 的值. a a2

八年级数学培优——分式的化简 求值 与证明

八年级数学培优——分式的化简 求值 与证明

第15讲 分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,可直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•-⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x +1y=5,求2322x xy y x xy y -+++的值.【变式题组】01.已知1a -1b =4,则2227a ab b a b ab---+的值等于( ) A .6 B .-6 C .215 D . 27- 02.若x +y =12,xy =9,求的22232x xy y x y xy +++值. 03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z++++的值.【例3】已知231x x x -+=1,求24291x x x -+的值.【变式题目】01. 若x +1x =4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a ++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abc ab ac bc ++的值.【变式题组】01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xz x z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b+,求()()()a b c b a c abc +++的值.【变式题组】01.已知x 、y 、z 满足2x =3y z -=5z x+,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b c a -++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1c ac c ++=1【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c ++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c +++-+-+-的值.演练巩固反馈提高01.已知x-1x=3,那么多项式x3-x2-7x+5的值是()A.11 B.9 C.7 D. 502.若M=a+b,N=a-b,则式子M NM N+--M NM N-+的值是()A.22a bab-B.222a bab-C.22a bab+D. 003.已知5x2-3x-5=0,则5x2-2x-21525x x--= .04.设a>b>0,a2+b2-6ab=0,则a bb a+-= .05.已知a=1+2n,b=1+12n,则用含a的式子表示b是 .06. a+b=2,ab=-5,则b aa b+= .07.若a=534-⎛⎫- ⎪⎝⎭,b=-534⎛⎫⎪⎝⎭,c=534-⎛⎫⎪⎝⎭,试把a、b、c用“<”连接起来为 .08.已知1nm-⎛⎫⎪⎝⎭=53,求的222m m nm n m n m n+-+--值为 .09.若2x=132,13y⎛⎫⎪⎝⎭=81,则x y的值为 .10.化简24 322242c b c ba b a ca-⎛⎫⎛⎫⎛⎫•-÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x yx yx x y x+⎛⎫--+⎪+⎝⎭,其中x=2,y=3.12.求代数式的值:222222144x x x xx x-++÷--,其中x=2+2.13.先化简,再求值:22121124x xx x++⎛⎫-÷⎪+-⎝⎭,其中x=-3.14.已知:2352331x A Bx x x x-=+---+,求常数A、B的值.15.若a+1a=3,求2a3-5a2-3+231a+的值.。

2020年中考数学高频重点《整式、分式的化简求值》专题突破精练精解(含答案)

2020年中考数学高频重点《整式、分式的化简求值》专题突破精练精解(含答案)

【中考数学】专题04 整式、分式的化简求值【达标要求】1.理解整式的概念,掌握合并同类项和去括号法则,能进行简单的四则运算.2.理解运用完全平方公式和平方差公式,了解其几何背景.3.了解整数指数幂的意义和基本性质,能用幂的性质解决简单问题.4.掌握因式分解方法并能解决问题.5.掌握分式成立的条件、最简分式的概念与化简,会利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除、乘方运算.【知识梳理】知识点一 整式的有关概念1. 整式:(1)单项式:数与字母的 的代数式叫做单项式.单独一个数或 也是单项式.(2)多项式: 叫做多项式.(3)整式: 和 统称为整式.单项式中的 叫做单项式的系数,所有字母的 叫做单项式的次数.一个多项式含有几项,就叫 ,次数最高的项的 就是这个多项式的次数,不含字母的项叫 .2. 同类项:(1)定义:所含 相同,并且相同字母的 也相同的项叫做同类项,常数项都是同类项.(2)合并同类项法则:把同类项的 相加,所得结果作为 ,字母及字母的指数 . 知识点二 因式分解的概念1.把一个 化为 的形式,叫做这个多项式的因式分解,也叫做把这个多项式分解因式. 2.因式分解与整式乘法是方向相反的变形.知识点三 因式分解的两种基本方法1.提公因式法:=++mc mb ma2.公式法:(1) 平方差公式:=-22b a(2) 完全平方公式:=+±222b ab a知识点四 分式的有关概念1.如果A,B 表示两个整式,且B 中含有字母,那么式子 叫做分式。

(1) 分式有意义:分母不为0,即B ≠0;(2) 分式无意义:分母为0,即B=0;(3) 分式的值为0:分子为0且分母不为0,即2.分子与分母没有 的分式叫最简分式.知识点五 分式的基本性质1. A B =A×M B×M ; A B =A÷M B÷M ; 其中M 是不等于0的整式.2. 约分、通分的依据是分式的知识点六 分式的运算1.分式的乘除法:a b ×c d =ac bda b ÷c d =a b ×d c =ad bc2.分式的加减法a b±c b =a±c b ; a b ±c d =ad bd ±bc bd =ad±bc bd ;3.分式的乘方(b a )n =b n a n4.分式的混合运算在分式的混合运算中,应先算乘方,再算乘除,最后算加减,遇到有括号的应先算括号里面的.【精练精解】1.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .3- B .1- C .1 D .32.当a =2018时,代数式()211111a a a a a -⎛⎫-÷ ⎪++⎝⎭+的值是______. 3.当x =1,y =﹣31时,代数式x 2+2xy +y 2的值是 .4.单项式x -|a -1|y 与2是同类项,则a b =__________.5.若m ﹣m 1=3,则m 2+2m1= 11 . 6.化简:(a +b )2﹣b (2a +b ).7.先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =﹣21.8.先化简:(1-32x +)÷244x x x -1++,再将x=-1代入求值.9.先化简,再求值:(x ﹣2)(x +2)﹣x (x ﹣1),其中x =3.10.先化简,再求值:211(1)222m m m m ++-÷++,其中2m =.11.化简式子aa a a a a a +-÷++--22221)1442(,并在-2,-1,0,1,2中选取一个合适的数作为a 的值代入求值.12先化简,再求值:212)1232(2-+-÷---x x x x x ,然后从0,1,2三个数中选择一个恰当的数代入求值.13.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°.14..如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.15.先化简(x+373x--)2283x xx-÷-,再从0≤x≤4中选一个适合的整数代入求值.16.先化简,再求值:(a ba b+-)2·222224333a b a aa b a b b--÷+-,其中a=b=17.先化简2221(1)369xx x x-+÷--+,再从不等式组24324xx x-<⎧⎨<+⎩的整数解中选一个合适的x的值代入求值.18.先化简,再求值:2212(1)244x x x x x x +--÷--+,其中x19.先化简,再求值:219x x --÷(3x x -﹣2519x x --),其中x =27﹣(﹣13)2﹣(2017﹣2)0﹣3tan60°.20.先化简,再求值:(1-1m -1)÷m 2-4m +4m 2-m,其中m =2+ 2.21.先化简,再求值:(11x -﹣11x +)÷222x x -,其中x=tan60°﹣1.22.先化简,再求值:22221111a a a a +÷----(),其中2022sin603a -=-+︒-π-()().23.先化简:22222392x x x x x x x-÷++--,再从﹣3,﹣2,0,2中选择一个合适的数作为x 的值代入求值.24.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭.其中a 满足a 2+3a -2=0.专题04 整式、分式的化简求值【达标要求】1.理解整式的概念,掌握合并同类项和去括号法则,能进行简单的四则运算.2.理解运用完全平方公式和平方差公式,了解其几何背景.3.了解整数指数幂的意义和基本性质,能用幂的性质解决简单问题.4.掌握因式分解方法并能解决问题.5.掌握分式成立的条件、最简分式的概念与化简,会利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除、乘方运算.【知识梳理】知识点一 整式的有关概念3. 整式:(1)单项式:数与字母的 积 的代数式叫做单项式.单独一个数或 字母 也是单项式.(2)多项式:几个单项式的和 叫做多项式.(3)整式: 单项式 和 多项式 统称为整式.单项式中的 数字因数 叫做单项式的系数,所有字母的 指数和 叫做单项式的次数.一个多项式含有几项,就叫 几项式 ,次数最高的项的 次数 就是这个多项式的次数,不含字母的项叫 常数项 .4. 同类项:(3)定义:所含 字母 相同,并且相同字母的 指数 也相同的项叫做同类项,常数项都是同类项.(4)合并同类项法则:把同类项的 系数 相加,所得结果作为 系数 ,字母及字母的指数 不变 . 知识点二 因式分解的概念1.把一个多项式化为几个整式的积的形式,叫做这个多项式的因式分解,也叫做把这个多项式分解因式. 2.因式分解与整式乘法是方向相反的变形.知识点三 因式分解的两种基本方法3.提公因式法:=++mc mb ma ().m a b c ++4.公式法:(3) 平方差公式:=-22b a ()().a b a b +-(4) 完全平方公式:=+±222b ab a 2().a b ±知识点四 分式的有关概念1.如果A,B 表示两个整式,且B 中含有字母,那么式子A B 叫做分式。

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式、分式计算
整式
1、3a 2+5b -2a 2-2a +3a -8b ;
2、-(3a 2-4ab )+[a 2-2(2a 2+2ab )].
3、 4、
5、 6、
7、

8、先化简,再求值: ,其中.
9、先化简,再求值:2xy -21(4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =31,y =-3.
10、先化简,再求值()()223234(1)(2)x x x x x +---+-,其中3x =-.
11、先化简,再求值:221
2112a a a a a ,其中21a .
)()(2222y x y x xy -÷-⋅(3)(1)(2)
a a a a +-+-))(()1(2y x y x x -+-+)2()246(2234a a a a -÷--
分式计算
1、先化简,再求值:
,1
2112---x x 其中.23-=x
2、先化简,再求值:,1
122--+-a a a 其中.3=a
3.先化简,再求值:222442111
a a a a a a -+-+÷--+,其中1a =+
4. 先化简,再求值:
2444a a a a -⎛⎫÷+ ⎪--⎝⎭,其中2a =.
5.先化简,再求值:21142111
x x x x +⎛⎫-÷
⎪+--⎝⎭,其中2x =
6.先化简,再求值:2211121
x x x x x -⎛⎫-⋅ ⎪+++⎝⎭,其中2451x sin =︒+
7.先化简,再求值:2211411x x x x x
-⎛⎫+÷
⎪-++⎝⎭,其中2x =-.
8.先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛+-
x x x ,其中x =2
3-.
9.化简21244422+-÷⎪⎪⎭
⎫ ⎝⎛+--+-x x x x x x x
10.先化简,再求值:2222211
a a a a a a a +++÷-+,其中2013a =.
11.计算:22
26934239
x x x x y y x -+-÷⋅-+-
12.先化简,再求值:222
44212x x x x x x -+-÷+,在0,1,2三个数中选一个合适的,代入求值.
13.先化简,再求值:211121a a a a a a +-÷--+,从-1,0,1,2中选择一个a 的值代入求值。

14、先化简:222222443x x x x x x x ++⎛⎫+⋅ ⎪++++⎝⎭
,然后选择一个你喜欢的数代入求值。

15.先化简,再求值:2112111x x x x +⎛⎫-÷ ⎪-+-⎝⎭,其中x 满足260x -=
16、化简并求值:22112x y x y x y x y
⎛⎫-+÷ ⎪-+-⎝⎭,其中x 、y 满足()22230x x y -+--=
17.先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程0232=++x x 的根.。

相关文档
最新文档