同角三角函数的基本关系与诱导公式(经典)
第十八讲:同角三角函数基本关系与诱导公式

共 57 页
5
考点陪练
1.α 是第四象限角,tanα=-152,则 sinα=(
)
1 A.5
B.-15
5 C.13
D.-
5 13
解析:由 tanα=csoinsαα=-152,sin2α+cos2α=1,及 α 是第四象
限角,解得csionsαα==-11231.53,
)
A.1
B.0
C.-1
1 D.2
解析:原式=cotαta-nαco-sαco-sαs3inα2=ctaontααtan2α=1.
❖ 答案:A
共 57 页
9
4.cos-769π的值为(
A.-12
1 B.2
)
C.-
3 2
3 D. 2
解析:cos-769π=cos769π=cos13π+π6=-cosπ6=- 23,故 选 C.
由
tanα=2 知
sinα=
2 ,又 5
cosα=13,
∵sin2α+cos2α≠1,∴B 错.
由 sinα=12得 cosα=± 23,∴tanα=± 33,
当 α 为第一象限角时有 tanα= 33,故选 C.
❖ 答案:C
共 57 页
8
3.化简cotα- tan4ππ+·cαos·cαo+s3π-·sαin-2πα-3π的结果是(
共 57 页
27
❖ [点评] (1)掌握诱导公式,关键掌握函数名及 符号,口诀“奇变偶不变,符号看象限”.
❖ (2)k是奇数还是偶数,直接影响到用哪组诱导公 式.
共 57 页
28
❖ 类型四 同角三角函数基本关系式与诱导公式 的综合应用
同角三角函数的基本关系及诱导公式-高考复习

)
√2
A.6
(2)已知 sin
√2
B.
6
2√5
α= 5 ,则
2
C.3
5π
+)
2
5π
cos ( -)
2
sin (
tan(π+α)+
=
2
D.
3
.
答案 (1)D
5
5
(2) 或2
2
解析 (1)sin2θ+sin(3π-θ)cos(2π+θ)-√2cos2θ
sin
θ-2cos2θ=
=
,
2
2
2
sin +cos
tan +1
4+2-2
θ=2,故原式=
4+1
=
4
.
5
解题心得 1.利用 sin2α+cos2α=1 可以实现角 α 的正弦、余弦的互化,利用
tan
sin
α=cos
≠ π +
π
,∈Z
2
可以实现角 α 的弦切互化.
2.“1”的灵活代换:1=cos α+sin α=(sin α+cos α) -2sin αcos
解题心得1.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择
恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.
2.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可
能低,结构尽可能简单,能求值的要求出值.
3.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简
【例 1】 (1)若
1
同角三角函数的基本关系与诱导公式-高考数学复习

3
θ= ,
5
cos
π
θ<0,所以可得θ∈( ,π),
2
sin θ cos
θ)2=1-2
sin θ+ cos
4
θ=- ,tan
5
1
θ= ,可得
25
sin θ cos
1
θ=- ,
5
sin θ cos θ
49
θ= ,所以
25
sin θ- cos
sin θ
7
θ= ,联
5
3
θ=- ,故B错误,C正确.
4
目录
高中总复习·数学
可求解;
(2)若齐次式为二次整式,可将其视为分母为1的分式,然后将分母
1用 sin 2α+ cos 2α替换,再将分子与分母同除以 cos 2α,化为只
含有tan α的式子,代入tan α的值即可求解.
目录
高中总复习·数学
考向3 “ sin α±cos α, sin α cos α”之间关系的应用
可以知一求二.
目录
高中总复习·数学
1. 若 sin θ+ cos
2 3
θ=
,则
3
解析:由 sin θ+ cos
θ cos
1
θ= ,∴
6
sin 4θ+ cos 4θ=(
2 3
θ=
,平方得1+2
3
)
sin θ cos
4
θ= ,∴
3
sin
sin 4θ+ cos 4θ=( sin 2θ+ cos 2θ)2-2 sin 2θ cos 2θ
(1)思路:①分析结构特点,选择恰当的公式;②利用公式化成单
(4) sin α=tan α cos
同角三角函数的基本关系式与诱导公式

课堂互动讲练
考点一
诱导公式的应用
应用诱导公式进行化简或证明时, 首先根据题意选准公式再用,一般是负 变正、大变小的思想.
在使用诱导公式时,α可为任意角, 并不一定要为锐角,只不过是在运用的 过程中把它“看作”是锐角而已.“奇 变偶不变,符号看象限”同样适用于正 切和余切.如tan(270°-α)=cotα等.
cos2x-1 sin2x=
cos2x+sin2x cos2x-sin2x
,想法
使分
子分
母都出现 tanx 即可.
课堂互动讲练
【解】 (1)法一:联立方程:
sinx+cosx=15, sin2x+cos2x=1.
① 2分
②
①式两边平方得:sin2x+cos2x+2sinxcosx
=215,
∴2sinxcosx=-2245.4 分 ∵-π2<x<0,∴sinx<0,cosx>0. ∴sinx-cosx=- sin2x-2sinxcosx+cos2x
三基能力强化
5.已知scions2θθ++14=2,那么(cosθ + 3)(sinθ+1)的值为________.
解析:∵scions2θθ++14=2,∴sin2θ+4= 2cosθ+2,
∴cos2θ+2cosθ-3=0,解得 cosθ= 1 或 cosθ=-3(舍去),由 cosθ=1 得 sinθ =0,∴(cosθ+3)(sinθ+1)=4.
规律方法总结
公式中 k·π2+α 的整数 k 来讲的.“象
限”指在 k·π2+α 中,将 α 看作锐角时 k·π2+
α
所在的象限,如将
cos(32π+α)写成
π cos(3·2
17_§4_2 同角三角函数的基本关系和诱导公式

同类练1
若tan
α=2,则
sin sin
α α
cos cos
α α
+cos2α=
(
A
)
16
16
8
8
A. 5 B.- 5 C. 5 D.- 5
考点突破 栏目索引
解析
∵tan
α=2,∴
sin sin
α α
cos cos
α α
+cos2α=
sin sin
α α
cos cos
α α
5
7
25
25
3
(2)(202X浙江镇海中学阶段性测试)已知3sin α+4cos α=5,则tan α= 4
.
解析 (1)∵sin α+cos α=1 ,
5
∴1+2sin αcos α= 1 ⇒2sin αcos α=- 24,
25
25
∴(cos α-sin α)2= 49 ,又∵- <α<0,∴cos α>0>sin α,
sin α
(2)商的关系:② cosα =tan α(α≠ 2 +kπ,k∈Z) .
教材研读 栏目索引
2.三角函数的诱导公式
组序
一
二
三
角
2kπ+
π+α
-α
α(k∈Z)
四
五
六
π-α
2 -α
2 +α
正弦
sin α
-sin α
-sin α
sin α
cos α
③ cos α
余弦
cos α
-cos α
(经典整理)同角三角函数的基本关系及诱导公式与两角和差

(一)同角三角函数的基本关系及诱导公式一、【课标要求】1.掌握同角三角函数的基本关系式,掌握公式中“1”的作用。
2.掌握诱导公式,并能进行化简求值。
二、【知识回顾】1.同角三角函数关系式(1)平方关系:22sin cos 1αα+= (2)商的关系:sin tan cos ααα=(3)sin cos ,sin cos ,sin cos αααααα+-⋅三者之间,知一可求二,关键是利用()2sin cos 12sin cos αααα±=±的变形2.诱导公式诱导公式一:sin(2)k απ+= ,cos(2)k απ+= ,tan(2)k απ+= ,k Z ∈诱导公式二:sin()α-= ,cos()α-= ,tan()α-= , 诱导公式三:sin()πα+= ,cos()πα+= ,tan()πα+= , 诱导公式四:sin()πα-= ,cos()πα-= ,tan()πα-= , 诱导公式五:sin()2πα+= ,cos()2πα+= , 诱导公式六:sin()2πα-= ,cos()2πα-= ,口决:“奇变偶不变,符号看象限”。
形式:将角的形式化为:()2k k Z πα⋅±∈,不管α是多大,统统看成锐角,诱导公式的作用是把任意角的三角函数转化为锐角三角函数,其一般步骤为:31. 化简三角函数式的的一般原则①函数种类尽量少、指数尽量低、项数尽量少 ②尽量化成同名、同角的三角函数③大角化小角、负角化正角,化到锐角就终了 ④化切为弦 ⑤注意“1”的作用【例题精讲】考点一:同角三角函数的基本关系例1.已知sin 2cos αα=,求下列各式的值: (1)sin 4cos 5sin 2cos αααα-+ (2)2sin 2sin cos ααα+例2.已知tan 1tan 6αα=--,求下列各式的值:(1)213sin cos 3cos ααα-+ (2)2cos 3sin 3cos 4sin αααα-+考点二:三角函数式的求值例3.已知sin()cos(2)tan(2)()3tan()cos()2f παπαπααπαπα+--=----(1) 若1860α=-,求()f α (2) 若33cos()25πα-=,求()f α的值。
同角三角函数的基本关系与诱导公式 (共32张PPT)

[题组练透]
1.已知
5π 1 sin 2 +α= ,那么 5
cos α= 1 B.- 5 2 D. 5
(
)
+α=sin2+α=cos
1 α= . 5
sinkπ+α coskπ+α 2.已知 A= + (k∈Z),则 A 的值构成的集合是 sin α cos α ( A.{1,-1,2,-2} C.{2,-2} B.{-1,1} D.{1,-1,0,2,-2} )
第二节
同角三角函数的基本关系与诱导公式
基础盘查一
同角三角函数的基本关系
(一)循纲忆知
sin α 理解同角三角函数的基本关系式: sin α+cos α=1, =tan α. cos α
2 2
同角三角函数的基本关系:
sin α + cos α = 1
2
2
sinα = tanα cosα π (当α ≠ kπ + (k∈ Z)时) 2
用文字叙述:
同一个角α的正弦、余弦的平方 和等于1,商等于角α的正切;同一 个角的正切、余切之积等于1(即同 一个角的正切、余切互为倒数)。
为了加深对关系式的认识,注意以下几 点 : 1、同角的理解:
sin 4 cos 4 1
2 2
2 2
sin ( ) cos ( ) 1
3 . 3
5.化简:
3π tanπ-αcos2π-αsin-α+ 2
cos-α-πsin-π-α
.
-tan α· cos α· -cos α 解:原式= cosπ+α· -sinπ+α sin α · cos α tan α· cos α· cos α cos α = = -cos α· sin α -sin α =-1.
同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)

同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同角三角函数的基本关系与诱导公式
一、基础知识:
1.同角三角函数的基本关系
(1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α
=tan α. (3)倒数关系:1cot tan =⋅αα
2.诱导公式
公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k
其中k ∈Z .
公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(-α)=-sin_α,cos(-α)=cos_α.
公式四:sin(π-α)=sin α,cos(π-α)=-cos_α.
公式五:sin ⎝ ⎛⎭⎪⎫π2-α=cos_α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α. 公式六:sin ⎝ ⎛⎭
⎪⎫π2+α=cos_α,cos ⎝ ⎛⎭
⎪⎫π2+α=-sin_α. 诱导公式可概括为k ·π2
±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2
的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时原.
函数值的符号作为结果的符号. 二、方法与要点
一个口诀
1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.
2、四种方法
在求值与化简时,常用方法有:
(1)弦切互化法:主要利用公式tan α=sin αcos α
化成正、余弦. (2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)
(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4
=…. (4)齐次式化切法:已知k =αtan ,则n
mk b ak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三个防范
(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负——脱周——化锐. 特别注意函数名称和符号的确定.
(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.
(3)注意求值与化简后的结果一般要尽可能有理化、整式化.。