单级倒立摆的模糊控制应用2
一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。
二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。
系统的输入为杆的控制力矩,输出为杆的角度。
系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。
2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。
在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。
三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。
2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。
b. 构建模糊规则:根据经验或系统建模,确定模糊规则。
c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。
d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。
3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。
b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。
c. 执行控制器输出:将控制力矩作用在倒立摆上。
4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。
5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。
四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。
通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。
实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。
一级倒立摆的模糊控制

一级倒立摆的模糊控制4.1倒立摆控制方法的研究倒立摆一般有两种起始状态的控制。
一种是在摆杆自然下垂,竖直向下为起始状态,通过不断的摆动,最终使其稳定在竖直向上的不稳定点,这种控制叫做起摆稳定控制,也即DOWN-UP控制;另一种是用手提起摆杆,在不稳定平衡点处开始实行控制,称作稳定控制,也即UP-UP控制。
同时倒立摆系统也是一个复杂的、非线性的、不稳定的高阶系统。
倒立摆的控制一直是控制理论及应用的典型课题。
在研究倒立摆这类多变量非线性系统的模糊控制时,一个难题就是规则爆炸(RuleEPxofsino),比如一级倒立摆的控制涉及的状态变量共有4个,每个变量的论域作7个模糊集的模糊划分,这样,完备的推理规则库会包含74=2401个推理规则;而对于二级倒立摆有6个状态变量,推理规则会达到76=117649,显然如此多的规则是不可能实现的。
为了解决这个问题,张乃尧等提出双闭环的倒立摆模糊控制方案,内环控制倒立摆的角度,外环控制倒立摆的位移。
范醒哲等人将这一方法推广到三级倒立摆控制系统中,并提出两种模糊串级控制方案,用来解决倒立摆这类多变量系统模糊控制时的规则爆炸问题。
shulinagLei和RezaLnagari应用分级思想,将θθ,,,xx4个状态变量分成两个子系统,分别用两个模糊控制器控制,然后来协调子系统之间的相互作用。
本文模仿人类简化问题的思路,将单一的复杂控制策略转化为多级简单控制策略嵌套,通过分离变量的方法设计末控制器。
4.2倒立摆仿真的研究在第二章建立了一级倒立摆的数学模型,推导出倒立摆近似线性状态方程并分析了倒立摆系统的能控性、能观性。
在此基础上,第三章详细讨论了模糊控制倒立摆的方法,模糊控制器的设计方法,证明了利用模糊策略控制倒立摆系统是可行的。
本章是将在上面几章的基础上,用Matlab和Simulink工具进行一级倒立摆模糊控制系统的仿真研究。
Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
(完整word版)基于模糊控制的单级倒立摆系统的研究

智能控制技术研究报告题目:基于模糊控制的单级倒立摆系统的研究学院:电气工程学院年级专业:仪器仪表工程学号:学生姓名:日期:2014.1.3一、绪论1。
1 课题的研究背景和意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论设计及测试的理想实验平台。
倒立摆系统控制涉及到机器人技术、控制理论、计算机控制等多个领域。
其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
同时,由于实际机械系统中存在的各种摩擦力,实际倒立摆系统亦具有一定的不确定性。
倒立摆系统的控制涉及到许多典型的控制问题:非线性问题、随动及跟踪问题、鲁棒性问题、非最小相位系统的镇定问题等等。
正是由于倒立摆系统的特殊性,许多不同领域的专家学者在检验新提出理论的正确性和实际可行性时,都将倒立摆系统作为实验测试平台。
再将经过测试后的控制理论和控制方法应用到更为广泛的领域中去。
如:把一级倒立摆的研究成果应用到对航空航天领域中的火箭发射推进器和卫星飞行状态控制的研究;把二级倒立摆的研究成果应道到双足机器人行走控制中。
所以说,对倒立摆系统控制理论的研究不仅具有理论研究价值,也具有相当的实际工程应用价值。
倒立摆系统的传统控制方法主要是使用经典控制理论和现代控制理论。
它们都以精确的系统数学模型为控制对象。
经典控制理论在线性定常、输入输出量较少的系统中能很好的完成控制设计指标,经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。
而现代控制理论是建立在状态空间分析法上的,基本分析方法是时域分析法。
这种方法能够克服经典控制理论的缺陷:能够解决系统的输入输出变量过多、系统的非线性等问题.现代控制理论已经在工业生产过程、军事科学、航空航天等许多方面都取得了成功的应用。
例如极小值原理可以用来解决某些最优控制问题;利用卡尔曼滤波器可以对具有有色噪声的系统进行状态估计;预测控制理论可以对大滞后过程进行有效的控制。
一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告本次实验旨在研究一阶倒立摆系统的模糊控制方法,通过对系统进行建模、设计控制器并进行仿真,最终评估控制效果。
实验过程主要包括系统建模、控制器设计、模糊控制器参数调节和性能评价四个步骤。
首先,我们对一阶倒立摆系统进行建模。
一阶倒立摆系统是一种具有非线性特性的控制系统,主要由电机、倒立摆、支撑杆等组成。
我们需要建立数学模型描述系统的动力学特性,包括倒立角度、倒立角速度、杆角度等状态变量,并考虑控制输入电压对系统的影响。
接着,我们设计模糊控制器。
模糊控制是一种基于模糊逻辑的控制方法,适用于非线性系统和模糊系统。
我们根据系统模型,设计模糊控制器的模糊规则、隶属函数等参数,以实现系统的稳定控制。
在设计过程中,我们需要考虑系统的性能指标,如超调量、稳态误差等。
第三步是模糊控制器参数调节。
通过仿真实验,我们可以对模糊控制器的参数进行调节,以使系统的性能达到最佳状态。
调节参数的过程需要考虑系统的稳定性、鲁棒性和响应速度,以达到控制效果的要求。
最后,我们对模糊控制系统进行性能评价。
通过对系统的响应曲线、稳定性、控制精度等指标进行分析,评价模糊控制器的控制效果。
我们可以比较模糊控制系统和传统控制系统的性能,探讨模糊控制在一阶倒立摆系统中的优势和局限性。
总的来说,本次实验通过研究一阶倒立摆系统的模糊控制方法,探讨了模糊控制在非线性系统中的应用。
通过实验,我们对模糊控制的基本原理和设计方法有了更深入的理解,同时也对一阶倒立摆系统的控制特性有了更清晰的认识。
希望通过实验的研究,能够为控制系统的设计和应用提供一定的参考和借鉴。
单级倒立摆的模糊控制应用

0 引 言
倒 立摆 系统 是一 个复 杂的 非线性 系统 。从 形式
上倒立 摆 系统可 以分 为直线 型 、 环型 和平 面型 , 照 按 摆 杆 的 数 量 可 以 分 为 一 级 、 级 、 级 倒 立 摆 系 二 三
统 ¨ 。文 中控 制 对 象 为一 级 直 线 型 倒 立 摆 系 统 。 J 小 车可 以 自由 的在 限定 的轨 道上 左 右 移 动 , 车 上 小
无 能为 力。该 文将人 工智能 中的模 糊控 制 引入倒 立摆 控 制 系统 , 以提 高控 制要 求 , 改善 控 制精 度 。 通过 仿真 实验表 明这种控 制 思路 是 可行 的 , 效果 良好 。 关键 词 : 立摆 ; 倒 模糊控 制 ; 模糊 推理 系统 ; 真 仿 中图分 类号 : P 7 . T 23 4 文献标 识码 : A 文 章编 号 :0 0— 6 2 20 )6— 0 3— 3 10 0 8 (0 8 0 0 9 0
A s atA ecnrl dojcsbc m oea dm r cm lxad terq i met f o t l b t c : st ot l bet eo em r n oe oc o
p ro ma c sh g e n ih r t e c n e t n lc n r lt e r s i e c e c .T e p p r p e e t h e fr n e i i h r a d h g e ,h o v n i a o to h o y i n f in y h a e r s n s t e o i a p iai n o u z o to h o fatfca n elg n oa n e e e d l m o r ls se I a p l t ft f z y c n r lt e r o ri ili tlie tt n i v r d p n u u c nto y tm. tc n c o he y i t i r v h o r lr q r me ta d a c r c S mu ai n h w h tt i o to o c p in i r cia . mp o e t e c nto e u e n n c u a y. i l t s s o t a h s c nr lc n e to s p a tc 1 o Ke y wor ds:n e d p n u u ;f z y c nto ;FI i v  ̄e e d l m u z o rl S;smu ain i lto
一级直线型倒立摆的模糊控制控制

一级直线型倒立摆的模糊控制一、问题的描述在忽略了空气流动之后, 可将倒立摆系统抽象成小车和匀质杆组成的系统, 如图1所示. 记小车质量为M, 摆杆质量为m, 摆杆转动图1 倒立摆系统中心到杆质心的距离为l, 作用在系统上的外力为F , 重力加速度为g, θ为摆杆偏角, 即摆杆与竖直向上方向的夹角,取顺时针方向为正方向, x 为小车水平方向位移, 取导轨中点为零点, 水平向右为正方向, 水平向左为负方向.图2为隔离体受力图。
摆杆围绕中心A 点转动方程为22d J V l sin H l cos dtθθθ=-。
式中,J 为摆杆围绕重心A 的转动惯量。
摆杆重心A 沿x 轴方向运动方程为2A 2d x m Hdt=,即22dm(x lsin )H dtθ+=。
摆杆重心A 沿y 轴方向运动方程为2A 2d y mV m gdt=-,即22dm(l c o s )V m g dtθ=-。
小车沿x 轴方向运动方程式为22=-d x M F Hdt。
以上方程为车载倒立摆系统运动方程组。
因为还有sin θ和cos θ项,所以为非线性微分方程组。
图2 隔离体受力图中间变量不易相消。
把J 的表达式代入,联合几个方程式得到如下的非线性方程组:'2''2'2''''sin cos *(sin )*(43*cos ()*(sin cos )θθθθθθθθθθ+--=-++-=+g F m l l m m M F m l x M m设,''1234[(),(),(),()][,,,]θθ==X t t x t x t x x x x则有如下非线性状态方程组:'122'1121221'342''21214sin cos *(sin )*(43*cos ()*(sin cos )=+--=-+=+-=+x x g x x F m lx x x l m x m M x x F m l x x x x x M m二,控制系统的matlab 实现 实现的步骤为: 1.划分模糊空间2.用上述的每个离散状态空间点X1, X2,…,Xn 来线性化线性车棒模型,选择合适的LQR 控制参数Q ,R ,N ,设计出线性最优控制器K1, K2,…,Kn 。
模糊控制在倒立摆中的MATLAB仿真应用

TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY题目:院(系):专业:学生姓名:学号:模糊控制在倒立摆中的仿真应用1、倒立摆系统简介倒立摆有许多类型,例如图1-1的a和b所示的分别是轮轨式一级倒立摆系统和二级倒立摆系统的模型。
倒立摆是一个典型的快速、多变量、非线性、本质不稳定系统,它对倒置系统的研究在理论上和方法论上具有深远的意义。
对倒立摆的研究可归结为对非线性多变量本质不稳定系统的研究,其控制方法和思路在处理一般工业过程中也有广泛的用途。
近些年来国内外不少专家学者对一级、二级、三级、甚至四级等倒立摆进行了大量的研究,人们试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和本质不稳定系统的控制能力。
2002年8月11日,我国的李洪兴教授在国际上首次成功实现了四级倒立摆实物控制,也标志着我国学者采用自己提出的控制理论完成的一项具有原创性的世界领先水平的重大科研成果。
图1-1 倒立摆模型(a)一级倒立摆模型(b)二级倒立摆模型倒立摆系统可以简单地描述为小车自由地在限定的轨道上左右移动。
小车上的倒立摆一端用铰链安装在小车顶部,另一端可以在小车轨道所在的垂直平面内自由转动,通过电机和皮带传动使小车运动,让倒立摆保持平衡并保持小车不和轨道两端相撞。
在此基础上在摆杆的另一端铰链其它摆杆,可以组成二级、三级倒立摆系统。
该系统是一个多用途的综合性试验装置,它和火箭的飞行及步行机器人的关节运动有许多相似之处,其原理可以用于控制火箭稳定发射、机器人控制等诸多领域。
倒立摆系统控制原理单级倒立摆系统的硬件包括下面几个部分:计算机、运动控制卡、伺服系统、倒立摆和测量元件,由它们组成的一个闭环系统,如图1-2所示,就是单级倒立摆系统的硬件结构图。
图1-2 单级倒立摆硬件结构图通过角度传感器可以测量摆杆的角度,通过位移传感器可以得到小车的位置,然后反馈给运动控制卡,运动控制卡与计算机双向通信。
基于极点配置的单级倒立摆t-s模糊控制

基于极点配置的单级倒立摆t-s模糊控制
基于极点配置的单级倒立摆T-S模糊控制是一种控制方法,旨在实现单级倒立摆的控制。
T-S模糊控制又称为模糊控制器,是一种具有适应性的控制方法,可以应对非线性系统。
单级倒立摆是指一个质量集中在底部的刚性杆,这个杆可以绕着水平轴旋转,并在其顶端悬挂一个质量。
单级倒立摆是一种经典的非线性控制问题。
极点配置是一种控制系统设计方法,它是基于控制系统的极点位置来调整控制器参数,以达到预期的控制性能。
在基于极点配置的单级倒立摆T-S模糊控制中,控制器的设计包括两个部分。
第一部分是基于极点配置的控制器设计,这个部分主要是确定控制器的极点位置,以实现所需的控制性能。
第二部分是基于T-S模糊控制的控制器设计,这个部分主要是设计模糊规则和隶属函数,以实现在不同状态下的控制。
总体来说,基于极点配置的单级倒立摆T-S模糊控制是一种创新性的控制方法,它可以应对非线性系统的控制问题,并具有良好的控制性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单级倒立摆的模糊控制应用
摘要:随着被控对象的日趋复杂,对控制性能的要求不断提高,传统控制理论对解决复杂系统无能为力。
该文将人工智能中的模糊控制引入倒立摆控制系统,以提高控制要求,改善控制精度。
通过仿真实验表明这种控制思路是可行的,效果良好。
关键词:倒立摆;模糊控制;模糊推理系统;仿真
The applica tion of a fuzzy con trol theory to a single inverted pendulum
CHEN J in,QU Cheng2ming, J IANGMing, CHEN Qi2gong (Anhui Provincial Key Laboratory of Electrical Transm ission and Control,Anhui University of Technology and Science, Anhu
W uhu 241000, China)Abstract:As the controlled objects become more and more comp lex and the requirement of controlperformance is higher and higher, the conventional control theory is inefficiency. The paper p resents the
app lication of the fuzzy control theory of artificial intelligent to an inverted pendulum control system. It canimp rove the control requrement and accuracy. Simulations show that this control concep tion is p ractical.
Key words: inverted pendulum; fuzzy control; F IS; simulation 引言
倒立摆系统是一个复杂的非线性系统。
从形式
上倒立摆系统可以分为直线型、环型和平面型,按照摆杆的数量可以分为一级、二级、三级倒立摆系统[ 1, 2 ] 。
文中控制对象为一级直线型倒立摆系统。
小车可以自由的在限定的轨道上左右移动,小车上的倒立摆被铰链在小车的顶部,另一端可以在小车轨道所在的垂直平面上自由转动。
控制目的是通过电机拖动皮带推动小车运动,使倒立摆平衡并保持小车不和轨道两端碰撞。
单级倒立摆结构如图1所
示。
该系统是一个多用途的综合性实验装置,它和火箭的飞行及机器人关节运动有许多相似之处,其原理可用于控制火箭稳定发射,且对于揭示定性定量转换规律和策略具有普遍意义
1倒立摆系统的数学模型及定性分析
在忽略了空气流动和各种摩擦之后,可将倒立摆系统抽象成小
车、匀质杆和质量块组成的系统,此
图1 单级倒立摆原理结构图
应用的最终目的是调节小车位置,以使
倒立摆处于反转垂直位置。
设计中小车质量M = 2 kg,摆杆质量m = 0. 1kg,摆杆长l = 0. 5 m,重力加速度g≈ 10 m / s2 ,θ是摆杆与垂线向上的夹角( rad) , x 是小车的水平位移(m) , F是加在小车上的控制力。
系统的控制目标是:通过产生合适的力,使得小车和摆杆在一定的给定条件下,能够迅速地恢复到平衡位置(θ= 0, x =0) ,运用牛顿力学定律建立系统的运动方程, 消除中间变量后,将方程在平衡点(θ= 0, x = 0)附近进行线性化处理cosθ= 1, sinθ=θ, 经过整理后可以得到以摆杆的角
度θ、角速度θ′、小车位移x、小车速度x′为状态变量的倒立摆系统的状态方程,见式(1) 。
将倒立摆系统的实际参数代入后, 得到系统的状态方程,见式(2) :
(2)
一级倒立摆系统的特征方程为det{λI - A } =0,经过计算得到系统的开环特征根为: ( 0 0 51276 7 - 51576 7) 。
系统有一个极点在平面的右半平面上,有两个极点在原点,因此系统是不稳定
的。
控制理论的可控判据为,rank [B AB A2B A3B ] = 4 (3) 综上所述可得:该系统是一个不稳定的、可控的
系统。
2 模糊控制器的设计
模糊控制是通过模拟人脑的模糊思维方法, 从而实现被控系统的控制的[ 4, 5 ] 。
模糊控制器和模糊控制规则是设计的核心环节。
系统建立的模糊控制器输入变量为θ( t ) 和θ′( t) ,输出变量为
F ( t) ,θ( t)和θ′( t)的模糊集是{NEG, ZE, POS} ,输出F 的模糊集是{NB, NS, ZE,PS, PB} ,输入变量θ( t)的论域是[ - 0. 3, 0.
3 ], 输入变量θ′( t)论域是[ - 1, 1 ],输出变量F ( t)的论域是[ - 30, 30 ],建立的模糊控制规则如下:
If ( theta is NEG) and ( d _ theta is NEG) then ( Force is GN) If ( theta is NEG) and ( d _ theta is POS) then ( Force isN)
If ( theta is POS) and ( d _ theta is NEG) then ( Force is P)
If ( theta is POS) and ( d _ theta is POS) then ( Force is GP) 输入变量采用的隶属度函数选用p imf II型隶属度函数形式,如图2
和图3所示。
对于输出隶属函数选用trimf三角隶属函数,如
图4所示。
对于解模糊化,使用centroid中心法,借助Surface Viewer,可以观察模糊控制的操作,如图5所示。
图二
图(2)输入θ`(t)的隶属函数()
图(3)输入θ(t)的隶属函数[θ(t)的隶属函数的导数]
图(4)输出F(t)的隶属函数
图(5)控制器的角表面图
图(6)SIMULINK结构图
图(7)角度和角速度响应结果曲线
图(8)输出力的变化响应曲线
结论
该设计是在MATLAB /SIMUL INK环境下进行的[ 6 ] ,系统利用所建立的数学模型和模糊控制器,建立的仿真模型如图6所示。
为了模拟现实的环境,系统加上了相应控制目标环节和扰动环节,通过编写相应的m程序,可以得出系统的结果响应曲线,如图7、图8所示。
取系统的初始状态为[ 0. 1; 0; 0; 0 ]。
通过对图7和图8的分析可以看出,该模糊控制器对于线性化后的系统进行控制,达到了良
好的控制效果,控制器以倒立摆的θ为优先控制量,小车的位移为辅
助控制量,在5 s左右,系统达到平衡点,小车做轻微移动,保持一种动态平衡。
该文设计的模糊控制器具有设计简单,控制简洁方便的特点,这
也说明了系统的数学模型线性化处理是有效的,设计的模糊控制器是切实可行的。
模糊控制具有鲁棒性好,算法简单的特点,可以应用于实时控制之中,为倒立摆的实时控制提供了一种良好的思路。
参考文献:
[ 1 ] FURUTA K, KATSUH ISA H K, KOSUGE K. Digital
control of a double inverted pendulum on an inclined rail
[ J ]. Int. J of Control, 1980, 32 (5) : 907 - 924.
[ 2 ] ELTOHAMY K G. Nonlinear op timal control of a trip le inverted pendulum with single control input[ J ]. Int. J of
Control, 1998, 69 (2) : 239 - 256.
[ 3 ] 李士勇. 模糊控制、神经控制和智能控制论[M ]. 哈尔
滨:哈尔滨工业大学出版社, 1998.
[ 4 ] 李永强,杨明忠. 智能控制理论在倒立摆系统中的应用研究[ J ]. 现代机械, 2006, (2) : 100 - 102.
[ 5 ] Mohand Mokhtari, MichelMarie,赵彦玲译. MATLAB 与SIMUL INK工程应用[M ]. 北京:电子工业出版社, 2002.
[ 6 ] 张志涌. 精通MATLAB [M ]. (第三版). 北京:北京航空航天大学出版社, 2000.。