单级倒立摆的PID控制

合集下载

基于MATLAB的直线一级倒立摆的PID控制研究

基于MATLAB的直线一级倒立摆的PID控制研究

基于MATLAB的直线一级倒立摆的PID控制研究一、内容概述本文旨在研究基于MATLAB的直线一级倒立摆的PID控制策略。

倒立摆系统作为控制理论中的重要实验对象,具有非线性、不稳定性以及快速运动等特点,对于控制系统的设计与实现提出了较高要求。

PID控制作为一种经典的控制方法,在倒立摆系统中具有广泛的应用价值。

本文利用MATLAB软件平台,对直线一级倒立摆的PID控制进行深入研究和探讨。

文章对直线一级倒立摆系统的基本原理进行介绍,包括其物理模型、运动方程以及稳定性分析等方面。

在此基础上,详细阐述了PID 控制器的基本原理、参数整定方法及其在倒立摆系统中的应用。

通过对比不同PID参数下的控制效果,分析了PID控制器在倒立摆系统中的性能特点。

文章重点介绍了基于MATLAB的直线一级倒立摆PID控制系统的设计与实现过程。

利用MATLAB的Simulink仿真工具,搭建了直线一级倒立摆的仿真模型,并设计了PID控制器进行仿真实验。

通过不断调整PID控制器的参数,观察系统的动态响应和稳态性能,得到了较优的控制参数。

文章还讨论了在实际应用中可能遇到的挑战与问题,并提出了相应的解决方案。

针对倒立摆系统的非线性特性,可以采用模糊PID控制或神经网络PID控制等智能控制方法进行改进;针对干扰和噪声的影响,可以采用滤波技术或鲁棒控制策略来提高系统的抗干扰能力。

文章总结了基于MATLAB的直线一级倒立摆PID控制研究的主要成果和贡献,并展望了未来研究方向和应用前景。

通过本文的研究,不仅加深了对倒立摆系统和PID控制方法的理解,也为实际工程应用提供了有益的参考和借鉴。

1. 直线一级倒立摆系统的介绍直线一级倒立摆系统,作为一个复杂且典型的非线性不稳定系统,历来被视为控制理论教学及实验的理想平台。

它不仅能够有效地反映出控制中的多种问题,如非线性、鲁棒性、镇定等,还因其在多个领域中的实际应用价值而备受关注。

直线一级倒立摆系统主要由小车、摆杆等部件构成,它们之间通过自由连接形成一个整体。

单级倒立摆稳定控制

单级倒立摆稳定控制

单级倒立摆稳定控制摘要单级倒立摆是一种受控系统,在工业控制和机器人技术中有着广泛的应用。

这篇文档将介绍单级倒立摆的结构、原理和控制方法,特别是借助PID控制系统来实现单级倒立摆的稳定控制。

单级倒立摆是一种类人形机器人,它通常由一个水平旋转的轮子和一个通过电机传动的滑移杆组成,最后再由摆杆上的陀螺控制实现倒立。

这种结构使得单级倒立摆成为了机器人应用领域中的一个挑战问题。

为了实现单级倒立摆的稳定控制,需要在控制系统中引入一个合适的控制机制。

PID控制算法是一种最为通用的控制算法之一,常被用于像单级倒立摆这样的机器人平衡控制。

PID控制PID控制是一种基于反馈的控制系统,在工业和机器人技术中得到了广泛的应用。

PID控制通过比较实际的输出值与期望的输入值之间的差异,来作出对输出值的控制。

PID控制可以对输出值的稳定性、可靠性和精度进行控制,适用于不同类型的工业和机器人控制系统。

PID控制通常由三个部分组成:比例(P)、积分(I)和微分(D)控制。

比例控制反馈调整输出值,使得实际输出值逼近期望输入值。

积分控制记录过去所有误差,并将这些误差相乘来调整输出值。

微分控制通过记录过去的误差变化率,来防止输出值的快速变化。

在单级倒立摆稳定控制中,采用PID控制可以较好地解决因摩擦力、惯性、重心偏移等因素导致的系统不稳定问题,进而实现系统的平衡控制。

单级倒立摆的稳定控制实现单级倒立摆的稳定控制需要进行以下步骤:步骤1:系统建模将单级倒立摆系统建模,根据运动学和动力学原理,得到系统的运动方程。

步骤2:PID参数调节通过对PID控制算法中比例、积分、微分三个部分的参数进行调整,得到较好的控制效果。

步骤3:PID控制实现将PID控制器与单级倒立摆系统进行连接,实现单级倒立摆的稳定控制。

本文档介绍了单级倒立摆的结构、原理和控制方法,分析了PID控制算法在单级倒立摆稳定控制中的应用。

通过对步骤进行深入的解析,得到了单级倒立摆的稳定控制方法。

基于双闭环PID控制的一阶倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一阶倒立摆是一种常见的控制系统,它由一个旋转臂和一个悬挂在旋转臂末端的摆杆组成。

控制目标是使摆杆保持垂直位置并保持在指定的角度范围内。

本文将基于双闭环PID控制设计一阶倒立摆控制系统,并对其进行详细的分析和讨论。

首先,我们需要明确控制系统的结构。

一阶倒立摆控制系统可以分为两个闭环:内环和外环。

内环用于控制旋转臂的角度,并将输出作为外环的输入。

外环用于控制摆杆的角度,并根据测量的摆杆角度和设定的目标角度来调整内环的输入。

在进行控制系统设计之前,我们需要先建立一阶倒立摆的数学模型。

假设倒立摆的质量集中在摆杆的一端,摆杆的长度为L,质量为m,摩擦系数为b,重力加速度为g。

通过应用牛顿第二定律,可以得到如下动力学方程:mL²θ¨ + bLθ˙ + mgLsinθ = u其中,θ是旋转臂的角度,u是旋转臂的扭矩。

为了简化方程,我们进行恒定参数修正和线性化处理,得到线性方程:θ¨ + 2ξωnθ˙ + ωn²θ = kru其中,ξ是阻尼比,ωn是无阻尼自然频率,kr是旋转臂的增益。

接下来,我们将按照以下步骤设计基于双闭环PID控制的一阶倒立摆控制系统:1.内环设计:-选择合适的内环闭环控制器类型。

对于一阶倒立摆,可以选择PID控制器。

-根据倒立摆的特性和性能要求,选择合适的PID参数。

可以使用试错法、经验法、系统辨识等方法进行参数调整。

-将PID控制器的输入设置为旋转臂角度误差,输出为旋转臂的扭矩。

2.外环设计:-选择合适的外环闭环控制器类型。

对于一阶倒立摆,可以选择PID控制器。

-根据倒立摆的特性和性能要求,选择合适的PID参数。

-将PID控制器的输入设置为摆杆角度误差,输出为旋转臂的角度设定值。

3.进行系统仿真和调试:-使用MATLAB等仿真工具建立一阶倒立摆的数学模型,并将设计的控制器与模型进行集成。

-调整控制器的参数,以满足性能指标和系统稳定性的要求。

直线一级倒立摆PID控制实验报告

直线一级倒立摆PID控制实验报告

直线一级倒立摆PID 控制实验一.实验目的本实验的目的是让实验者理解并掌握PID 控制的原理和方法,并应用于直线一级倒立摆的控制,PID 控制并不需要对系统进行精确的分析,因此我们采用实验的方法对系统进行控制器参数的设置。

二.实验设备1:直线一级倒立摆:直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载一级倒立摆。

2.PC机和运动控制卡主机箱三.实验原理经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型。

PID 控制器因其结构简单,容易调节,且不需要对系统建立精确的模型,在控制上应用较广。

首先,对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。

系统控制结构框图如下:图 1 直线一级倒立摆闭环系统图图中KD(s) 是控制器传递函数,G(s) 是被控对象传递函数。

考虑到输入r(s) = 0,结构图可以很容易的变换成:图 2 直线一级倒立摆闭环系统简化图该系统的输出为:其中num ——被控对象传递函数的分子项den ——被控对象传递函数的分母项numPID ——PID 控制器传递函数的分子项denPID ——PID 控制器传递函数的分母项通过分析上式就可以得到系统的各项性能。

由(3-13)可以得到摆杆角度和小车加速度的传递函数:PID 控制器的传递函数为:需仔细调节PID 控制器的参数,以得到满意的控制效果。

在控制的过程中,小车位置输出为:通过对控制量v 双重积分即可以得到小车位置。

四.仿真步骤及结果图 3 直线一级倒立摆PID 控制MATLAB 仿真模型其中PID Controller 为封装(Mask )后的PID 控制器,双击模块打开参数设置窗口 先设置PID 控制器为P 控制器,令0,0,===kd ki kp ,得到以下仿真结果图4从图4中可以看出,闭环控制系统持续振荡,周期约为0.7s 。

PID控制的一阶倒立摆控制系统设计

PID控制的一阶倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。

二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。

四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图 F 面的工作是根据结构框图,分析和解决各个环节的传递函数!1•一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和 匀质杆组成的系统,如下图所示, 其中:M :小车质量 m :为摆杆质量J :为摆杆惯量F :加在小车上的力 x :小车位置。

:摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律, (1) 摆杆绕其重心的转动方程为J 0=F/sin 0-F/cos 0(1)yx'/(2) 摆杆重心的运动方程为d 2=m-d 2t工业控制计算机电动机驰动器一阶倒立摆—Lb D 购*.—dl卜DI ⑸J bD I 即可知: (x +1sin 0)(l cos0)d 2t(3) 小车水平方向上的运动为d 2x d 2t联列上述4个方程,可以得出一阶倒立精确气模型:J +ml 2)F +mlG +ml 2)(M +m )-m 2/2cos 20+m )m lgsin 0ml 2)""若只考虑e 在其工作点附近e=0附近(-10°<0<10。

直线一级倒立摆系统的PID控制算法设计

直线一级倒立摆系统的PID控制算法设计

摘要直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一。

设计直线一级倒立摆前,首先要应清楚直线一级倒立摆的定义及它的特性,其次用数学建模的方法建立直线一级倒立摆模型。

再次PID控制器的结构与参数设计,将直线一级倒立摆当作简单的单输入单输出系统(忽略了小车位移的控制),采用了 PID控制器设计方法进行了控制器结构设计和参数设计。

确定PID控制器主要参数KP、KI、KD,通过改变这三个参数的值,使直线一级倒立摆由开环不稳定系统变为闭环稳定系统。

直线一级倒立摆系统在PID控制器下用MATLAB进行仿真,通过改变控制器PID主要参数,使得仿真曲线更接近理论曲线。

这些便是直线一级倒立摆系统的PID控制算法设计的主要内容。

关键词:直线一级倒立摆;Matlab仿真;PID控制ABSTRACTInverted pendulum linear 1-stage stands upside down suspends is composed by the translation module and the level pendulum mass module, is most common stands upside down suspends one Front the design straight line level stands upside down suspends, first must be supposed the clear straight line level to stand upside down the definition and its characteristic which suspends, next stands upside down with mathematics modelling method establishment straight line level suspends the model. Once more the PID controller structure and the parameter design, stood upside down Inverted pendulum linear 1-stage suspends the regard simple single input list output system (to neglect car displacement control), used the PID controller design method to carry on the controller structural design and the parameter design. Determined PID controller main parameter KP, KI, KD, through change these three parameters the value, causes the straight line level to stand upside down suspends becomes the closed loop stable system by the split-ring unstable system. Inverted pendulum linear 1-stage stands upside down suspends the system to carry on the simulation under the PID controller with MATLAB, through the change controller PID main parameter, causes the simulation curve closer theoretical curve.These then are the straight line level stands upside down suspends the system the PID control algorithm design primary coverage.Keywords:Inverted pendulum linear;Matlab Simulation; PID control目录第1章绪论 (1)第2章倒立摆系统 (2)2.1 系统的组成 (3)2.1.1 倒立摆本体 (3)2.1.2 电控箱 (4)2.1.3 电机 (4)2.1.4 编码器 (4)2.1.5 控制卡 (5)2.2 系统使用说明 (5)2.2.1 直线一级摆硬件操作系统 (5)2.2.2 一级摆软件操作说明 (5)第3章自动控制及MATLAB软件介绍 (7)3.1自动控制概念 (7)3.2 自动控制系统的类型 (8)3.2.1 随机系统与自动调整系统 (8)3.2.2 线性系统和非线性系统 (9)3.2.3 连续系统和离散系统 (9)3.2.4 单输入单输出系统和多输入多输出系统 (9)3.2.5 确定系统与不确定系统 (9)3.2.6 集中参数系统和分布参数系统 (9)3.3 自动控制理论概要 (10)3.3.1 自动控制系统所要分析的问题 (10)3.3.2 自动控制系统的设计问题 (10)3.4 MATLAB实验软件 (10)3.5.1 MATLAB的基本介绍 (11)3.5.2 MATLAB程序设计基础 (12)第4章 PID控制 (13)4.1 PID控制原理 (13)4.2 数字PID控制 (14)4.2.1 位置式PID控制算法 (14)4.2.2 增量式PID控制算法 (15)4.3 常见的PID控制系统 (15)4.3.1 串级PID控制 (15)4.3.2 纯滞后系统的大林控制算法 (16)4.3.3 纯滞后系统的smith控制算法 (17)第5章直线一级倒立摆的牛顿—欧拉方法建模 (19)5.1 微分方程的推导 (19)5.2 传递函数 (21)5.3 状态方程 (21)5.4 实际系统模型 (23)5.5 采用MATLAB语句形式进行仿真 (24)第6章直线一级倒立摆控制器设计及仿真 (27)6.1 PID参数的调整 (28)6.2 PID控制回路运行 (28)6.3直线一级倒立摆PID控制器设计 (29)6.4直线一级倒立摆PID控制器设计MATLAB仿真 (32)结论 (37)参考文献 (38)致谢 (39)附录 (40)第1章绪论计算机的诞生和发展给自动控制增添了先进的工具,现代控制理论的发展,又给自动控制提供了新的理论支柱。

基于PID控制的一级倒立摆系统的研究

基于PID控制的一级倒立摆系统的研究

基于PID控制的一级倒立摆系统的研究一级倒立摆系统是控制理论中常用的一个实验模型,它能够很好地展示PID控制器的性能和效果。

本文将介绍一级倒立摆系统的建模过程、PID控制器的设计以及实验结果和分析。

一、一级倒立摆系统的建模为了进行控制系统设计,首先需要对一级倒立摆系统进行建模。

可以利用动力学方程来描述一级倒立摆系统的行为。

设系统的输入为电机的扭矩τ,输出为杆的角度θ。

根据牛顿第二定律,可以得到如下的动力学方程:mL²θ¨ + mgsinθL = τ其中,m是摆的质量,L是摆的长度,g是重力加速度,θ¨是杆的角加速度。

将动力学方程进行线性化,得到如下形式:θ¨=(g/L)θ+(τ/(mL²))这是一个二阶常微分方程,可以通过PID控制器进行控制。

二、PID控制器的设计PID控制器是一种经典的控制器,由比例、积分和微分三部分组成。

PID控制器的输出和输入之间的关系如下:u(t) = Kp e(t) + Ki ∫e(t)dt + Kd de(t)/dt其中,u(t)是控制器的输出,e(t)是控制误差,Kp、Ki和Kd分别是比例、积分和微分增益。

利用PID控制器,可以将控制器的输出u(t)作为电机的扭矩输入τ,实现对杆角度θ的控制。

具体的PID参数选择需要根据实际情况和控制要求进行调整和优化。

三、实验结果和分析通过实验,可以得到一级倒立摆系统的实际响应曲线。

利用PID控制器对系统进行控制,将杆保持在倒立状态。

实验结果显示,PID控制器可以有效控制一级倒立摆系统。

通过调整PID参数,可以调节系统的稳定性、响应速度和抗干扰性能。

总结本文基于PID控制,对一级倒立摆系统进行了研究。

通过建模和控制器设计,实现了对杆角度的控制。

实验结果证明了PID控制器在一级倒立摆系统中的良好性能和效果。

未来的研究可以进一步探索其他控制算法在一级倒立摆系统中的应用,以及优化控制器参数的方法。

单级移动倒立摆建模及串联PID校正-课程设计

单级移动倒立摆建模及串联PID校正-课程设计

单级移动倒立摆建模及串联PID校正-课程设计武汉理工大学《自动控制原理》课程设计说明书课程设计任务书学生姓名: 专业班级: 自动化0807班指导教师: 刘志立工作单位: 自动化学院题目: 单级移动倒立摆建模及串联PID校正初始条件:图示为一个倒立摆装置,该装置包含一个小车和一个安装在小车上的倒立摆杆。

由于小车在水平方向可适当移动,因此,控制小车的移动可使摆杆维持直立不倒。

2Mkgmkglmgms,,,,1.2,0.3,0.8,10/要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、研究该装置的非线性数学模型,并提出合理的线性化方法,建立该装置的线性数学模型,传递函数(以u为输入,为输出); ,,%,4.3%,t,1.5s,2、要求系统输出动态性能满足试设计串联PIDs校正装置。

3、用Matlab对校正后的系统进行仿真分析,比较校正装置加在线性化前的模型上和线性化后的模型上的时域响应有何区别,并说明原因。

时间安排:任务时间(天)审题、查阅相关资料 2分析、计算 3编写程序 2撰写报告 2论文答辩 1指导教师签名: 年月日系主任(或责任教师)签名: 年月日武汉理工大学《自动控制原理》课程设计说明书目录摘要 ...............................................................1 1 单级移动倒立摆系统建模 (2)1.1 倒立摆系统建模 (2)1.2 求倒立摆系统的传递函数 (4)2 绘制校正前系统的Bode图和Nyquist图 (4)2.1 绘制Bode图 (4)2.2 绘制Nyquist图 (6)3 PID控制器设计 (7)3.1 设计PID控制器装置 (7)4 用MATLAB对校正后的系统进行仿真分析 (10)4.1 绘制校正后的系统Bode图 (10)4.2 绘制校正后系统的Nyquist图 (11)4.3 系统校正前后的比较 (11)5 结束语 (12)参考文献 (12)本科生课程设计成绩评定表 (13)武汉理工大学《自动控制原理》课程设计说明书摘要倒立摆系统是一个典型的非线性多变量强耦合不稳定的非最小相位系统,在航天航空和机电一体化等领域得到了广泛的应用,如在火箭箭身的姿态稳定控制及机器人多自由运动稳定的设计都用到了倒立摆系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统的分析与设计报告
姓名:
专业班级:
任课教师:
年月日
单级倒立摆的PID 控制
一、 单级倒立摆的建模
倒立摆系统的控制问题一直是控制界研究的一个典型问题。

控制的目标是通过给小车的底座施加一个力u (控制量),是小车停留在一个预定的位置,并且能让杆不倒下,即不超过一个预先定义好的垂直偏离角度范围。

图1为一级倒立摆系统示意图,小车质量为M ,摆的质量为m ,小车的位置为x ,摆的角度为θ。

图1 一阶倒立摆系统示意图
设摆杆偏离垂直线的角度为θ,同时规定摆杆重心的坐标为
(,)G G G x y ,则有:sin G x x l θ=+, cos G y l θ=。

根据牛顿定律,建立水平
和垂直运动状态方程。

摆杆围绕其重心的转动运动可以用力矩方程来描述:
sin cos I Vl H θθθ=-
式中,l 为摆杆围绕其重心的转动惯量。

摆杆重心的水平运动由下式
描述:
2
2t
d (sin )d m x l H θ+= 摆杆重心的垂直运动由下式描述:
2
2t
d cos d m l V mg θ=- 小车的水平运动由下式描述:
2
2t
d d M u H =-
假设θ很小,sin θθ≈,cos 1θ=,则以上各式变为:
I Vl Hl θθ=- (1)
()m x l H θ+= (2)
O V mg =- (3) mx u H =- (4)
由式(2)和式(4)得:
(M m)x ml u θ++= (5) 由式(1)和式(3)得:
2(I ml )mlx mgl θθ++= (6)
由式(5)和式(6)得单级倒立摆方程:
22
m(m+M)gl m
(M+m)I+Mm (M+m)I+Mm u l l θθ=
- (7)
222
22
m (M+m)I+Mm (M+m)I+Mml gl I ml x u l θ+=-+ (8)
式中,2112
I mL =
,1
2l L =。

控制指标有4个,即单级倒立摆的摆角θ,摆速θ,小车位置x 和小车
速度x ,将倒立摆的运动方程转化为状态方程的形式。


(1)x θ=,(2)x θ=,(3)x x =,(4)x x =,则式(7)和式(8)可表示为状态方
程式(9):
x Ax Bu =+ (9)
式中,
12
01000000001000t A t ⎡⎤⎢⎥⎢
⎥=⎢⎥
⎢⎥
⎣⎦
, 3400t B t ⎡⎤⎢⎥
⎢⎥=⎢⎥⎢⎥⎣⎦
, 12m(m+M)g (M+m)+Mm l
t l =

2222m (M+m)I+Mm gl t l =-
,2m 3(M+m)l t l Mml =-+,2
42
(M+m)I+Mml I ml t +=。

二、 单级倒立摆控制
对每个控制目标都采取PD 控制方式,控制器为:
p i d i e i
()K e i ()K d k u i
k k =+ (10)
式中,()i e k 和为控制指标()ei k d 的误差和误差变化率:
4
1()()i i u k u k ==∑ (11)
为了进行对比,采用最优控制中的LQR 方法。

该方法针对状态方程
x Ax Bu =+,通过确定最佳控制量()()u t Kx t =-的矩阵
K ,使得控制性能
指标()0
T T t J x Qx u Ru d ∞
=+⎰达到极小,其中,Q 为正定(或半正定)厄米特
或实对称矩阵,R 为正定厄米特或实对称矩阵,Q 和R 分别表示了误差和能量损耗的相对重要性,Q 中对角矩阵的各个元素分别代表各项指标误差的相对重要性。

LQR 控制器的增益为:
(,,,)K LQR A B Q R = (12) ()u k Kx =- (13)
三、仿真结果及分析
仿真中倒立摆的参数为:9.8/g m s =(重力加速度), 1.0M kg =(小车质量),0.5L m =(杆的半长),0.0005c μ=(小车相对于导轨的摩擦系数),
0.000002p μ=杆相对于小车的摩擦系数)。

F 为作用在小车上的力,即控制
器的输出,在[]10,10-上连续取值。

采样周期20T ms =,初始条件取(0)10θ=-︒,(0)0θ=,(0)0.20x =,
(0)0x =,期望状态为:(0)0θ=,(0)0θ=,(0)0x =,(0)0x =,其中,摆
动角度值应转变为弧度值。

取1S =,使用PID 控制。

用于电机控制方向与摆杆的摆动角度方向相反,故控制器参数选负数。

使用PID 时倒立摆的响应结果及控制器输出如图2和图3所示,可见,使用PID 控制可实现单级倒立摆的控制,但PID 控制器的参数较难选取。

图7-58 采用PID 倒立摆相应结果(S=2)
图7-59 控制器的输出
取2
S=,采用LQR控制,取
100000
01000
0010
0001
Q
⎡⎤
⎢⎥
⎢⎥
=
⎢⎥
⎢⎥
⎣⎦
,0.10
R=,则由式(7.51)
可得LQR控制器增益(64.0799,14.2285, 3.1623, 6.6632)
K=----。

采用LQR时倒立摆响应结果及控制器输出如图7-60和图7-61所示。

图7-60 采用LQR倒立摆响应结果(s=2)
图7-61 LQR控制器的输出
四、结论
由仿真结果可以看出,采用LQR控制方式可以很好的实现对单级
倒立摆的最优控制。

相关文档
最新文档