一级倒立摆的模糊控制

合集下载

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。

二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。

系统的输入为杆的控制力矩,输出为杆的角度。

系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。

2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。

在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。

三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。

2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。

b. 构建模糊规则:根据经验或系统建模,确定模糊规则。

c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。

d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。

3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。

b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。

c. 执行控制器输出:将控制力矩作用在倒立摆上。

4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。

5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。

四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。

通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。

实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。

一级倒立摆的模糊控制

一级倒立摆的模糊控制

一级倒立摆的模糊控制4.1倒立摆控制方法的研究倒立摆一般有两种起始状态的控制。

一种是在摆杆自然下垂,竖直向下为起始状态,通过不断的摆动,最终使其稳定在竖直向上的不稳定点,这种控制叫做起摆稳定控制,也即DOWN-UP控制;另一种是用手提起摆杆,在不稳定平衡点处开始实行控制,称作稳定控制,也即UP-UP控制。

同时倒立摆系统也是一个复杂的、非线性的、不稳定的高阶系统。

倒立摆的控制一直是控制理论及应用的典型课题。

在研究倒立摆这类多变量非线性系统的模糊控制时,一个难题就是规则爆炸(RuleEPxofsino),比如一级倒立摆的控制涉及的状态变量共有4个,每个变量的论域作7个模糊集的模糊划分,这样,完备的推理规则库会包含74=2401个推理规则;而对于二级倒立摆有6个状态变量,推理规则会达到76=117649,显然如此多的规则是不可能实现的。

为了解决这个问题,张乃尧等提出双闭环的倒立摆模糊控制方案,内环控制倒立摆的角度,外环控制倒立摆的位移。

范醒哲等人将这一方法推广到三级倒立摆控制系统中,并提出两种模糊串级控制方案,用来解决倒立摆这类多变量系统模糊控制时的规则爆炸问题。

shulinagLei和RezaLnagari应用分级思想,将θθ,,,xx4个状态变量分成两个子系统,分别用两个模糊控制器控制,然后来协调子系统之间的相互作用。

本文模仿人类简化问题的思路,将单一的复杂控制策略转化为多级简单控制策略嵌套,通过分离变量的方法设计末控制器。

4.2倒立摆仿真的研究在第二章建立了一级倒立摆的数学模型,推导出倒立摆近似线性状态方程并分析了倒立摆系统的能控性、能观性。

在此基础上,第三章详细讨论了模糊控制倒立摆的方法,模糊控制器的设计方法,证明了利用模糊策略控制倒立摆系统是可行的。

本章是将在上面几章的基础上,用Matlab和Simulink工具进行一级倒立摆模糊控制系统的仿真研究。

Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

一级直线倒立摆系统模糊控制器设计---实验指导书精讲

一级直线倒立摆系统模糊控制器设计---实验指导书精讲

一级直线倒立摆系统模糊控制器设计---实验指导书精讲第一篇:一级直线倒立摆系统模糊控制器设计---实验指导书精讲一级直线倒立摆系统模糊控制器设计实验指导书目录实验要求........................................................................................................................... ...................3 1.1 实验准备........................................................................................................................... ................3 1.2 评分规则........................................................................................................................... ................3 1.3 实验报告内容........................................................................................................................... ........3 1.4 安全注意事项........................................................................................................................... ........3 2 倒立摆实验平台介绍..........................................................................................................................4 2.1 硬件组成........................................................................................................................... ................4 2.2 软件结构........................................................................................................................... ................4 3 倒立摆数学建模(预习内容)............................................................................................................6 4 模糊控制实验........................................................................................................................... ............8 4.1 模糊控制器设计(预习内容).......................................................................................................8 4.2 模糊控制器仿真........................................................................................................................... ...12 4.3 模糊控制器实时控制实验..............................................................................................................12 5 附录:控制理论中常用的MATLAB 函数.......................................................................................13 6 参考文献........................................................................................................................... .................14 实验要求1.1 实验准备实验准备是顺利完成实验内容的必要条件。

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告本次实验旨在研究一阶倒立摆系统的模糊控制方法,通过对系统进行建模、设计控制器并进行仿真,最终评估控制效果。

实验过程主要包括系统建模、控制器设计、模糊控制器参数调节和性能评价四个步骤。

首先,我们对一阶倒立摆系统进行建模。

一阶倒立摆系统是一种具有非线性特性的控制系统,主要由电机、倒立摆、支撑杆等组成。

我们需要建立数学模型描述系统的动力学特性,包括倒立角度、倒立角速度、杆角度等状态变量,并考虑控制输入电压对系统的影响。

接着,我们设计模糊控制器。

模糊控制是一种基于模糊逻辑的控制方法,适用于非线性系统和模糊系统。

我们根据系统模型,设计模糊控制器的模糊规则、隶属函数等参数,以实现系统的稳定控制。

在设计过程中,我们需要考虑系统的性能指标,如超调量、稳态误差等。

第三步是模糊控制器参数调节。

通过仿真实验,我们可以对模糊控制器的参数进行调节,以使系统的性能达到最佳状态。

调节参数的过程需要考虑系统的稳定性、鲁棒性和响应速度,以达到控制效果的要求。

最后,我们对模糊控制系统进行性能评价。

通过对系统的响应曲线、稳定性、控制精度等指标进行分析,评价模糊控制器的控制效果。

我们可以比较模糊控制系统和传统控制系统的性能,探讨模糊控制在一阶倒立摆系统中的优势和局限性。

总的来说,本次实验通过研究一阶倒立摆系统的模糊控制方法,探讨了模糊控制在非线性系统中的应用。

通过实验,我们对模糊控制的基本原理和设计方法有了更深入的理解,同时也对一阶倒立摆系统的控制特性有了更清晰的认识。

希望通过实验的研究,能够为控制系统的设计和应用提供一定的参考和借鉴。

一阶倒立摆双闭环模糊控制

一阶倒立摆双闭环模糊控制

摘要本文讨论基于鲁棒性设计的一阶倒立摆双闭环控制问题。

以摆角为内环.以小车位置为外环利用鲁棒孔子系统理论进行模糊控制器设计及参数整定,使控制系统对于确定系统参数的变化具有较强的鲁棒性。

倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。

论文首先介绍了模糊系统的理论基础,和模糊控制器的分析和设计,充分的理解了倒立摆智能控制系统研究与设计所需要的理论知识。

然后通过对倒立摆系统的分析建模,采用模糊推理系统,设计相应的模糊控制器,对倒立摆进行控制,最后将控制过程在MATLAB上加以仿真。

在MATLAB仿真中,应用模糊逻辑工具箱来设计模糊逻辑控制器,然后通过Simulink来建立模糊系统,最后得到仿真结果。

关键词:倒立摆,模糊控制,双闭环模糊控制器,MATLAB仿真。

ABSTRACTThis article discusses the question of inverted pendulum double loop control that based on robust design. Take the pivot angle as the inner ring , the car position as the outer ring, Carries on the fuzzy controller design and the parameter installation by use robust control system theory, enable the control system to have strong robustness that determine changes in system parameters. As the inverted pendulum system is unstable,multivariable, nonlinear and strongly coupling and so on, many modern control theory researchers regard it as the object of study. The thesis introduced the Fuzzy systems theory ,the analysis and design of fuzzy controller , understand the theory knowledge that needed in study of intelligent control system of inverted pendulum . Then use fuzzy inference system and design corresponding fuzzy controller to control Inverted pendulum by making model of analysis of the inverted pndulum system.Finally,simulate the control processing in MATLAB.The simulation in MATLAB,design Fuzzy logic controller by applicating fuzzy logic toolbox,then set up fuzzy systems by use Simulink and at last obtained simulation results.Key word:Inverted pendulum, fuzzy control, double closed loop fuzzy controller, MATLAB simulation.目录第一章绪论 (4)1.1倒立摆系统稳定性研究 (4)1.1.1 倒立摆系统稳定性研究的意义 (4)1.1.2 倒立摆研究的发展状况 (5)1.2 模糊控制的研究现状 (6)1.2.1模糊控制理论的产生 (6)1.2.2模糊控制的数学基础 (7)1.2.3模糊控制的研究现状 (8)1.2.4模糊控制理论的发展前景 (9)1.3 论文主要工作 (10)第二章:单支点倒立摆系统数学模型的建立及系统分析 (11)2.1建模机理 (11)2.2系统建模 (11)2.3 模型简化 (13)第三章:模糊控制的基本原理 (16)3.1 模糊集合与隶属函数 (16)3.2 模糊逻辑操作 (16)3.3 模糊规则与模糊推理 (17)3.4 模糊推理系统 (17)第四章:一阶倒立摆系统的双闭环模糊控制器的设计与仿真 (19)4.1 一阶倒立摆系统的双闭环模糊控制方案 (19)4.1.1 问题的提出 (19)4.1.2 模糊控制器的设计 (20)4.2 仿真实验 (23)4.2.1 MATLAB模糊逻辑工具箱 (23)4.2.2 一阶倒立摆系统数字仿真模型的建立 (26)4.3仿真实验结果 (28)第五章结论 (33)致谢 (34)参考文献: (35)附录: (36)中文翻译: (41)第一章绪论1.1倒立摆系统稳定性研究倒立摆控制系统是应用于自动控制理论实验室的经典实验装置。

基于模糊控制的一级倒立摆控制系统设计【毕业作品】

基于模糊控制的一级倒立摆控制系统设计【毕业作品】

BI YE SHE JI(20 届)基于模糊控制的一级倒立摆控制系统设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月II摘要倒立摆系统是研究控制理论的典型实验装置,具有价格低廉,结构简单,参数易于调整等优点。

但是倒立摆同时也是一个典型的快速,非线性,多变量,本质不稳定系统,对于其稳定性的控制绝非易事。

也正因为如此,对于倒立摆系统控制方法的研究和开发才具有重要和深远的意义。

目前适用此系统的控制理论包括变结构控制,非线性控制,目标定位控制,智能控制等。

本文根据一级直线倒立摆系统,建立了数学模型,依据模糊控制的相关规则设计了模糊控制规则,并从位移和角度观点出发设计了双模糊控制器,经过仿真调试对重要参数进行不断的调试和优化,最终实现了“摆杆不倒,小车稳住”的总体目标。

对于实物实验系统,本文对构成倒立摆运动控制系统的电机,编码器和运动控制模块进行了比较选择,选择了交流伺服电机,增量式光电编码器和基于DSP技术的运动控制器作为主要的硬件组合,该运动控制器具有良好的性能,可以保证控制的精度。

关键词:倒立摆,模糊控制,系统设计,仿真,稳定IIAbstractInverted pendulum system is the study of the typical experiment device control theory, which is inexpensive, simple structure and easy to adjust the parameters. But it is also a system that typical rapid, nonlinear, many variables, and its essence is not stable, for its stability control is not going to be easy. Also because of this inverted pendulum system control method of the research and development are important and profound significance. At present the system for the control theory including variable structure control, nonlinear control, the goal positioning control, intelligent control, etc.According to the level of linear inverted pendulum system, this paper established the mathematical model, based on the fuzzy control rules we designed its fuzzy control rules, and from the view point of view design displacement and the dual fuzzy controller, through the simulation test of continuing the important parameters of debugging and optimization, and finally achieved "swinging rod, the car is not steady overall goal.For physical experiment system, this paper constitutes inverted pendulum motion control system of motor, encoder and motion control module are compared choice. Choose the ac servo motor, the solid-axes photoelectric encoder and the motion controller based on DSP technology as the main combination of hardware, this controller has good performance, and can ensure the precision of the control.Key words: inverted pendulum,Fuzzy control,System design ,The simulation,stabilityII目录摘要 (I)Abstract.......................................................................................................................................... I I 目录 (III)第一章引言 (1)1.1课题研究目的及意义 (1)1.3倒立摆系统介绍 (3)第二章倒立摆系统建模 (6)第三章模糊控制 (11)3.1概念 (11)第四章基于模糊控制的一级倒立摆系统设计 (15)4.1控制系统部件选择 (15)4.1.1位置传感器选择 (15)4.1.3运动控制模块 (17)4.2 模糊控制器设计 (18)4.2.1 确定模糊控制器的结构 (19)4.2.2位置模糊控制器的设计 (19)4.2.3角度模糊控制器设计 (27)4.3simulink仿真 (28)4.3.1将simulink与模糊控制器相关联 (28)4.3.2进行仿真 (32)结论 (39)III参考文献 (40)致谢 (41)III第一章引言1.1课题研究目的及意义倒立摆系统作为一个本身绝对不稳定的非线性系统,兼具高阶次、多变量、强耦合的特点。

一级直线型倒立摆的模糊控制控制

一级直线型倒立摆的模糊控制控制

一级直线型倒立摆的模糊控制一、问题的描述在忽略了空气流动之后, 可将倒立摆系统抽象成小车和匀质杆组成的系统, 如图1所示. 记小车质量为M, 摆杆质量为m, 摆杆转动图1 倒立摆系统中心到杆质心的距离为l, 作用在系统上的外力为F , 重力加速度为g, θ为摆杆偏角, 即摆杆与竖直向上方向的夹角,取顺时针方向为正方向, x 为小车水平方向位移, 取导轨中点为零点, 水平向右为正方向, 水平向左为负方向.图2为隔离体受力图。

摆杆围绕中心A 点转动方程为22d J V l sin H l cos dtθθθ=-。

式中,J 为摆杆围绕重心A 的转动惯量。

摆杆重心A 沿x 轴方向运动方程为2A 2d x m Hdt=,即22dm(x lsin )H dtθ+=。

摆杆重心A 沿y 轴方向运动方程为2A 2d y mV m gdt=-,即22dm(l c o s )V m g dtθ=-。

小车沿x 轴方向运动方程式为22=-d x M F Hdt。

以上方程为车载倒立摆系统运动方程组。

因为还有sin θ和cos θ项,所以为非线性微分方程组。

图2 隔离体受力图中间变量不易相消。

把J 的表达式代入,联合几个方程式得到如下的非线性方程组:'2''2'2''''sin cos *(sin )*(43*cos ()*(sin cos )θθθθθθθθθθ+--=-++-=+g F m l l m m M F m l x M m设,''1234[(),(),(),()][,,,]θθ==X t t x t x t x x x x则有如下非线性状态方程组:'122'1121221'342''21214sin cos *(sin )*(43*cos ()*(sin cos )=+--=-+=+-=+x x g x x F m lx x x l m x m M x x F m l x x x x x M m二,控制系统的matlab 实现 实现的步骤为: 1.划分模糊空间2.用上述的每个离散状态空间点X1, X2,…,Xn 来线性化线性车棒模型,选择合适的LQR 控制参数Q ,R ,N ,设计出线性最优控制器K1, K2,…,Kn 。

单级倒立摆的模糊控制应用2

单级倒立摆的模糊控制应用2

单级倒立摆的模糊控制应用摘要:随着被控对象的日趋复杂,对控制性能的要求不断提高,传统控制理论对解决复杂系统无能为力。

该文将人工智能中的模糊控制引入倒立摆控制系统,以提高控制要求,改善控制精度。

通过仿真实验表明这种控制思路是可行的,效果良好。

关键词:倒立摆;模糊控制;模糊推理系统;仿真The applica tion of a fuzzy con trol theory to a single inverted pendulumCHEN J in,QU Cheng2ming, J IANGMing, CHEN Qi2gong (Anhui Provincial Key Laboratory of Electrical Transm ission and Control,Anhui University of Technology and Science, AnhuW uhu 241000, China)Abstract:As the controlled objects become more and more comp lex and the requirement of controlperformance is higher and higher, the conventional control theory is inefficiency. The paper p resents theapp lication of the fuzzy control theory of artificial intelligent to an inverted pendulum control system. It canimp rove the control requrement and accuracy. Simulations show that this control concep tion is p ractical.Key words: inverted pendulum; fuzzy control; F IS; simulation 引言倒立摆系统是一个复杂的非线性系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

故其研究意义广泛。

一、倒立摆的数学模型质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。

由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。

在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型。

倒立摆模型如图2-1所示。

图2-2 单机倒立摆模型图小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。

电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。

导轨截面成H型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。

轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。

以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入。

如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。

当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。

现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得 F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为 F’cosθ -mg=m(lcosθ)’’=-mlθ’’sinθ-mlcosθ(θ’)^2即 F’cosθ=mg-mlθ’’sinθ-mlcosθ(θ’)^2 (c)由(b)、(c)两式得cosθx’’ =gsinθ- lθ’’ <2>故可得以下运动方程组:F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2cosθx’’ =gsinθ- lθ’’以上方程组为非线性方程组,故需做如下线性化处理:32 sin,cos13!2!θθθθθ≈-≈-当θ很小时,由cosθ、sinθ的幂级数展开式可知,忽略高次项后,可得cosθ≈1,sinθ≈θ,θ’’≈0故线性化后运动方程组简化为F= (M+m)x’’ +mlθ’’x’’ =gθ- lθ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-M mg x1+M1 F 故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010Mm gMl g m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F二、 立题方案倒立摆系统是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例。

早在上个世纪五十年代,国外就丌始了倒立摆的研究,我国学者也从80年代初开始倒立摆系统的研究。

1966年Schaefer 和cannon 就应用bang-bang 控制理论,将一个曲轴稳定于倒置位置,实现了单级倒立摆的稳定控制。

在60年代后期,作为一个典型的不稳定、严重非线性证例,倒立摆的概念被提出,并将其用于检验控制方法对不稳定、非线性和快速性系统的控制能力,受到世界各国许多科学家的重视,寻找不同的控制方法实现对倒立摆的控制。

目前,倒立摆的控制方法可分如下几类: (1) 线性理论控制方法将倒立摆系统的非线性模型进行近似线性化处理获得系统在平衡点附近的线性化模型,然后再利用各种线性系统控制器设计方法得到期望的控制器。

这类方法对一、二级的倒立摆(线性化后误差较小、模型较简单控制时,可以解决常规倒立摆的稳定控制问题。

但对于像非线性较强、模型较复杂的多变量系统(三、四级以及多级倒立摆)线性系统设计方法的局限性就十分明显。

(2) 预测控制和变结构控制方法由于线性控制理论与倒立摆系统多变量、非线性之间的矛盾使人们意识到针对多变量、非线性对象,采用具有非线性特性的多变量控制解决多变量、非线性系统的必由之路。

人们先后丌展了预测控制、变结构控制和自适应控制的研究。

预测控制是一种优化控制方法,强调实模型的功能而不是结构。

变结构控制是一种非连续控制,可将控制对象从任意位置控制到滑动曲面上,仍然保持系统的稳定性和鲁棒性,但是系统存在颤抖。

预测控制、变结构控制和自适应控制在理论上有较好的控制效果,但由于控制方法复杂,成本也高,不易在快速变化的系统上实时实现。

(3) 智能控制方法7在倒立摆系统中用到的智能控制方法主要有神经网络控制、模糊控制、仿人智能控制、拟人智能控制和云模型控制等。

糊控制理论产生于二十世纪六十年代,是美国加利福尼亚U.C.Berkkley学校的自动控制理论专家L.A.扎德(Zadeh)教授最先提出的,主要是为了克服过程本身的不确定性、不精确性,因此在处理复杂系统的大时滞、时变及非线性方面显示了极大的优越性。

由于倒立摆的非线性、多变量、强耦合等特性,本文选择模糊控制器控制。

将E和EC的控制都分别:“负大”(NB) 、“负中”(NM) 、“负小”(NS) 、“零”(ZO) 、“正小”(PS) 、“正中”(PM) 和“正大”(PB) 这7 个语言变量值来描述,即{NB,NM,NS,ZO,PS,PM,PB}模糊集, 其中NB=负方向大的偏差(Negative Big)NM=负方向中的偏差(Negative Medium)NS=负方向小的偏差(Negative Small)ZO=近于零的偏差(Zero)PS=正方向小的偏差(Positive Small)PM=正方向中的偏差(Positive Medium)PB=正方向大的偏差(Positive Big)控制规则是模糊控制器的核心,规则的正确与否直接影响控制器的性能,而规则数目的多也是一个重要因素,通常用if….then的型式来表示。

在这次课程设计中,我们把7*7=49条模糊规则全部写出,有:1.If E is NB and EC is NB then u is PB2.If E is NB and EC ix NM then u isPB3.If E is NB and EC is NS then u is PM49.If E is PB andEC is PB then u is NB…………要是列表则有如下模糊控制规则表:NB在模糊集合论域的选择上,这里取E的论域为对称的[-6 6],EC的论域也为对称的[-6 6], 输出u 的论域为对的[-6 6]。

在输入端或者输出端, 论域与实际控制量的匹配都以通过添加增益环节来进行调节。

只要正确地调节增益的大小, 便可以达到良好的匹配。

在隶属曲线的选择上, 3个模糊控制量都使用Matlab模糊工具箱中的默认三角型曲线, 7个三角形在论域上平均分配,解决模糊的方法使用重心法。

设置规则时的界面如下图(a)、(b) 、(c) 、(d) 、(e) 、(f)。

图(a)控制器输入E 的隶属度函数图像图(b) 控制器输入EC 的隶属度函数图像图(c)控制器输出变量u的隶属度函数图像如此,一个二维的模糊控制器就建立好了,截面图如下图所示:图(d) 两输入一输出系统的图形界面图(e)隶属函数编辑器界面图(f)模糊规则编辑器界面在View菜单下执行View—Rules,激活模糊规则浏览器,观察规则推理是否正确。

模糊规则浏览器如图12所示。

设有两个输入变量、一个输出变量,输入的论域均为[-6 6],输出变量的论域为[-6 6],每个变量都有七个语言值,即在模糊集合论域上有七个三角形隶属函数,那么最多有49条规则。

调整输入值的方法有两种,一种是用鼠标直接拖拽红线到指定的位置,另一种是在input的输入框中输入数字。

如图12所示,输入[0 1] ,可以发现推理出来的结果为-1。

图6 模糊规则浏览器图形界面三、建模仿真用Simulink来搭建的仿真框图如图4-1所示。

通过模糊控制器模块,可以和包含模糊控制器的fis文件联系起来,还可以随时改变输入输出论域,隶属度函数以及模糊规则,方便仿真和调试。

图4-1仿真框图五、仿真结果及分析仿真结果如下图5.1和图5.2图5.1图5.2结果分析:由于所搭环境与真实的有所差别,得到的仿真结果虽与理想波形不符但总体收敛于0古系统较为稳定。

六、实验感受1、由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。

本实验中,在做了线性化和加进控制调整后,系统达到了良好的稳定状态。

当然,这只是一个理想模型,在实际应用中情况会更加复杂,稳定性也更难获得。

不过,通过实验,我们至少掌握了简单控制的基本方法,并得到了预期的实验效果。

2、通过本实验,掌握了倒立摆仿真的整个过程,熟悉了MATLAB的仿真软件Simulink的使用,也对系统控制有了较好的理解。

3、此外,通过仿真,再次认识到了自动控制在改善系统性能方面的重要性,并激发了良好的关于系统控制方面的学习兴趣,在此基础上,相信对以后的进一步研究将会有较大帮助。

相关文档
最新文档