膜片弹簧力学特性CAE分析
膜片弹簧离合器的设计(机械CAD图纸)

毕业设计说明书中文摘要毕业设计说明书外文摘要目录绪论 (1)1.1概述 (1)1.2设计任务书 (1)1.3功用 (2)1.4离合器的工作原理 (3)1.5膜片弹簧离合器的结构及其优点 (4)1.5.1膜片弹簧离合器的结构 (4)1.5.2膜片弹簧离合器的优点 (5)1.6方案选择 (6)2 主要零部件的结构设计要求 (6)2.1摩擦片的设计要求 (6)2.2膜片弹簧的设计 (7)2.3压盘的设计 (7)2.4从动盘的设计 (7)2.5离合器盖的设计 (7)3 设计计算说明书 (8)3.1离合器设计技术参数 (8)3.2离合器基本性能关系式 (8)3.3后备系数的选择 (9)3.4摩擦片外径D、内径D和厚度B (9)3.5小结 (11)4主动部分设计 (11)4.1压盘设计 (11)4.1.1 压盘传力方式的选择 (11)4.1.2压盘的几何尺寸的确定 (11)4.2离合器盖的设计 (12)4.3传动片设计 (13)4.4小结 (14)5从动部分设计 (14)5.1摩擦片设计 (14)5.2从动盘毂的设计 (15)5.3从动片设计 (17)5.4操纵机构 (17)5.4.1离合器踏板行程计算 (18)5.4.2踏板力的计算 (19)5.4.3从动轴的计算 (20)5.4.4分离轴承的寿命计算 (20)5.5小结 (21)6 扭转减振器设计 (21)6.1.扭转减振器的功能 (21)6.2扭转减振器的结构类型的选择 (21)6.3扭转减振器参数的确定 (22)6.4减振弹簧的尺寸确定 (25)7膜片弹簧设计 (26)7.1膜片弹簧的概念 (26)7.2膜片弹簧基本参数的选择 (27)7.3膜片弹簧的弹性特性 (28)7.4膜片弹簧的强度计算 (31)7.5小结 (33)8标准化审核报告 (33)8.1产品图样的审核 (33)8.2产品技术文件的审查 (33)8.3标准间的使用情况 (34)8.4审查结论 (34)9 使用说明书 (34)10谢辞 (35)11参考文献 (36)膜片弹簧离合器的设计绪论1.1 概述对于内燃机汽车来说,离合器在机械传动系中作为一个独立的总成而存在,它是汽车传动系中直接与发动机相连接所总成。
钢板弹簧优化设计及CAE研究

CAE-弹簧教学课件

图5 圆柱螺旋拉伸弹簧特性曲线
5 圆柱螺旋弹簧的设计计算
5.1 强度计算 弹簧的强度计算是为了确定弹簧丝的直径。设一圆柱压缩弹簧受轴向载荷F作用,
为求弹簧丝截面上的内力,可假想将弹簧用垂直于簧丝轴线的截面切开,如忽略螺 旋升角的影响,则该截面可近似看成在弹簧的轴截面内,如图6(a)所示。根据上 半段弹簧的平衡条件,可得作用在弹簧丝截面上的内力为剪力F和扭矩T,显然T = F·(D2/2) 。
表6 弹簧丝直径d的标准系列
对拉伸弹簧,当受轴向载荷作用时,弹簧丝截面上的受载情况与压缩弹簧一样,故 式(3)也适用于拉伸弹簧,考虑到钩环处弯曲应力对弹簧丝强度的影响,计算时应将 许用应力[τ]降低20% 。
5.2 刚度计算 弹簧的刚度计算是求出满足变形量要求的弹簧圈数。 圆柱螺旋压缩(拉伸)弹簧受载后的轴向变形量λ, 可根据材料力学的有关公式求
KQ
4C 1 4C 4
0.615 C
(3)
在求弹簧丝直径d时, 式(3)中的F应为最大工作载荷F2,故得
d 8KQF2C
(4)
[ ]
式中:[τ]——许用剪应力, 可根据工作特点由表2和表3查取。
应用上式计算时,如材料为优质碳素弹簧钢,则其许用剪应力[τ]与弹簧丝直 径d有关,故需采用试算法。求得的弹簧丝直径d应圆整为标准值(见表6)。
弹簧的分类方法很多,按照所承受的载荷不同,弹簧可分为拉伸弹簧、压缩弹簧、 扭转弹簧和弯曲弹簧等四种;按照形状的不同,弹簧可分为螺旋弹簧、碟形弹簧、环 形弹簧、盘形弹簧和板弹簧等;按照使用材料的不同, 弹簧可分为金属弹簧和非金属 弹簧。各种弹簧的特点、应用见表1。
在一般机械中,最常用的是圆柱螺旋弹簧。故本章主要讲述这类弹簧的结构形式、 设计理论和计算方法。
汽车膜片弹簧分析

位移云图
5.结果提取
节点504590 节点480181 位移d与内缘点Ty位移的关系 (内缘点位移为3mm介于INCR5和INCR6之间)
5.结果提取
变形关系曲线图
位移d(0≤d≤5)与零件3 的任意一内缘点的变形的曲线图
内缘点Ty位移
5.结果提取
总力大小
midas NFX
汽车膜片弹簧分析
汇报内容
1. 简介
2.技术难点
3.模型的建立
4.边界条件和工况
5.结果提取
1.意义及题目简述
膜片弹簧简介
通过合理地选择构参数, 膜片弹簧可以在简化汽车 离合器构件的同时提供适 宜的非线性弹性特性。 利用有限元的方法研究膜 片弹簧的弹性特性。 考虑膜片弹簧与压盘和支 承环之间的接触、摩擦等 实际因素,建立膜片弹簧大 端受载的有限元模型,分析 得到膜片弹簧的载荷-位移 特性和 载荷-应变特性。
2.题目简述及意义
某产品的有限元分析
模型说明: 材料: 不锈钢304 边界: 零件1 和 2 固定 载荷: 零件 4(共 12 个) 施加位移 d,方向垂直于 外表面,并使零件 4 压 紧零件3 。 接触:各零部件之间均为 接触关系 模型文件:analysis.stp
结果分析:
3.模型的简化和分网
网格划分的探索
延伸:不适用于曲面 填充:上下表面有相等数量的网格 扫描:不适用于多个变截面 投影:投影面只能是一个 偏移:适用于曲面
延伸
填充
扫描
零件3特点:等厚度 平面与曲面结合 投影
偏移
3.模型的建立
网格模型
零件3
零件1,零件2
整体模型 零件4
3.模型的建立
膜片弹簧力学特性CAE分析

模型导入 将hypermesh中生成的网格模型导入 到abaqus。设置膜片弹簧三角形单元类型 为STRI65,四边形单元类型为S8R,均为 二次单元。材料为60Si2Mn,弹性模量 E=206000MPa,泊松比为0.29。支承环与 压盘单元类型为C3D4, 材料为碳素钢,弹 性模量210000MPa,泊松比为0.27。
三、分析结果
将数据导入matlab中处理,得到膜片弹簧压紧过程的弹性特性 曲线,其中x轴为支承环的位移,y轴为支承环与膜片弹簧之间沿 膜片弹簧轴向方向的接触力大小。
通过A-L法理论计算得到的弹性特性曲线:
两种方法得到的弹性特性曲线的对比: (如图,峰值大的是CAE分析曲线,峰值小的是理论计算曲线 )
接触条件 建立支承环与膜片弹簧之间的面接触, 建立膜片弹簧与压盘之间的面接触,两个接 触为库伦摩擦,摩擦系数为0.18。
施加位移载荷 位移载荷分两个分析步施加,两个分析 步均设置为非线性。第一个分析步使RP-2在 膜片弹簧轴向方向下压0.02mm(将膜片弹 簧压平),这样是为了先让两对接触面的接 触关系平稳的建立起来,这个分析步中时间 增量步设为1。第二个分析步使RP-2在膜片 弹簧轴向方向下压6mm,分20个时间增量步 进行加载,即每个增量步中支承环下压 0.3mm。
边界条件 约束压盘全部节点的所有自由度。在A 处建立局部坐标系,以在膜片弹簧平面内并 垂直于A边方向为Y方向,以轴向方向为X方 向。同理在B处也建立局部坐标系,以在膜 片弹簧平面内并垂直于B边方向为Y方向,以 轴向方向为X方向。在局部坐标系中约束膜片 弹簧A、B处所有节点的U2(Y方向)、UR1 (X方向转动)、UR3(Z方向转动)三个自 由度。将参考点RP-2与支承环所有节点刚性 耦合,约束RP-2除膜片弹簧轴向方向外的其 余五个自由度。
汽车离合器膜片弹簧的优化设计分析讲解

汽车离合器膜片弹簧的优化设计分析摘要: 膜片弹簧是汽车离合器的重要部件,是由弹簧钢板冲压而成,形状呈碟形。
膜片弹簧结构紧凑且具有非线性特性,高速性能好,工作稳定,踏板操作轻便,因此得到广泛使用。
本文通过对膜片弹簧建立数学模型,特别通过引入加权系数同时对两个目标函数进行比例调节,并用MATLAB编程来优化设计参数。
通过举例,结果证明在压紧力稳定性,分离力及结构尺寸上优化结果较为理想。
关键词: 膜片弹簧;优化设计;MATLABAbstract: The diaphragm spring is one of the important parts of the clutch, stamping by spring steel, in shape of a dish. Diaphragm spring has a non-linear characteristic compact, and its high-speed performance is good, stable, lightweight pedal operation, and is so widely used. Based on the mathematical model of the diaphragm spring, in particular through the introduction of weighting coefficients while the two objective function proportional be controled, and use matlab programming to optimize the design parameters. By means of example, the results of the stability of clamping force, separation and structural size optimization are better. Keywords: diaphragm spring;optimitional design;MATLAB1.引言1.1膜片弹簧的结构膜片弹簧实质上是一种用薄弹簧钢板制成的带有锥度的碟形弹簧。
膜片弹簧的力学性能分析.

膜片弹簧的力学性能分析
膜片弹簧是膜片弹簧离合器的关键零件,其设计质量的优劣不仅直接影响离合器的使用性能和使用寿命,而且还影响离合器与整车的匹配。
因此在设计膜片弹簧离合器时,精确计算膜片弹簧的负载特性是非常重要的。
目前,膜片弹簧的设计仍普遍采用美国人J.o.Almen和Laszlo所提出的近似公式(简称A-L
公式),但工程人员在设计制造膜片弹簧的实践中发现,根据A-L公式设计的膜片弹簧,在膜片弹簧试制后的试验中,其大端载荷、升程等均不能完全符合设计要求,往往需要修改膜片弹簧尺寸参数,再进行试验。
这样,既延长了试制周期,又增加了成本。
因此,有必要寻找一种更有效的计算方法。
本文以膜片弹簧为研究对象,首先介绍了传统的A-L计算方法和膜片弹簧的基本特性。
然后,采用有限元的方法对膜片弹簧进行力学性能的仿真分析研究。
利用ANSYS参数化设计语言APDL,建立膜片弹簧自由状态下的三维参数化模型,大大简化了复杂繁琐的建模过程;通过适当的方法,对三维模型进行映射网格划分,确定相应的边界条件,建立起膜片弹簧的有限元模型。
模拟加载过程,计算得到膜片弹簧负载特性曲线,通过实验结果的比较,验证了有限元模型的正确性。
在膜片弹簧有限元分析的基础上,建立膜片弹簧负载特性的数学回归模型,对A-L公式系数进行了修正,提高了其计算的精度。
通过对应力分布的分析和膜片弹簧失效的特点,确定了其疲劳危险区域,利用材料的σ-N曲线,采用ANSYS疲劳分析模块估算了膜片弹簧的疲劳寿命。
最后,建立了膜片弹簧的优化模型,对其进行结构优化,取得了较好的结果。
膜片弹簧离合器的设计毕业设计(含全套CAD图纸)

学科门类 : 单位代码 :毕业设计说明书(论文)膜片弹簧离合器的设计学生姓名所学专业班 级学 号指导教师XXXXXXXXX 系二 ○ **年 X X 月目录第1章 绪 论 (3)1.1引言 (4)1.2离合器的发展 (4)1.3膜片弹簧离合器的结构及其优点 (5)1.3.1膜片弹簧离合器的结构 (5)1.3.2膜片弹簧离合器的工作原理 (6)1.3.3膜片弹簧离合器的优点 (7)1.4设计内容 (7)1.5 Pro/E软件的特点 (7)1.6方案选择 (8)第2章 基本尺寸参数选择 (9)2.1离合器基本性能关系式 (9)2.2后备系数的选择 (9)2.3摩擦片外径的确定 (9)2.4摩擦片的Pro/E绘图过程 (11)2.5本章小结 (13)第3章 主动部分设计 (14)3.1压盘设计 (14)3.1.1压盘参数的选择和校核 (14)3.1.2压盘的Pro/E绘图过程 (14)3.2离合器盖设计 (16)3.3传动片设计 (16)3.4本章小结 (17)第4章 从动盘总成设计 (18)4.1摩擦片设计 (18)4.2从动盘毂设计 (18)4.3从动片设计 (20)4.4扭转减振器设计 (20)4.4.1扭转减振器的功能 (20)4.4.2 扭转减振器的结构类型的选择 (20)4.4.3扭转减振器的参数确定 (22)4.4.4减振弹簧的尺寸确定 (24)4.4.5扭转减振器的Pro/E绘图过程 (25)第5章 膜片弹簧设计 (29)5.1膜片弹簧的概念 (29)5.2膜片弹簧的弹性特性 (29)5.3膜片弹簧的强度计算 (31)5.4膜片弹簧基本参数的选择 (32)5.5膜片弹簧的Pro/E绘图过程 (34)5.6本章小结 (36)结 论 (37)参考文献 (38)第 1 章 绪 论1.1 引言以内燃机在作为动力的机械传动汽车中, 离合器是作为一个独立的总成而存在的。
离合器通常装在发动机与变速器之间,其主动部分与发动机飞轮相连,从动部分与变 速器相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
64.75mm
H
3.6mm
2. 基于轴对称零件的特点取膜片弹簧的1/18部分作为研究对象,提取 中性面,运用Hypermesh划分网格,网格类型是由三角形与四边 形组成的混合壳单元,共337个节点,299个单元。压盘用一圆环 来模拟,以简化分析。将支承环与压盘划分为四面体实体单元。
二、膜片弹簧压紧过程的CAE分析
数据对比
CAE分析 分析 曲线 峰值 2988N 分析 理论分析曲 CAE分析 线 相对理论分 析的误差 2737N 9.2% %
谷值
2026N
2038N
0.6% %
新摩擦片工 作点( 作点(大端 位移 3.6mm) )
2348N
2193N
7.1% %
产生误差的原因分析
A-L公式建立在碟形弹簧的基础上, 忽 略了膜片弹簧上分离指、窗孔和倒角等 结构的影响。实际上这些结构对膜片弹 簧的力学特性均有影响。 A-L公式假设膜片弹簧受载时其子午截 面本身没有变形, 但实际上该截面会发 生弯曲变形, 并不能完全保持矩形。有 限元分析过程则是通过计算确定其子午 截面形状。
三、分析结果
将数据导入matlab中处理,得到膜片弹簧压紧过程的弹性特性 曲线,其中x轴为支承环的位移,y轴为支承环与膜片弹簧之间沿 膜片弹簧轴向方向的接触力大小。
通过A-L法理论计算得到的弹性特性曲线:
两种方法得到的弹性特性曲线的对比: (如图,峰值大的是CAE分析簧与支承 环和压盘之间的滑动摩擦, 但实际上这 个影响不能完全忽略, 因为它会带来 1%-4% 的误差。
边界条件 约束压盘全部节点的所有自由度。在A 处建立局部坐标系,以在膜片弹簧平面内并 垂直于A边方向为Y方向,以轴向方向为X方 向。同理在B处也建立局部坐标系,以在膜 片弹簧平面内并垂直于B边方向为Y方向,以 轴向方向为X方向。在局部坐标系中约束膜片 弹簧A、B处所有节点的U2(Y方向)、UR1 (X方向转动)、UR3(Z方向转动)三个自 由度。将参考点RP-2与支承环所有节点刚性 耦合,约束RP-2除膜片弹簧轴向方向外的其 余五个自由度。
接触条件 建立支承环与膜片弹簧之间的面接触, 建立膜片弹簧与压盘之间的面接触,两个接 触为库伦摩擦,摩擦系数为0.18。
施加位移载荷 位移载荷分两个分析步施加,两个分析 步均设置为非线性。第一个分析步使RP-2在 膜片弹簧轴向方向下压0.02mm(将膜片弹 簧压平),这样是为了先让两对接触面的接 触关系平稳的建立起来,这个分析步中时间 增量步设为1。第二个分析步使RP-2在膜片 弹簧轴向方向下压6mm,分20个时间增量步 进行加载,即每个增量步中支承环下压 0.3mm。
基于有限元方法的膜片弹簧 力学特性分析
一、膜片弹簧模型的建立
1.应用CATIA建立膜片弹簧以及支承环的三维模型
支承环
膜片弹簧
模型参数
名称 膜片厚度 压盘加载点半径 支承环加载点半径 自由状态下碟簧部分大 端半径 自由状态下碟簧部分小 端半径 自由状态下碟簧部分内 截锥高度 符号 h R1 r1 R 数值 2mm 84.25mm 65.3mm 86.25mm
模型导入 将hypermesh中生成的网格模型导入 到abaqus。设置膜片弹簧三角形单元类型 为STRI65,四边形单元类型为S8R,均为 二次单元。材料为60Si2Mn,弹性模量 E=206000MPa,泊松比为0.29。支承环与 压盘单元类型为C3D4, 材料为碳素钢,弹 性模量210000MPa,泊松比为0.27。
A-L公式假设膜片弹簧的转角与大端位 移之间是线性关系, 这会产生一定误差。 有限元分析没有事先假设转角与大端位 移之间的关系, 而是通过计算确定它们 之间的关系。 A-L公式认为膜片弹簧与支承面的接触 点位置在受载时保持不变, 实际上接触 点位置会不断改变, 使作用力臂和变形 量也受到影响, 进而影响载荷-位移曲 线, 尤其是峰值和谷值的位置。