经典多属性决策算法对比分析
多属性决策问题分析

第十章 多属性决策问题(Multi-attribute Decision-making Problem)即: 有限方案多目标决策问题主要参考文献: 68, 112, 152§10.1概述MA MCMO一、决策矩阵(属性矩阵、属性值表)方案集 X = {x x x m 12,,, }方案 x i 的属性向量 Y i = {y i 1,…,y in } 当目标函数为f j 时, y ij = f j (x i ) 各方的属性值可列成表(或称为决策矩阵):y 1… y j… y nx 1y 11… y j 1… y n 1… …… … … …x i y i 1… y ij … y in… …… …… …x my m 1 …y mj …y mn例: 学校扩建例:表10.1 研究生院试评估的部分原始数据二、数据预处理数据的预处理(又称规范化)主要有如下三种作用。
首先,属性值有多种类型。
有些指标的属性值越大越好,如科研成果数、科研经费等是效益型;有些指标的值越小越好,称作成本型。
另有一些指标的属性值既非效益型又非成本型。
例如研究生院的生师比,一个指导教师指导4至6名研究生既可保证教师满工作量,也能使导师有充分的科研时间和对研究生的指导时间,生师比值过高,学生的培养质量难以保证;比值过低;教师的工作量不饱满。
这几类属性放在同一表中不便于直接从数值大小来判断方案的优劣,因此需要对属性表中的数据进行预处理,使表中任一属性下性能越优的值在变换后的属性表中的值越大。
其次是非量纲化。
多目标评估的困难之一是指标间不可公度,即在属性值表中的每一列数具有不同的单位(量纲)。
即使对同一属性,采用不同的计量单位,表中的数值也就不同。
在用各种多目标评估方法进行评价时,需要排除量纲的选用对评估结果的影响,这就是非量纲化,亦即设法消去(而不是简单删去)量纲,仅用数值的大小来反映属性值的优劣。
第三是归一化。
原属性值表中不同指标的属性值的数值大小差别很大,如总经费即使以万元为单位,其数量级往往在千(103)、万(104)间,而生均在学期间发表的论文、专著的数量、生均获奖成果的数量级在个位(100)或小数(101 )之间,为了直观,更为了便于采用各种多目标评估方法进行比较,需要把属性值表中的数值归一化,即把表中数均变换到[0,1]区间上。
(决策管理)经典多属性决策算法对比分析

算法分析1.TOPSIS(逼近理想解法):(TOPSIS方法属于经典的多属性决策方法之一,由H.wang.C.L和Yoon,K.S.1981提出).基本原理:根据评价指标的标准化值与指标的权重共同构成规范化矩阵来确定评价指标的正、负理想解。
然后,建立评价指标综合向量与正、负理想解之间距离的二维数据空间。
在此基础上对评价方案与最优理想参照点之间的距离进行模糊评判。
最后,依据该距离的大小对评价方案进行优劣排序.若某方案为最优方案则此方案最接近最优解,同时又远离最劣解.TOPSIS法最大的优点是:无严格限制数据分布及样本含量指标的多少,小样本资料、多评价单元、多指标的大系统资料都同样适用,同时也不受参考序列选择的干扰。
既可用于多单位之间进行对比,也可用于不同年度之间对比分析,该法运用灵活,计算简便同时结果量化也客观[1]。
缺点:(1)规范决策矩阵的求解比较复杂,故不易求出理想解和负理想解;(2)评价缺少稳定性,当评判的环境及自身条件发生变化时,指标值也相应会发生变化,就有可能引起理想解和负理想解向量的改变,使排出的顺序随之变化,评判结果就不具有唯一性;(3)属性权重是事先确定的,其主观性较强。
[2]基本步骤:○1建立多属性决策问题的决策矩阵○2决策矩阵的规范化处理常见的标准化处理方法有:模糊数学法、标准差标准化法、极差标准化法、极大值标准化法和百分比标准法等.○3构建加权规范化矩阵确定权重的方法有主观赋权法和客观赋权法。
主观赋权法包括层次分析法、Delphi法等。
主观权重法土要根据专家判断打分,主观性太强,其结果对多因素非线性定量关系的反映有一定影响:客观权重法人为因素干扰较小,可以较为客观地确定权重,但该方法也受样本数据数量和质量的制约。
权重确定的方法:主成分分析法、变异系数法。
○4确定正理想点和负理想点所谓正理想点是设想得到的最好的解,它的各个指标值都达到各候选方案中最好的值。
而负理想点是另一设想的最坏的解,它的各个指标都达到各候选方案中最坏的值。
多属性决策的方法

多属性决策的方法
多属性决策的方法有很多,以下是几种常见的方法:
1. 加权评分法(Weighted Scoring Method):根据不同属性的重要性,为每个属性赋予一个权重值,然后对每个方案进行评分计算,最后按照评分高低进行决策。
2. 层次分析法(Analytic Hierarchy Process,AHP):通过构建层次结构,将复杂的决策问题分解成多个层次,通过比较不同层次的属性之间的相对重要性,最终确定最优决策。
3. 电子表格法(Spreadsheet Method):将不同方案的各属性值记录在电子表格中,根据设定的权重进行计算得出综合评分,通过比较评分高低进行决策。
4. TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution):通过计算方案与理想解和负理想解之间的相似性,确定每个方案的综合评分,最终选择最接近理想解且最远离负理想解的方案。
5. 折衷编程法(Compromise Programming):根据决策者的偏好和目标,建立数学模型,通过最大化总效益和最小化总成本的折衷,找到最优的决策方案。
以上方法各有特点,适用于不同的决策问题和决策者的需求。
在实际应用中,可
以根据具体情况选择合适的方法进行多属性决策。
多属性决策方法研究

多属性决策方法研究多属性决策方法是一种有效的决策分析方法,常被用于解决复杂问题和多方利益冲突的决策过程。
它可以帮助决策者综合考虑多个因素和属性,并量化它们的重要性以进行决策。
多属性决策方法有很多种,其中比较常见的包括层次分析法、TOPSIS法、模糊综合评价法等。
下面将分别介绍这些方法,并比较它们的优缺点。
层次分析法(Analytic Hierarchy Process,简称AHP)是一种基于判断矩阵的多属性决策方法。
AHP将问题层次化,通过构建判断矩阵来比较不同因素和属性的重要性。
它具有结构清晰、易于理解和计算的优点,但其结果可能会受到主观因素的影响。
TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)法是一种基于距离测度的多属性决策方法。
TOPSIS法将问题转化为求解到理想解的距离,选取距离最小的方案作为最优选择。
它考虑了方案与理想解之间的距离,能够较好地反映方案之间的差异,但对数据的标准化要求较高。
模糊综合评价法是一种基于模糊数学的多属性决策方法。
它通过模糊隶属度函数来描述各个方案与评价指标之间的关系,从而进行综合评价。
由于模糊综合评价法考虑了不确定性因素,因此可以应对实际问题中存在的模糊性和不确定性,但需要确定模糊隶属度函数和权重,对决策者的主观判断要求较高。
在比较这些多属性决策方法的优缺点时,可以根据决策问题的具体特点和需求来选择合适的方法。
如果问题结构清晰且属性间关系可量化,可以选择AHP方法;如果关注方案之间的差异程度,可以选择TOPSIS方法;如果问题存在不确定性和模糊性,可以选择模糊综合评价法。
总之,多属性决策方法是一种在复杂问题和多方利益冲突的决策过程中常用的决策分析方法。
通过综合考虑多个因素和属性,量化它们的重要性,并进行决策选择,可以帮助决策者做出科学、合理的决策。
不同的多属性决策方法各有优缺点,具体选择时需结合问题需求和实际情况进行权衡。
多属性决策问题3

考虑高校的财务评价的评估问题.制定10项评估指标(属性)
其中
u1—预算收入完成情况;
u
2—预算支出完成情况;u
—财政
3
及上级补助收入情况;
u
—经费自给情况;
4
u
—人员经费支出情
5
况;
u
—公用支出情况;
6
u
—生均支出情况;
7
u
—固定资产利用
8
情况;u9— 流动资产占用情况;u10—偿还能力.依据上述各项指
因素 目的地 杭州
北戴河
桂林
景色 费用 居住 饮食 旅途
例2 信息系统投资项目问题
某地区要进行信息管理系统的项目投资.共有4种方案可供选
择,其中 x1 —由公司1投资建设,采用8Kb的CP卡; x2—由公司2 投资建设,采用2KB的CPU卡; x3—由公司3投资建设,采用磁 卡; x4 —公司不投资,由当地政府投资,公司只承包系统集成。
多属性决策问题与决策方法
一. 多属性决策问题的基础知识
上面的矩阵有时候被称为决策矩阵
多属性决策问题与决策方法
一. 多属性决策问题的基础知识
对多属性决策问题,由于多个属性之间的相互矛盾与制衡,一 般不存在通常意义下的最优解。取而代之的是有效解、满意解、 优先解、理想解、负理想解和折衷解,它们的定义如下: 1.有效解:一个可行解被称为有效解,如果没有任何其它可行 解能够实现在所有的属性水平上提供的结果都不比它差,且在至 少一个属性水平上提供的结果比它更好。
A (c1,c2,...,cj ,..., cn )
上式中
cj
max i
U
j
(
xij
),
运输方式选择的多属性决策模型及其算法研究

运输方式选择的多属性决策模型及其算法研究一、引言在物流系统中,运输方式选择是非常重要的一步,它关系到运输成本、交货期、货物的完整性等问题。
由于不同的运输方式有不同的特点和优劣势,因此在选择运输方式时需要考虑多种因素。
多属性决策模型是解决此问题的重要方法,常见的多属性决策模型有层次分析法、灰色关联度法、熵权法等方法,本文将会对其进行详细介绍和算法研究。
二、多属性决策模型多属性决策模型是指面对多种可选方案及其多个属性,综合考虑多种因素,确定最优方案的一种方法。
在运输方式选择中,需要考虑的因素包括:运输距离、运输时间、运输成本、可靠性等等。
多属性决策模型的目标就是将这些因素综合起来,选择出最具优势的运输方式。
1.层次分析法层次分析法是一种将复杂问题层次化、分解成逐层递进的子问题,并通过逐层比较来确定各子问题之间重要性和询问结果的方法。
其基本思想是将目标或决策问题分解为若干个层次,构建出层次结构模型,并通过对层次结构模型进行一系列的层次分析,得到各个层次的分析结果,最终确定方案。
对于运输方式的选择,分别进行层次分析,这些层次分析的主要要素有目标层次、准则层次、方案层次三个层次。
(1)目标层次:该层次反应选定运输方式的目标或终极利益满足度,或运输方案的综合效益水平。
(2)准则层次:该层次为目标层次的补充,即准备解决方案层次的决策要素,如运输时间、运输费用、运输安全性和可靠性等。
(3)方案层次:该层次包括实施决策的方案,常常用两个处理单元来评价方案,以评定方案的一致性和相对重要性。
2.因素分析法因素分析法又称主成分分析方法,其基本思想是通过降维处理的方式,将多个评价指标转化为少数不相关的评价指标,从而便于对各方案进行评价比较。
对于运输方式的选择问题,只要确定各评价指标及其权重,就可以用因子分析法计算权重与因子之间的关系。
在运输方式选择中,一般采用因子分析法来计算各指标之间的相关性。
这样做的好处是可以分析出多个维度的因素,从而作为选择运输方式的指导意见。
多属性决策算法对比分析

算法分析1.TOPSIS(逼近理想解法):(TOPSIS方法属于经典的多属性决策方法之一,由H.wang.C.L和Yoon,K.S.1981提出).基本原理:根据评价指标的标准化值与指标的权重共同构成规范化矩阵来确定评价指标的正、负理想解。
然后,建立评价指标综合向量与正、负理想解之间距离的二维数据空间。
在此基础上对评价方案与最优理想参照点之间的距离进行模糊评判。
最后,依据该距离的大小对评价方案进行优劣排序.若某方案为最优方案则此方案最接近最优解,同时又远离最劣解.TOPSIS法最大的优点是:无严格限制数据分布及样本含量指标的多少,小样本资料、多评价单元、多指标的大系统资料都同样适用,同时也不受参考序列选择的干扰。
既可用于多单位之间进行对比,也可用于不同年度之间对比分析,该法运用灵活,计算简便同时结果量化也客观[1]。
缺点:(1)规范决策矩阵的求解比较复杂,故不易求出理想解和负理想解;(2)评价缺少稳定性,当评判的环境及自身条件发生变化时,指标值也相应会发生变化,就有可能引起理想解和负理想解向量的改变,使排出的顺序随之变化,评判结果就不具有唯一性;(3)属性权重是事先确定的,其主观性较强。
[2]基本步骤:○1建立多属性决策问题的决策矩阵○2决策矩阵的规范化处理常见的标准化处理方法有:模糊数学法、标准差标准化法、极差标准化法、极大值标准化法和百分比标准法等.○3构建加权规范化矩阵确定权重的方法有主观赋权法和客观赋权法。
主观赋权法包括层次分析法、Delphi法等。
主观权重法土要根据专家判断打分,主观性太强,其结果对多因素非线性定量关系的反映有一定影响:客观权重法人为因素干扰较小,可以较为客观地确定权重,但该方法也受样本数据数量和质量的制约。
权重确定的方法:主成分分析法、变异系数法。
○4确定正理想点和负理想点所谓正理想点是设想得到的最好的解,它的各个指标值都达到各候选方案中最好的值。
而负理想点是另一设想的最坏的解,它的各个指标都达到各候选方案中最坏的值。
多目标决策问题的多属性权重分配方法研究

多目标决策问题的多属性权重分配方法研究多属性权重分配是指根据不同属性的重要性,将权重适当地分配给多个目标,以便进行决策。
在多目标决策问题中,决策者需要考虑各个目标之间的权衡和权重。
多属性权重分配方法主要有层次分析法(Analytic Hierarchy Process,AHP)、主成分分析法(Principal Component Analysis,PCA)和熵权法(Entropy Weight Method,EWM)等。
首先,层次分析法是一种重要且经典的多属性权重分配方法。
该方法通过对比两两属性的相对重要性,按照一定的准则对属性进行排序,得到各个属性的权重。
层次分析法将复杂的决策问题层次化,减少了决策者的认知负担。
它将目标、准则和方案逐层分解,得出各层次之间的判断矩阵,并通过特征值法计算出最终权重。
其次,主成分分析法是一种通过线性变换将原始属性转化为新的属性,以最大限度地保留原始属性信息的方法。
主成分分析法的思想是通过将各个属性进行综合,得到一组新的属性,这些新属性能够更好地反映原始属性的特征。
在决策问题中,主成分分析法可以通过计算各个主成分的贡献率,得到每个属性的权重。
最后,熵权法是一种基于信息熵的多属性权重分配方法。
熵权法将信息熵应用于多属性决策问题中,通过计算各个属性的熵值和信息增益,得到各个属性的权重。
该方法充分考虑了属性之间的相互关系和信息量,对决策结果具有较好的解释性。
在实际应用中,选择适合的多属性权重分配方法需要考虑多个因素。
首先,需要根据具体的决策问题和决策者的需求,选择合适的方法。
其次,需要收集相关的决策数据,包括各个属性的权重和值。
然后,应根据所选方法进行计算和分析,得出最终权重。
最后,根据得到的最终权重对各个方案进行评估和排序,根据最终的决策目标进行选择。
综上所述,多目标决策问题的多属性权重分配方法包括层次分析法、主成分分析法和熵权法等。
这些方法在实践中具有一定的应用价值,可以帮助决策者在面对复杂的多目标决策问题时做出合理的决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法分析
1.TOPSIS(逼近理想解法):S.1981提出).
基本原理:根据评价指标的标准化值与指标的权重共同构成规范化矩阵来确定评价指标的正、负理想解。
然后,建立评价指标综合向量与正、负理想解之间距离的二维数据空间。
在此基础上对评价方案与最优理想参照点之间的距离进行模糊评判。
最后,依据该距离的大小对评价方案进行优劣排序. 若某方案为最优方案则此方案最接近最优解,同时又远离最劣解.
TOPSIS法最大的优点是:无严格限制数据分布及样本含量指标的多少,小样本资料、多评价单元、多指标的大系统资料都同样适用,同时也不受参考序列选择的干扰。
既可用于多单位之间进行对比,也可用于不同年度之间对比分析,该法运用灵活,计算简便同时结果量化也客观[1]。
缺点:(1)规范决策矩阵的求解比较复杂,故不易求出理想解和负理想解;(2)评价缺少稳定性,当评判的环境及自身条件发生变化时,指标值也相应会发生变化,就有可能引起理想解和负理想解向量的改变,使排出的顺序随之变化,评判结果就不具有唯一性;(3)属性权重是事先确定的,其主观性较强。
[2]
基本步骤:
○1建立多属性决策问题的决策矩阵
○2决策矩阵的规范化处理
常见的标准化处理方法有:模糊数学法、标准差标准化法、极差标准化法、极大值标准化法和百分比标准法等.
○3构建加权规范化矩阵
确定权重的方法有主观赋权法和客观赋权法。
主观赋权法包括层次分析法、Delphi法等。
主观权重法土要根据专家判断打分,主观性太强,其结果对多因素非线性定量关系的反映有一定影响:客观权重法人为因素干扰较小,可以较为客观地确定权重,但该方法也受样本数据数量和质量的制约。
权重确定的方法:主成分分析法、变异系数法。
○4确定正理想点和负理想点
所谓正理想点是设想得到的最好的解,它的各个指标值都达到各候选方案中最好的值。
而负理想点是另一设想的最坏的解,它的各个指标都达到各候选方案中最坏的值。
○5计算各方案到正负理想点的距离
○6计算各方案与理想点的相对贴近度,相对贴近度的取值越大则表示该方案越优。
贴近度的计算公式为:[3]
TOPSIS方法对属性、数据没有严格要求,能充分运用原始数据,且过程简单,但该方法涉及到的理想解、负理想解是跟方案的原始数据相关的,一旦方案的原始数据或者是方案的数目发生变化,则理想解、负理想解也会发生变化,最终导致排序的不稳定[4]。
2.PROMETHEE(偏好顺序结构评估法): Brans、Vincke(1984)提出了PROMETHEE(Preference Ranking Organization Method for Enrichment Evaluations)的方法。
其中PROMETHEE比ELECTRE更具有优势: (1)PROMETHEE它能够更好的运用函数来解释和描述每项准则的特点; (2)相对于ELECTRE, PROMETHEE的结果更具有稳定性,并且在新加入供应商时,出现倒序的几率较小。
但是这两种重要的排序方法都不能对指标的权重进行计算。
PROMETHEE是基于方案的两两比较的一种多目标决策方法,它是建立在级别高于关系上的排序方法。
该方法不需要对指标进行无量纲化和规范处理,从而避免了处理过程中的信息偏差,但是对问题的结构化分析上不及AHP。
该方法为决策者提供一组可行方案的部分优先关系((PROMETHEEⅠ)和完全优先关系(PROMETHEEⅡ)[4]。
PROMETHEE没有具体给出如何确定权重的方法,需要决策者根据实际问题自己确定产生权重的方法。
这对于缺乏相关经验的决策者来说是一项比较困难的工作。
该方法的应用步骤:
○1确定每个指标的优先函数,优先函数的概念就是在某一指标下,对象
A i 优于另一个对象A
r
的程度。
这里分为效益性指标和成本型指标。
在实际的应用中,一般使用推荐的6种类型的一般性准则来构造优先函数,决策者可以根据自身的偏好结合实际要求为每个指标选择优先函数。
○2确定指标或者准则的相对重要性W
j
(权重)。
○3确定优先指数,多准则优先指数定义为:
○4确定每个对象的流出。
定义为:
○5确定每个对象的流入,定义为:
言,其值越小,此对象越好。
通过计算我们可以得到方案的流出量、流入量,根据流出量越大越优、流入量越小越优我们可以得到方案的排序,但此时得到只是方案的部分优先关系,运用PROMETHEEⅡ则可以得到方案的完全优先关系。
[4].
3.ELECTRE:是法国人ROY(1971)年首先提出的,该方法构建的是一种较弱的次序关系,叫级别高于关系。
A,A k,A l∈A,给定决策人的偏好次序和属性矩阵M=(x ij)m×n,当人们有理由相信A k≥A l,则称A k的级别高于A l[4]。
算法应用步骤:
○1用向量规范化的方法构造规范化矩阵:
○2构造加权规范化矩阵V=(v ij)m×n
○3确定属性的优势集和劣势集
○4计算优势矩阵
在计算优势矩阵时,首先需要定义一个优势指数C kl′,亦称和谐指数。
这里反映了决策者接受方案A k的满意度的测试。
确定了优势指数后,就可以确定优势指数矩阵了:
○5计算劣势矩阵
首先定义一个劣势指数d kl,亦称不和谐指数。
可与A l方案相比,选择A k的不满意度测试。
确定了劣势指数后,就可以确定了劣势指数矩阵了
○6确定优势判定矩阵
确定优势判定矩阵即为确定满意测度的大小,首先确定阈值C_。
C_的判定可以由分析人、决策人商定,也可由平均优势指标代之,
○7确定劣势判定矩阵为确定不满意测度的大小,确定阈值d_(和谐性检验,不和
谐测定是在某个可允许的最大的不和谐性水平之下)。
d_的判定:
○8综合优势判定矩阵
}优势矩阵和劣势矩阵都确定了之后,就可以确定综合优势判定矩阵E了,E={e
kl —根据E。
即可开始方案的剔除过程。
○9剔除方案
满足以下方案,则不被剔除。
注意:在应用上式时较困难,因此在具体应用时,可观察E,从E进行直观分析,剔除方案即为:若任何一列上只要有一个元素为1,则该对应方案剔除,因为这意味着该列方案为1的元素,被对应的行方案“压倒”。
ELECTRE法的优点是决策人易理解掌握,并且可将具体决策计算过程程序化。
但其存在对决策矩阵所提供的信息利用不充分、参数设定过于复杂、参数值不一定具有明显的经济意义、所得部分序内容较少等缺点[5]。
三种方法都不可以计算指标权重,所以如果想组合使用的话,可以利用FAHP计算权重,然后选择这三种方法中的一种来计算方案排序。
该方法没有给出如何确定权重的方法,只能部分排序,因此只适合对于方案的初步筛选。
[1]基于TOPSIS模型的城市土地集约利用评价研究--以重庆市南岸区为例人文地理学专业硕士研究生李丽指导教师廖和平教授
[2] 基于TOPSIS的建筑业施工安全信用评价研究
[3] 基于TOPSIS的电厂脱硫技改方案选择方法研究
[4]李维, "基于多属性决策方法的评价及灵敏度分析,". vol. 硕士: 东华大学, 2008.
[5] 周艳春, "基于定性模拟的渠道关系分析方法研究,". vol. 博士: 哈尔滨工业大学, 2010.
CathyMacharis, Johan Springae,l KlaasDe Brucker, et a.l. PROMETHEE and AHP: the design of operational synergies in multicriteria analysis. strengthening
PROMETHEE with ideas ofAHP[J]. European Journal ofOperationalResearch, 2004, 153(2): 307-317. :对比分析了AHP与PROMETHEE不同方面的优点
AHP 可以充分利用了专家的特长,并反映了决策者的偏好。