多属性决策简介
《2024年多属性决策理论、方法及其在矿业中的应用研究》范文

《多属性决策理论、方法及其在矿业中的应用研究》篇一一、引言随着科技的进步和社会的发展,多属性决策理论已成为各个领域决策分析的重要工具。
矿业作为国民经济的重要支柱产业,其决策过程涉及众多复杂因素,如资源储量、开采技术、环境影响、经济效益等。
因此,多属性决策理论在矿业中的应用显得尤为重要。
本文将就多属性决策理论、方法及其在矿业中的应用进行深入研究。
二、多属性决策理论概述多属性决策理论是一种综合考虑多个属性,对备选方案进行评估和选择的决策分析方法。
它通过量化各个属性的指标,建立属性权重,从而对方案进行综合评价。
多属性决策理论具有综合性、系统性、可操作性等特点,广泛应用于各个领域。
三、多属性决策方法多属性决策方法主要包括以下几种:1. 层次分析法:将决策问题分解为目标、准则、方案等层次,通过两两比较的方式确定各层次的相对重要性,从而进行综合评价。
2. 数据包络分析:利用数学规划模型,对多个同类型决策单元进行相对效率评价,适用于处理具有多个输入和输出的决策问题。
3. 模糊综合评价法:将定性指标模糊量化,建立模糊综合评价模型,对备选方案进行综合评价。
4. 灰色关联分析:针对信息不完全、不确定的决策问题,通过计算各方案与理想方案的关联度,进行方案排序。
四、多属性决策理论在矿业中的应用多属性决策理论在矿业中的应用主要体现在以下几个方面:1. 矿床评价:通过对矿床的资源储量、矿石质量、开采技术条件等属性进行综合评价,选择最优的矿床开发方案。
2. 采矿方法选择:根据矿体赋存条件、地质环境、经济效益等多个属性,选择合适的采矿方法。
3. 矿山环境影响评价:综合考虑矿山开采对环境的影响,如水土流失、地表塌陷等,建立环境影响评价指标体系,对矿山环境影响进行综合评价。
4. 矿业投资决策:通过对矿业项目的资源储量、开采技术、市场前景、政策风险等多个属性进行分析,建立投资决策模型,为矿业投资决策提供依据。
五、结论多属性决策理论在矿业中具有广泛的应用前景。
多属性决策分析范文

多属性决策分析范文多属性决策分析(Multi-Attribute Decision Analysis,简称MADA)是一种决策支持方法,用于解决决策问题中存在多个评估指标的情况。
该方法通过对不同属性进行权重分配,并对备选方案进行评估和比较,以找到最佳的决策方案。
首先,确定决策目标并明确评估指标。
在决策问题中,需要明确要达到的目标,并确定用于评估备选方案的指标。
例如,如果我们需要选择一种新的投资项目,决策目标可能是最大化投资回报率,评估指标可能包括投资风险、市场潜力、竞争情况等。
然后,构建层次结构。
层次结构是多属性决策分析的基础,它通过将决策目标、评估指标和备选方案按照层次关系组织起来,形成一个树状结构。
例如,在选择投资项目的决策问题中,可以将决策目标放在最顶层,评估指标放在中间层,备选方案放在底层。
接下来,建立判断矩阵。
判断矩阵用于描述层次结构中各个层次之间元素之间的相对重要性。
对于每一对元素,通过专家判断或问卷调查的方式,使用比较刻度(如1-9)对其重要性进行评估,并填写到判断矩阵中。
例如,在评估指标层次,可以比较每个评估指标相对于决策目标的重要性。
然后,计算权重向量。
利用判断矩阵,可以通过特征向量法计算出各级指标的权重。
计算过程中,需要对判断矩阵进行一致性检验,以确保判断矩阵的一致性。
一般来说,判断矩阵的一致性指标CI应满足CI<0.1,若CI>0.1,则需进行修正。
之后,进行一致性检验。
通过计算一致性比例CR来检验判断矩阵的一致性。
一致性比例CR的计算公式为CR=CI/RI,其中RI为随机一致性指标,根据判断矩阵的阶数n可以在AHP准则表格中找到。
最后,进行评估和排序。
将备选方案的各个属性值与权重值相乘得出加权得分,然后将加权得分进行加总,将各个备选方案按照加权得分的高低进行排序,得出最佳决策方案。
综上所述,多属性决策分析是一种常用的决策支持方法,可以有效地帮助决策者在多个评估指标的情况下做出合理的决策。
多属性决策简介

多属性决策简介多属性决策研究简介多属性研究,简称为MADM,,也称有限方案多目标决策,是指在考虑多个属性或者是目标下,选择最佳方案或者是排序有限备选方案的决策问题。
多属性决策问题的组成包括以下5个方面:1、决策单元或者决策人:据侧人可以是一个人或者是一群人,直接或者间接提供价值判断,并据此选择最佳方案或者排雷可行方案;2、属性集P:每个备选方案都需要有若干个属性;3、备选方案集S:每个决策问题都要有若干个可供选择或者排序的方案;4、决策情况:主要是指问题的结构和研究决策环境;5、决策规则:一般可以分为两种:最优化决策和满意决策。
满意决策一般把问题的可行方案分为若干有序子集,牺牲最优性,使问题简化,寻求令人满意的方案。
多属性决策中基础的几个步骤包括:决策矩阵的规范化:为使得各个决策方案在不同的决策属性中具有可比性,需要对决策矩阵进行所谓的规范化操作。
儿规范化的方法有很多种,一般都要求其最后的属性无量纲且各值在[0,1]之间。
其中包括的有效益型属性和成本型属性主要包括:向量归一化方法:各个属性值和相应的指标下的平方和的平方根的比值;极差变换方法:和极差的比值;比重变换:和或者倒数的和之比;线性变换:最大最小直接比;固中变换,通过某个属性上的理想值来做出规范化变换;偏离型规范法:主要用于某些越偏离某个值越好的属性的规范法。
权重的确定目前主要的权重确定方法包括三大类:决策者给出偏好的主观赋权方法和基于决策矩阵的客观赋权方法,以及将两者结合到一起的主客观信息结合方法。
下面简单介绍下我所了解的几种。
主观的赋权方法:特征向量方法、*最小平方和方法和德尔菲法等;客观的赋权方法:主要成分分析、*熵法等主客观赋权方法:在各个赋权方法的目标函数(主要包括加权法和理想点法两种构造方法)中加入相对比例的新目标函数得出的赋权值备选方案S的综合评价计算规范化之后,各个方案在属性上就有了可比性,下一步就是要计算各个属性上的综合值。
多属性决策方法研究

多属性决策方法研究多属性决策方法是一种有效的决策分析方法,常被用于解决复杂问题和多方利益冲突的决策过程。
它可以帮助决策者综合考虑多个因素和属性,并量化它们的重要性以进行决策。
多属性决策方法有很多种,其中比较常见的包括层次分析法、TOPSIS法、模糊综合评价法等。
下面将分别介绍这些方法,并比较它们的优缺点。
层次分析法(Analytic Hierarchy Process,简称AHP)是一种基于判断矩阵的多属性决策方法。
AHP将问题层次化,通过构建判断矩阵来比较不同因素和属性的重要性。
它具有结构清晰、易于理解和计算的优点,但其结果可能会受到主观因素的影响。
TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)法是一种基于距离测度的多属性决策方法。
TOPSIS法将问题转化为求解到理想解的距离,选取距离最小的方案作为最优选择。
它考虑了方案与理想解之间的距离,能够较好地反映方案之间的差异,但对数据的标准化要求较高。
模糊综合评价法是一种基于模糊数学的多属性决策方法。
它通过模糊隶属度函数来描述各个方案与评价指标之间的关系,从而进行综合评价。
由于模糊综合评价法考虑了不确定性因素,因此可以应对实际问题中存在的模糊性和不确定性,但需要确定模糊隶属度函数和权重,对决策者的主观判断要求较高。
在比较这些多属性决策方法的优缺点时,可以根据决策问题的具体特点和需求来选择合适的方法。
如果问题结构清晰且属性间关系可量化,可以选择AHP方法;如果关注方案之间的差异程度,可以选择TOPSIS方法;如果问题存在不确定性和模糊性,可以选择模糊综合评价法。
总之,多属性决策方法是一种在复杂问题和多方利益冲突的决策过程中常用的决策分析方法。
通过综合考虑多个因素和属性,量化它们的重要性,并进行决策选择,可以帮助决策者做出科学、合理的决策。
不同的多属性决策方法各有优缺点,具体选择时需结合问题需求和实际情况进行权衡。
第二章多属性决策

2.1.2决策表的规范化方法
决策表中的数据的规范化有三种作用: 第三是归一化。原属性值表中不同指标的属性值的数 值大小差别很大,如总经费即使以万元为单位,其数 量级往往在千、万间,而生均在学期间发表的论文、 专著的数量、生均获奖成果的数量级在个位或小数之 间,为了直观,更为了便于采用各种多目标评估方法 进行比较,需要把属性值表中的数值归一化,即把表 中数均变换到[0,1]区间上。
a*{aj| jarm g aejx}{ }
2.2.1 实数型MADM方法
2、属性权重完全未知时的实数型MADM方法
定义 7. 设函数 OWA : Rn R , (a1, a2,, an ) 是一组给定的数据,若
n
WAA (a1, a2 ,, an ) jbj j 1
其中 ω (1,2 ,,m )T 是与函数 OWA 相关联的权重向量, j [0,1] ,
raging (OWG) operator)。
2.2.1 实数型MADM方法
上述算子的特点是:对数据 (a1, a2 ,, an ) ,按从大到小的顺
序重新进行排序并通过加权集结。而且元素 ai 与i 没有任何联
系。只与集结过程中的第 i 个位置有关(因此加权向量 ω 也称为
位置向量).
2.2.1 实数型MADM方法
给属性赋予的权重应综合反映三种因素的作用。通过权 重,可以将多目标决策问题化为单目标求解。
1、 加权求和
加权和法的求解步骤 1、属性表规范化 2、确定各指标的权系数 3、根据指标的大小排出方案的优劣
2、 几何平均
几何平均法在合成候选方案的评价的时候与算 术平均类似。几何平均数是n个变量值连乘积 的n次方根,多用于计算平均比率和平均速度。 如:平均利率、平均发展速度、平均合格率等。
决策理论与方法之多属性决策

决策理论与方法之多属性决策多属性决策是决策理论与方法中的一种重要决策方法,主要用于解决具有多个评价指标的决策问题。
在实际生活和工作中,我们常常需要面对的是多因素影响下的决策问题。
多属性决策方法的应用可以帮助我们全面、客观、科学地对待问题,提高决策的准确性和决策结果的有效性。
多属性决策方法的核心思想是将决策问题中的多个属性进行定量化,并将各个属性的权重进行合理分配,最终得出综合评价结果,从而选择最优的决策方案。
在多属性决策中,常用的方法包括层次分析法、利用等价关系建立模型、TOPSIS方法等。
层次分析法是一种常用的多属性决策方法,其主要思想是将决策问题拆分成若干个子问题,并构建层次结构,通过比较不同层次的准则,得出最终的决策结果。
该方法的优点是能够考虑多个属性的重要性,并将其量化成权重,从而进行综合评估。
但是,层次分析法需要进行一系列的判断和计算,比较繁琐,容易受到主管者主观判断的影响。
利用等价关系建立模型是另一种常用的多属性决策方法,其主要思想是通过对各个属性之间的关系进行建模,从而得出最终的决策结果。
该方法的优点是能够考虑属性之间的相互影响,更加真实地反映决策问题的本质。
但是,建立等价关系模型需要对问题有一定的了解和分析能力,并且需要进行一定的计算,对于一些复杂问题来说,可能会存在一定的困难。
TOPSIS方法(Technique for Order Preference by Similarity to an Ideal Solution)是一种较为常用的多属性决策方法,其主要思想是将各个决策方案与最佳解和最差解进行比较,通过计算得出每个方案与最佳解和最差解的接近程度,并根据接近程度确定优劣排序。
TOPSIS方法具有计算简单、易于理解和应用的优点,但是在实际应用中,需要对决策问题进行一定的约束条件和假设。
综上所述,多属性决策方法是一种重要的决策理论和方法,可以帮助我们解决多因素影响下的决策问题。
多属性决策方法概要

多属性决策方法概要多属性决策方法是一种用于解决具有多个属性、多个可选方案的决策问题的方法。
在实际生活和工作中,我们常常面临着这样的问题,例如选择一种产品、确定一个项目的优先级或者评估不同的投资选择等。
在这些问题中,每个可选方案都有多个属性或者指标来描述其特点,而我们需要通过一定的决策方法来帮助我们做出合理的选择。
本文将介绍几种常见的多属性决策方法。
1.权重法:权重法是一种常用的多属性决策方法,它通过为每个属性指定一个权重来反映其重要性,然后根据各个属性的得分和权重的乘积来评估每个方案的综合得分。
具体来说,首先需要确定各个属性的权重,可以通过专家来评估或者采用层次分析法等方法。
然后,对每个属性进行评分,可以使用定性评价或者定量评价的方法。
最后,将每个属性的得分与其权重相乘,并将所有属性的加权得分相加,得到每个方案的综合得分。
根据综合得分的大小,选择综合得分最高的方案。
2.理想解法:理想解法是一种基于每个属性的最小值或最大值来确定方案的方法。
具体来说,首先需要将每个属性的值标准化,例如将其转换为[0,1]区间上的值。
然后,计算每个方案与理想解法之间的距离,可以使用欧式距离或者其他距离度量方法。
最后,根据与理想解法之间的距离的大小,选择距离最小或距离最大的方案作为最优方案。
3.TOPSIS法:TOPSIS法是一种常用的多属性决策方法,它综合考虑了每个方案与理想解法的距离以及与负理想解法的距离。
具体来说,首先需要将每个属性的值标准化,例如将其转换为[0,1]区间上的值。
然后,利用标准化后的属性值计算每个方案与理想解法之间的距离和方案与负理想解法之间的距离。
最后,根据与理想解法的距离和与负理想解法的距离的比较,计算每个方案的综合得分,并选择综合得分最高的方案作为最优方案。
4. Borda计分法:Borda计分法是一种常用的多属性决策方法,它基于每个方案在每个属性上的排名来评估方案的综合得分。
具体来说,首先对每个属性的得分进行排序,然后根据每个方案在每个属性上的排名分配得分。
第七章多属性决策分析

属性(attribute) 指备选方案的特征、品质或性能参数。
社会经济系统的决策问题,往往涉及不同属 性的多个指标—多属性决策。
实际问题常常有多个决策目标,每个目标的 评价准则往往也不是只有一个,而是多个— 多目标、多准则决策问题。
多目标决策和多属性决策统称多准则决策 (multi-criterion decision making)。
xij
m
x2 ij
11
im jn
i 1
称矩阵Y=(yij)m×n为向量归一标准化矩阵。矩
阵Y的列向量模等于1,即
m
y2
1 1
j
n
注:向量归一标准化后 i1 ij
① 0≤yij≤1; ② 正、逆向指标的方向没有发生变化。
7.1.3 决策指标的标准化
2. 线性比例变换法
在决策矩阵X中,对于正向指标fj,取:
x* j
max
1 i m
xij
0
令:yij
xij 1 i m x*
j
对于负向指标fj,取:
x* j
min
1 i m
xij
令:yij
x* j
x
1
i
m
ij
称矩阵Y=(yij)m×n为线性比例标准化矩阵。 注:经线性比例变换后① 0≤yij≤1;② 所有指 标均化为正向指标;③最优值为1。
§7.1 多属性决策指标体系
7.1.3 决策指标的标准化 将不同量纲的指标,通过适当的变换,化为 无量纲的标准化指标。
决策指标的变化方向 ❖效益型(正向)指标:越大越优 ❖成本型(逆向)指标:越小越优 ❖中立型指标 :在某中间点最优
(如人的体重)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多属性决策研究简介
多属性研究,简称为MADM,,也称有限方案多目标决策,是指在考虑多个属性或者是目标下,选择最佳方案或者是排序有限备选方案的决策问题。
多属性决策问题的组成包括以下5个方面:
1、决策单元或者决策人:据侧人可以是一个人或者是一群人,直接或者间接提供价值判断,并据此选择最佳方案或者排雷可行方案;
2、属性集P:每个备选方案都需要有若干个属性;
3、备选方案集S:每个决策问题都要有若干个可供选择或者排序的方案;
4、决策情况:主要是指问题的结构和研究决策环境;
5、决策规则:一般可以分为两种:最优化决策和满意决策。
满意决策一般把问题的可行方案分为若干有序子集,牺牲最优性,使问题简化,寻求令人满意的方案。
多属性决策中基础的几个步骤包括:
决策矩阵的规范化:为使得各个决策方案在不同的决策属性中具有可比
性,需要对决策矩阵进行所谓的规范化操作。
儿规范化的方法有很多种,一般都要求其最后的属性无量纲且各值在[0,1]之间。
其中包括的有效益型属性和成本型属性
主要包括:向量归一化方法:各个属性值和相应的指标下的平方和的平方根的比值;极差变换方法:和极差的比值;比重变换:和或者倒数的和之比;线性变换:最大最小直接比;固中变换,通过某个属性上的理想值来做出规范化变换;偏离型规范法:主要用于某些越偏离某个值越好的属性的规范法。
权重的确定
目前主要的权重确定方法包括三大类:决策者给出偏好的主观赋权方法和基于决策矩阵的客观赋权方法,以及将两者结合到一起的主客观信息结合方法。
下面简单介绍下我所了解的几种。
主观的赋权方法:特征向量方法、*最小平方和方法和德尔菲法等;
客观的赋权方法:主要成分分析、*熵法等
主客观赋权方法:在各个赋权方法的目标函数(主要包括加权法和理想点法两种构造方法)中加入相对比例的新目标函数得出的赋权值
备选方案S的综合评价计算
规范化之后,各个方案在属性上就有了可比性,下一步就是要计算各个属性上的综合值。
主要的选择或者排序方法包括:加权求和法:最简单常用的方法;几何加权法;AHP;*TOPSIS:正理想点和负理想点的距离得出最后的相对距离。
.
*灵敏度分析
一方面属性值可能不精确,也可能随着时间的推移产生变化,或者是主观这的判断可能会偏离客观;另一方面,属性的权重可能也会发生变化。
这些变化可能会使方案的的排序结果出现不可靠性。
方案的灵敏度分析可以确定那个属性的权重对排序结果有最大的影响,以及其在那个范围内变化可以使得决策的结果不会变化;当然也可以得知相关属性在什么范围内变化使得自己的排序或者选择更加好一点。
主要包括属性权重的灵敏度和属性值的灵敏度分析。
其中属性权重的方法中较为统一。
而对于属性值的灵敏度分析中需要注意的地方有很多和原先的分析相关的问题及其相关解决方法存在。
首先是对于属性值的规范化的方法,一般采用比重法,较少地使得属性的变换影响到规范化的结果;其次是在属性值的变换过程中会受到其他属性值的影响。
这些都是在多属性决策的属性值灵敏度分析中需要注意的地方。
其他多属性决策中研究的内容
*决策中主观不确定性信息存在的问题:D-S证据组合理论
区间数决策矩阵的多属性决策方法:基于区间数的相关的运算规则的相关计算(误差传递等);
*灰色决策中灰色聚类,主要是确定所谓的灰色白化权函数。