小角X射线散射演示文稿
第十二章 聚合物材料小角 X 射线散射(2)

297近年来 Flory 等在理论上证实了高聚物结晶-非晶之间存在着一个中间相(interphase ). 以 PE 为例其片层厚度约为 10-20nm, 它的中间相厚度约为 1.0-1.2 nm, 这是一个不可忽视部分.中间相对聚合物的物理性质,会产生一定影响,可见结晶聚合物是“三相”结构,而不是传统的“两相模型”( 图12.36 ). 随后许多学者都力图用新的实验技术和方法证明 Flory 理论. 这方面的研究虽然已取得了一定进展,但由于实验和数据处理的困难, 许多问题尚待解决.Strobl 等在总结前人工作的基础上,提出用一维电子密度相关函数分析结晶高聚物的 SAXS 数据,从而通过实验确定了中间相存在. 假定非取向结晶聚合物是由各向同性,均匀分布的稠密堆砌相互平行片层构成,平行和垂直片层表面堆砌层尺寸远大于片层间距离,片层堆砌遵守相同内部统计规律 (图12.37) . 在此假定下系统的散射强度仅与垂直片层表面方向上的电子密度分布有关. 按两相模型假定, 沿垂直于片层表面方向结晶相和非晶相交替出现.图 12.36 聚合物“三相”结构模型假定电子密度的变化服从“线性模型”,则一维电子密度相关函数:K z z z z ()[()][()]=<'-<>+'-<>>ηηηη (12.87)式中 Z 为沿片层法向的长度,η 是电子密度. )(Z 'η 与 )(Z Z '+η 为处于 Z ' 点和 Z '+Z 点的电子密度, η 为体系的平均电子密度; K(Z) 表示距离为 Z Z Z Z '-+'= 两点平均电子密度起伏之积.根据散射强度理论,电子密度相关函数 K(Z) 与散射强度分布有关:⎰∞=221ds sZ s s I Z K )cos()()(π(12.88)其中,θ 是 Bragg 角,λ 是 X 射线波长,I(s) 是去模糊散射强度. 根据图 12.37 的自相关三角形可以求得积分不变量 Q ,过渡层厚 d tr ,平均片层厚 d 以及长周期 L ,比内表面积 O s ,电子密度差 ηηc a - 等. 具体计算方法可按下述步骤进行.298图12.37 聚合物结构模型的电子密度相关函数 K(z)a. 严格周期性两相体系;b. 非晶层不等;c. 结晶与非晶层均不等;d. (b+c)+过渡层(中间相)由图 12.37 的 K(z) ~Z 曲线的线性部分做其切线, 得到自相关三角形, 将此直线延长交纵坐标 k (z) 于 Q 点, Q 的数值即为所研究体系的积分不变量, 此切线与 Z 轴交点即为体系的纯结晶片层厚 d 0 (d 0=Z 0), 自相关三角形直线与 K(z) ~Z 曲线的切点所对应的横坐标 Z 值, 即 d tr 就是过渡层厚, 同时由 K(z) ~Z 曲线也可得到长周期 L ( 图12.37 ). 并据自相关三角形有: Q W W c c c a =--()()12ηη (12.89)d Z dZO s c a K ()()=--22ηη (12.90)ρρηηc a c a M Ze-=-()() (12.91)式中 W c 为结晶度, 由 W AXD 利用图解分峰法求得. ρc , ρa 分别为样品的结晶密度和非晶密度. M 和 Ze 是样品化学重复单元质量和核外电子数. 利用式 (12.88)—(12.90) 可以求出 ηc -ηa , O s 和 ρc -ρa . 如果已测知样品非晶密度 ρa , 则样品在某一特定条件下的密度 ρc 亦可算出.作为例子,图 12.38 是聚醚醚酮 (PEEK )和含联苯聚醚醚酮 (PEBEKK) 共聚物,当 n b =1.0 时的 SAXS 散射强度经消模糊后,散射强度数据按一维电子密度相关函数法处理后得到的电子密度相关函数 K(z)~Z 曲线,表 12.8 是 PEEK —PEBEKK 共聚物样品的聚集态结构参数.图12.38 SAXS 实验测得的PEEKK 相关函数(H.F.Zhang, B.Q.Y an, Z.S.Mo. Macromol.Rapid Commun. 1996,17:117-122)表12.8 PEEK—PEBEKK 共聚物样品的聚集态结构参数表中[η] 为特性粘度;n=N B/(N A+N B), 其中,N A为PEEK 含量;N B为PEBEKK 含量;W c,x 为b由WAXD 测定.图12.39 是尼龙11 在900C 热处理条件下的SAXS 强度曲线. 图中清楚地表明了由自相关三角形求得的d,d,Q 以及长周期L 等.tr图12.39 尼龙11 在900C热处理的SAXS 强度曲线(Q.X.Zhang, Z.S.Mo, et al., Macromolecules, 2000,33:5999-6005)§12.9.2 Vonk 方法299300假如结晶粒子具有各向同性和密度均匀性,散射强度可用 Guinier 方程表达:⎰∞=0220d r i s r r V Di I S I e )e x p ()()(γη(12.92)式中,D 为样品到探测器间的距离;V 0 为样品体积; i e 为 Thomson 散射因子; I 0 为入射 X 射线强度;2η 为在 r=0 处的均方电子密度: 2)(ηηηγrj i r =(12.93)式中,i η, j η 分别表示位于第 i 个, 第 j 个体积元的电子密度,)(r γ 是表征位于 i ,j 两体系元存在于同一相的几率. 式 (12.92)由 Fourier 变换,则有: ⎰⎰∞∞=dss I dsrs s I r )()cos()()(γ (12.94)根据前述,结构参数的变化服从“线性模型”假设并将散射强度 I(s) 通过 Lorentz 修正,即把 I(s) 乘以 s 2, 则式 (12.94) 中的相关函数 )(r γ 化为: ⎰⎰∞∞=22dss I s dsrs s I s r )()cos()()(γ (12.95)V onk 法确定的相关函数 )(x γ~ x 曲线如图 12.40 所示.图 12.40 V onk 法确定的一维电子密度相关函数 )(x γ~x 曲线图中,由緃坐标轴 )(x γ 到 R 距离为 E/3 (点 R 是)(x γ~x 曲线在 X=0 处的切线的最高点);E 是结晶—非晶过渡层厚度;)(x γ~x 曲线的第一个最大峰值对应的相关距离 x 即为样品的长周301期;P 和 P ' 分别为由点 R 作平行于 )(x γ 轴的直线与 )(minx γ和 1/)(minx γ水平直线的交点;Q 和 Q ' 分别为由过点 R 的 )(x γ~x 曲线切线延长线与 )(minx γ 和 1/)(minx γ 水平直线的交点.按照 V onk 的方法,)(minx γ 与样品的结晶度 W c,x 有下述关系:当 W c,x > 0.5 时, )(m i nx γ= —xc x c W W ,,1- (12.96)当 W c,x < 0.5 时, )(m i nx γ= — xc x c W W ,,-1 (12.97)对于具有交替出现结晶非晶层且相互平行的 n 层样品, 全部 n 层的平均非晶层厚度(A )和平均结晶层厚度(C )为:A=E t a - (12.98)C =E t c - (12.99)其中, )1(3,x c a W E PQ -+=;xc c W E Q P t ,3+''=(图 12.41)图 12.41 含有过渡层片层结构的一维电子密度剖面 c ρ 和 a ρ 分别为结晶,非晶电子密度§12.10 距离分布函数若系统是非均匀的,即存在电子密度起伏,那么该系统就应有 X 射线散射发生. 假定该系统具有无规非均匀分布且其粒子形状相同,大小不一, 略去粒间干扰效应和多重散射效应, 根据 X 射线散射强度理论 Debye -Bueche 给出了该体系的散射强度表达式:302⎰∞=024drsr sr r r K s I )sin()()(π=⎰∞4dr srsr r P )sin()(π (12.100)这里 K(r) 是相关函数,P(r)=K(r)r 2 是距离分布函数. 简约散射角 s =4πθλsin ,r 是某点到散射中心间的距离.为了计算P(r), 将式(12.100)做 Fourier 变换得到:⎰∞=221ds sr sr s I r P )sin()()(π(12.101)式中,I(s) 为经狭缝准直修正后的散射强度. 当 P(r)=0 时的 r 值为粒子的最大尺寸, 记为 D max . 从 P(r) ~ r 曲线可以得出粒间是否存在相互作用. 如果 P(r) ~ r 曲线出现负的极大值,表明粒间有干涉效应;如果无负值出现,则表明粒间无相互作用. P(r) 的负极大值,对应于散射强度曲线的低角部分干涉的存在. P(r) 获得后,则系统的零角散射强度 I(0) , 粒子回转半径 2g R 以及相关长度 l c (它是体系不均匀性的度量) 均可求得:⎰=max )()(D dr r P I 040π (12.102)⎰⎰=maxmax)(/)(D D gdr r P dr r r P R 0222 (12.103)⎰⎰∞∞=02ds s s I sds s I l c )(/)(π(12.104)式中: D max 是系统的最大粒子尺寸,它可由 P (r) ~ r 曲线得到( 图 12.42 ).图 12.42 P(r) ~ r 曲线对于大小均一,形状相同的球状粒子体系,其散射强度 I(s)~s 曲线可有多级散射峰出现. 根据这些峰位可以求得均匀球状粒子的半径. 据式 (12.19) 和 (12.75) 可知: 232)()c o s ()s i n (3)(⎥⎦⎤⎢⎣⎡-=sr sr sr sr Nn I s I e303102030400.00.51.01.52.02.5oP (r )r (A )其峰位(极大值)分别出现在 =sr 0, 5.77, 9.10, 12.33, 15.52, 18.69 等等;由此可得到相应的球形粒子半径 r i . 在这种特定的散射体系下求粒子半径的方法称为顶峰分析法.如果假定所研究体系中粒子分布服从对数正态分布,即:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=2ln 2ln ln exp ln 21)(σμσπr r r P (12.105)式中,r 为粒子半径;σ 为正态分布的标准偏差;μ 为正态分布的几何平均值. σ,μ 由下式确定:)ln 6exp(ln 2σμ+=g R (12.106))ln 5.2exp(ln 2σμ+=p R (12.107) []K s Q K ds s I s s I s ds s I s R s p '='==⎰⎰∞∞→∞πππ838383030)(~)(~)(~)(~ (12.108)以上各式中:R g 为粒子回转半径, )(~s I 为模糊强度,K ' 为 Porod 常数,λθsin 2=s .据式 (12.106) 和(12.107)解出:)/l n (714.1ln ln p g g R R R -=μ (12.109) )/l n (286.0ln 2p g R R =σ (12.110)当求得 R g ,R p 后,μσ, 可知. 将式 (12.109) 和 (12.110) 代入式 (12.105) 可得 P(r) 与 r 的关系曲线. 图 12 .43 是尼龙11 在不同热处理条件下粒子的距离分布函数 P(r ) 与 r 的关系曲线. 由图可见,经热处理后的尼龙11 与淬火样品相比,其粒子分布较宽,且粒径较大.图 12.43 尼龙11 粒子距离分布函数 P(r)~r 曲线(a )热处理样品;(b )淬火样品304§12.11 两相体系边界层厚度— Porod 关系§12.11.1 引言Porod 指出, 对于两相边界分明的理想体系, 在散射角较大的散射曲线尾部, 其强度服从(图 12.44 曲线 1 ):p s k s I s =∞→)(lim 4(12.111)式中,p k 为 Porod 常数,是与结构有关的重要参数; I(s) 是经狭缝准直修正的散射强度. Porod 指出, p k 与积分不变量 Q 的关系为:cBA p l Q QV sk 3328πϕϕπ==(12.112)式中,S/V 为单位体积过渡层面积;A ϕ,B ϕ 分别为两相的体积份数;c l 为表示两相不均匀性的特征长度,亦称 Porod 非均匀性长度,是重要的结构参数. 其中,积分不变量 Q 为:Q=⎰∞-=02032)(8)(4B A B A e V I ds s I s ρρϕϕππ (12.113)式中,A ρ 和 B ρ 分别为两相电子密度;V 0 为辐照样品体积.如果采用长狭缝准直系统的散射强度 )(~s I ,其积分不变量为:⎰∞=04ds s I s s Q )(~)(~π 且有: )(2)(~s Q s Q = (12.114)Porod 定律是在两相间界面分明时成立,当两相界面模糊弥散时,Porod 定律不成立;亦即当 S 很大时,)(4s I s ~ 2s 曲线,不再趋于常量 p k , 而是随着 s 增加,)(4s I s ~ 2s 曲线值下降,即出现负偏离 (图 12.44 中曲线2). 如果体系中存在热密度起伏或畸变,体系也将产生附加散射,尤其是当 S 很大时,影响更为明显,Porod 定律也不成立,此时 )(4s I s ~ 2s 曲线将出现正偏离(图 12.44 中曲线3).Porod 定律是在 S 很大条件下的散射强度与散射角间的定量关系. 由于尾部散射强度(即 S 很大)低,背底的干扰相对比较大,因此对尾部散射强度的背底校正尤为重要,否则将不能正确地表现 Porod 规律.305图 12.44 )(4s I s ~ 2s 曲线 1. 无偏离 2.负偏离 3.正偏离§12.11.2 Porod 规律的负偏离修正当体系中两相界面不明锐时,即界面模糊,则在图 12.44中,)(4s I s ~ 2s 曲线出现不符合 Porod 规律的负偏离. 对这种负偏离现象,Ruland 进行了修正. 并给出:)4exp()(lim 2224s k s I s p s σπ-=∞→ (12.115)当 s σ 远小于 1 且 ∞→s 时, )41()(2224s k s I s p σπ-≈ (12.116)σ 是两相间过渡层厚度. 以 lnS 4I(S) 对 S 2 作图, 在 S 较大处应获得具有一定斜率的直线, 由直线斜率可求得 σ, 而由直线的截距可得到 p k .Hashimoto 导出了利用模糊散射强度 )(~s I 计算两相间的过渡层为:)4exp()(~lim 222'3s k s I s p s σπ-=∞→ (12.117)当 s σ 远小于 1 且 ∞→s 时, )41()(~222'3s k s I s p σπ-≈ (12.118)σ 大则表明两相界面间的互渗性好, 电子密度差 ∆ρ 下降. 同时从 S 4I(S)~S 2 曲线可知, 直线越接近水平, 则表明两相越接近理想体系, 斜率越大, 两相的过渡层越大, 相间互渗性越好, ∆ρ 越小, l c 也越小 ( 图12.45 ).306图 12.45 S 4I(S) ~ S 2 曲线:§12.11.3 Porod 规律的正偏离修正对图 12.44 中 S 4I(S)~S 2曲线不符合 Porod 规律的正偏离现象,按照 Ruland 和 Vonk 等 的观点,是由于两相中存在畸变,热密度起伏所致. 相间的这种电子密度起伏,在 S 很大时, 由于 I(s) 较小,易于产生扩散的背底效果,造成 Porod 规律的正偏离. Ruland 提出,散射强度应作以下修正:)()()()(lim 2s I s H s I s I B p obs s +=∞→ (12.119)式中,I p (s) 是符合 Porod 规律的散射强度;H 2(s) 是由模糊界面造成的 Porod 规律的负偏离项; I B (s) 是相间电子密度起伏产生的背底散射强度.Vonk 将 I B (s) 以级数表达:11)(nB s b Fl s I += (12.120)式中,Fl 是曲线延长到零角度时的散射强度;b 1 是常数;n 1 取奇整数(这里仅取 n 1=1,3).Ruland 则将背底散射强度 I B (s) 按下述指数函数近似表达:)exp()(22s b Fl s I B = (12.121) 式中,b 2 是常数.使用式 (12.120) 和式 (12.121) 时,事先应对 I obs (s) 进行拟合,拟合时必须保证足够大的 s 值,在此 s 值下仅存在背底散射强度 I B (s). 得到 I B (s) 后,由式 (12.119) 中,可得经 I B (s) 扣除后的 I p (s). 然而用上述办法必须使测量角度 θ2 (即 s )很大, 这样在决定 Fl 值和对 I obs (s) 进行拟合时方可得到满意的结果. 实际操作时由于 S 很大时, 散射强度很低,截断的角度 (即s) 的选取人为性较大,易造成误差. 最近有文献报道,对这种偏离 Porod 规律的正偏离现象的修正,采取类似对 Porod 规律的负偏离修正办法,提出对 Porod 规律正偏离现象的修正如下:[]22244ln )(ln s k s I s p s σπ+=∞→ (12.122)或采用模糊散射强度有:[]222'34ln )(~ln s k s I s p s σπ+=∞→ (12.123)307§12.12 两相体系平均切割长度和比表面积的计算§12.12.1 Porod 方法计算两相体系平均切割长度对于通常所研究的聚合物体系, 一般均可视为无规分布的两相体系, 即电子密度为 ρA 的一相分散在电子密度为 ρB 的另一相中间. 假如两相的体积分数分别为 ϕ A和 ϕB . 则 ϕA +ϕB =1, 其均方电子密度差为:()22BA ρρρ-=∆ (12.124)而积分不变量 Q 与均方电子密度差 ∆ρ2有下述关系:⎰=ds s I s Q )(42π=8)(3s I e πV 0ϕA ϕB2ρ∆ (12.113)式中, I(S) 是去模糊后的散射强度; V 0 是被辐照样品的体积. 从式 (12.113) 可知, 如果求得样品的积分不变量 Q, 当已知两相的体积分数 ϕA , ϕ B时, 两相电子密度差 ∆ρ=-ρρAB 便可得到.Porod 指出, 对无规分布的两相体系, 穿过两相区的平均切割长度 c l 为 ( 图 12.46 ):⎰∞=0222k ds s I s l c π/)( (12.125)式中,p k 为 Porod 常数. 因此求平均切割长度的问题就化为如何去获得 Porod 常数 p k . p k 值的计算方法前面已有叙述. 如果采用模糊散射强度 )(~s I ,则 Guinier 给出 c l 为:⎰⎰⎰∞∞∞==0020022dss I s dss I s I V dss sI l e B a c )(~)(~)()(ϕϕρ∆π (12.126)因为, ⎰⎰∞∞=1d s s I d s s sI )(~)(π(12.127)⎰⎰∞∞-221d s s I s d s s I s )(~)( (12.128)所以式 (12.126) 用去模糊校正后的散射强度 I(s) 表示为:308⎰⎰∞∞=02dss I s dss sI l c )()(π(12.129)知道 c l 后,各相的平均切割尺寸分别为:图 12.46 不均匀长度的物理意义A c A l l ϕ/=B c B l l ϕ/= (12.130)§12.12.2 Stein 方法计算两相体系平均切割长度Stein 提出计算两相体系中结晶非晶两相非均匀性分布平均切割长度的另一种计算方法. 对于无规非均匀介质体系,散射强度 I(s):⎰∞=022dr r srsr r k s I )sin()()(γη(12.131)式中,k 为常数;2η 为散射能力(电子密度)的均方涨落. 对于具有不明晰过渡层的体积分数为 B A ϕϕ,两相系统,()⎪⎭⎫ ⎝⎛-∆=⎪⎭⎫⎝⎛--=66222E B A E B A B A ϕϕϕρϕϕϕρρη,其中,E ϕ 为界面过渡相体积分数.)(r γ 为相关函数,其定义见式 (12.93).)(r γ 的物理本质是表示 i,j 两点处在同一相中的几率. 可用下述经验方程表示:)/exp()(c l r r -=γ (12.132)式中,c l 为相关距离,表示体系中两相不均匀性尺度的度量. 将式 (12.132) 代入式 (12.131), 整理后得到:30922232)1()(-+'=c c l s l k s I η(12.133)或写为:[]()222132211)(ccl s lk s I +'=--η(12.134)将 221~)(s s I - 作图,得一直线,此直线的斜率与截距之比,即是 2c l .§12.12.3 比表面积 (S/V )的计算 1. Porod 方法按积分不变量 Q 的定义,由经狭缝准直校正的散射强度 I(s) 求得积分不变量 Q 后,从而可得到对组分为 B A ϕϕ, 两相体系的 ∆ρ2()2B A ρρ-=,再由 Porod 规律算出 p k 值,则比表面积 S/V :[]()[]20204)(2)(2)(B A epe s V s Ik V s I s I sV S ρρπρπ-=∆=∞→ (12.135)或写为: 1Q k VS p BA ϕπϕ= (12.136)这里,⎰∞==0202212B A e s I V ds s I s s Q ϕϕρ∆π)()()(2. Debye 方法cBA l V Sϕϕ4=(12.137)3. Guinier 方法[][]⎰⎰∞∞→∞∞→==02434dss I s s I s dss I s s I s Vss B A s B A )()()()(~ϕπϕϕϕ (12.138)式中,)(~s I 为实测(模糊)散射强度.3104. 特征函数方法Guinier 曾给出特征函数 )(0r γ 与相关函数 )(r γ 存在下述关系:02)(γργ∆=r (12.139)式中, ⎰∞=022)s i n ()(21)(ds srsr s I s r πγ (12.140)在图 12.47 中给出了尼龙11 在不同热处理条件下的 )(0r γ~r 曲线. 由图中可见,随热处理温度的增加,体系粒子的分布加宽,粒子尺寸增加 .比表面积: 00)(4→⎥⎦⎤⎢⎣⎡-=r dr r d V s γ (12.141)对多分散两相体系则有:B A r dr r d V s ϕϕγ0)(4→⎥⎦⎤⎢⎣⎡-= (12.142)图 12.47 尼龙11 在不同热处理条件下的 )(0r γ~r 曲线§12.13 分形维数在自然界中存在的各种过程,大部分为非有序,非平衡的不稳过程. 对这些随机的非平衡的非线性过程,采用经典力学、量子力学和相对论是不能解决的. 近些年来,为了较好的解决这些非线性问题,从不同角度发展了多种学说,分形是其中的一种. 聚合物(包括均聚物、嵌段共聚物、接枝共聚物、共混物)以及凝胶、催化剂、化学沉积和溶解、固化以及多孔材料等,当它们处于某种过程中多具有分形特征. 对某一系统而言,分形的本质是满足标度不变性,亦即它没有特征长度,但存在统计的自相似性. 所谓某系统具有标度不变性是指取该系统的任一局部域,对所取的域进行放大,经放大后会出现原图形的特性. 因此对于分形,将其放大后,其形态、不规则性、复杂程度等各种原来域所具有的特性均不改变. 当然,标度不变性,对于任一具有分形性质的系统而言,均有其相应的实用范围,不在实用范围内,系统也不再具有分形特性. 对于这个范围,一般取下界为其原子尺度,而其上界取为实际客体尺寸. 自相似性则指在所研究的系统中整体与整体间或局部与局部间,均存在某种结构、过程的特性等从不同空间、时间尺度去观察都是相似的. 数学中的 Kohn 曲线就是一个具有自相似性的典型例子(图12.48). 由图 12.48 可见,按一定规律形成的 Kohn 曲线具有严格的自相似性,称为有规分形;图12.49 是单轴各向异性的二维有限扩散聚集(DLA)生长的无规分形. 在自然界中,图 12.48 三次 Kohn 曲线(a)及其形成的雪花(b)图 12.49 单轴各向异性 DLA 生长聚集如海岸线的分形,聚合物晶体生长过程的分形等,其自相似性不是严格的,仅具有统计意义上的自相似性,这种统计意义上的自相似性称为无规分形. 需注意的是,系统具有自相似性决不是表明该系统具有相同或简单重复的性质. 一般聚合物样品恰恰具有这种表征分形特征的性质. 分形分有表面分形和质量分形. 一个体系所具有的分形特征,可由分形维数 D 表征. 分形维数 D 与所研究体系的结构、特性及其变化有关. 分形维数 D 与欧几里德维数 d 不同,欧几里德维数 d 仅为正整数,在一般空间取为 d=1,2,3. 可分别对应于线,面,体;如再考虑时间,则可取 d=4,即四维空间等.表面积为 Ar的多孔系统表面分形符合下述标度律:Ar =Nr2-Ds (12.143)311312这里,N 0 为具有表面分形体系的分形界限特征常数;r 是测量长度;D s 表面分形维数. 采用 SAXS 方法是研究分形的有力手段之一,对于 SAXS 强度为 I(s), 由式(12.143)有:I(s)∝N 0s -α (12.144)S 是散射矢量(s=λθπsin 4), S D 6-=α. 通常,表面分形 2≤D S <3. 因此,3<4≤α, 但对具有反应催化的表面,其 α>4; 另外,在一些情况下,式(12.144)指数律关系中,指数 α<3, 对这种 不满足表面分形 3<4≤α 关系的情况,则系统具有质量分形特性,即满足:M =A M D r - (12.145)或写为: MD Br -=3ρ (12.146)式中,M ,ρ 分别为系统的质量和密度;D M 为质量分形维数; A ,B 为与被测系统质量、密度分布无关的测量长度. 对于质量分形有 0≤D M ≤3, 再联系式(12.144)可知,α=D M ,即对具有质量分形体系 0≤α≤3. Schmidt 指出,对于畸变系统,当 s >>, 满足 s ξ>>1 条件(这里 ξ 是系统产生散射的特征长度)时,I (S )正比于散射矢量 S 的负指数幂,此时的散射又称“指数律”散射,即 SAXS 强度 I(s) 与分形有下述关系:I(S)=I 0s -α (12.147)两边取对数,即:s I s I ln )0(ln )(ln α-= (12.148)式中,I(0) 为 0→s 时的散射强度.由式 (12.148) 可知,作 s s I ln ~)(ln 曲线,如果 s s I ln ~)(ln 呈直线,则直线斜率为 α,表明有分形存在,并可确定分形类别及分形维数.对于具有分形行为的多孔体系,SAXS 强度与分形的关系已由 Schmidt 给出. 将式(12.131)化为:I(S)= I e V 0⎰∞-01221rdrsr r S)sin()(γρ∆ϕϕ(12.149)式中,21,ϕϕ 为样品中相 1,相 2 的体积分数;ρ∆ 为两相电子密度差,V 0 为被辐照样品体积. 对于孔界分明的多孔材料且在 r 较小时,式(12.149) 中的相关函数 )(r γ 可以在 r 0 附近展开:313⋅⋅⋅⋅⋅⋅+∂∂+==r rr r r 0)(1)(γγ (12.150)如果我们引入表示第 i 组分中长度为 r 的孔存在于第 j 组分中的几率函数 P ij (r), 则按 )(r γ 定义,)(r γ 可被表示为:P 11(r)=)(21r γϕϕ+P 22(r)=)(12r γϕϕ+ (12.151)由式(12.151)有, ()2111/)()(ϕϕγ-=r P r 故有:[][]⎪⎭⎫ ⎝⎛-=∂-∂=∂∂=∂-∂=∂∂l rlr r r P rr P rr 222221121111/1)(/)()(ϕϕϕϕϕϕϕγ注意到, AV l 0214ϕϕ=,则上式化为:214)(V A rr ϕϕγ-=∂∂ (12.152)所以式(12.150)化为:⋅⋅⋅⋅⋅⋅+-=02141)(V Ar r ϕϕγ (12.153)将式(12.143)代入到式(12.153)有:213041)(V rN r Dfrϕϕγ--= (12.154)考虑到某系统的分形是在一定范围内存在,为此我们定义其上界为 ξ,当 r>ξ 时,分形不存在. 为此,相关函数 )(r γ 为:)/()()(ξγγγr r r c fr=为简单起见,令 )/exp()/(ξξγr r c -=,则上式为:314)/exp()()(ξγγr r r fr-= (12.155)将式(12.154)和(12.155)代入到式(12.149)有:I(S)=⎰∞---⎥⎦⎤⎢⎣⎡-∆0/0213010212)sin(41rdr sr eV r N SV I r De ξϕϕϕϕρ (12.156)注意到, Gradshleyn 和 Ryzhik 积分:[])(tansin ))(()sin(//ζμζμΓμζμs S dr sr erx 12221----∞-+=⎰式中,)(x Γ为 Γ 函数. 式(12.156)化为:I(S)=[][][]⎭⎬⎫⎩⎨⎧+--Γ-+Γ∆------2/)5(22021102211212)(4)(tan )5(sin )5()(tan 2sin )2(D e s V s D D N s s SV I ξϕϕξξξϕϕρπ (12.157)在 s ∞→ξ, s>>1-ξ 且 D=2 时,式(12.157)有:I(s)=402)(21-∆SN I e ρ表明,当 D=2 时,恰恰是当 S>> 时, I(s)∝4-s 的 Porod 定律关系. 当 D=3 且 s>>1-ξ时,式(12.157)为 0,为得到具有分形条件下的 I(S) 必须将式(12.157)加以修正,即研究 D 3→ 的条件下的 I(s) 值. 注意到:tan []311)(0)(2)(---+-≈ξξπξs s ssin(ξs )-11)(-≈ξs则式(12.157)最后形式为:I(s)=2402101021241)(--⎥⎦⎤⎢⎣⎡-∆s V N V I e ϕϕξϕϕρ (12.158)对于分形维数为 2D ≤<3 且 s>>1-ξ 时, 其质量分形m D 与 I(s) 关系为:315I(s)=[]{}mD m m m m s D D D I ---+Γ)1/(2/)1(sin )1(0π (12.159)表面分形s D 与 I(s) 关系为:I(s)=[])6(02/)1(sin )5(sD s s s s D D I ----Γπ (12.160)式中, I om , I 0s 均为与实验条件和分形结构有关的常数. 将式(12.159),(12.160)和(12.144)相比可知,对质量分形 3≤=m D α, 对表面分形 s D -=6α, 即 ,3>α 清楚地表明了根据 SAXS 强度测量可以确定体系的分形结构. 同时, 分形维数 D 与粒子回转半径 R g 有下述关系:2/)1(22ξ+=D D R g (12.161)采用分形理论也可以阐明高分子链段 Flory 的自回避无规行走模型与分形维数的关系.§12.14 小角中子散射(SANS)近 20 多年来基于中子源及其特点,线束设备和散射记录装置的改进,中子散射已在凝聚态物质结构研究中得到广泛的应用. 现仅对这一技术作一简要介绍.§12.14.1 中子源及 SANS 原理1. 中子源中子源有下述 5 种:放射性同位素中子源; 加速器中子源; 核裂变反应堆中子源; 带电粒子束裂变和聚变中子源; 等离子体中子源. 核裂变反应堆中子源由于其具有很高的中子强度, 是目前较为理想的中子源, 已广泛应用于不同材料的结构研究中.由原子核裂变反应产生的中子, 一般都具有几兆电子伏特的能量; 通过减速后, 可得到能量为 E=30 meV, 波长为 0.17nm 左右的中子流. 对于在这一能量附近的中子流, 称为热中子; 能量低于热中子的称为冷中子. 通常用于散射实验的中子源是反应堆中子源和加速器中子源, 它们均可提供较高的中子通量.反应堆中子源是基于原子核裂变反应, 由核裂变材料 235U, 冷却剂慢化器和慢化反射器构成; 加速器中子源则是基于核蜕变反应, 藉助于加速器将粒子高度加速, 利用加速粒子的短脉冲轰击靶材料,从而获得中子束.2. SANS 原理316SANS 原理基本上与 SAXS 相同, 只是 SAXS 是样品的核外电子的散射; 而 SANS 由于中子不带电,当中子打击到样品上时, 中子与核外电子几乎不发生作用, 没有散射出现, 而是中子与原子核作用产生的散射. 有鉴于此, 只要将 SAXS 强度表达式中的相干散射振幅转化为核的相干散射振幅, 则 SANS 相干散射强度即可得到.体系中的粒子干涉现象, 都可以通过 SAXS 和 SANS 去描述:∑⋅=ii i 0s )h r i exp(P E E(12.162)这里, E s 和 E 0 分别为散射电场强度和入射电场强度; P i 是第 i 个散射体元的散射能力; i r是第 i个散射体元到参考坐标原点的距离; 散射矢量h 的值, λθsin π4h =. θ 散射角; λ 是波长.SAXS 和 SANS 的主要差别在于式 (12.162) 中的 P i ,对于 SANS P i 是与原子核的性质有关,是原子核的散射;对 SAXS P i 则是与电子密度有关的散射,是核外电子的散射. 由于散射源不同, 造成了对所研究体系结构的不同表征. 众所周知, 氢原子(H)同其它元素比较, 其 X 射线散射能力极差. 相反, 由于中子的散射能力决定于元素的原子核裂变, 与核外电子的变迁无关; 因此, 即便是对 H 原子,它也是中子的较好散射源. 由此可知, 中子散射对不同的同位素(如氢和重氢)其散射能力不同; X 射线散射对不同的同位素其散射能力是相同的. 在 SANS 中, 利用标记方法研究聚合物结构具有重要意义.考虑由原子核和电子壳层磁矩产生的中子散射, 对由 N 个原子造成的弹性散射截面(σ), 在 Born 一级近似下, 单位体积内中子被散射在单位立体角(Ω)中的微分散射截面为:()()()incohcoh d h d d h d d h d ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=ΩσΩσΩσ (12.163)式中, 相干散射: ()()()∑=-⋅+-=⎥⎦⎤⎢⎣⎡ΩNj i RR h i WW j i cohji ji eeb b N d h d 1,1σ (12.164)非相干散射: ()∑=-=⎥⎦⎤⎢⎣⎡0νν1νW 2ν,incoh νincohe)π4/σ(CΩd h σd (12.165)r i , r j 分别为 i,j 两原子距参考坐标原点的距离; λθπsin 4=h ,θ 为中子射线散射角,λ为 中子波长; νC 是原子份数; ∑==0ν1νν1C ; 0ν为不同元素的数目; vW e -为 Debye-Waller 因子; b, ν,incoh σ为中子散射相干长和非相干散射截面均有表可查.量子力学已证明, 当整个中子散射截面 ()⎰ΩΩσd d h d N 小于几何截面时, Born 一级近似式(12.163)总是成立的.317如果不考虑非相干散射, 且分子间不存在相互作用, 式 (12.163) 化为:())h (KmP )C 1(C Ωd h σd DD -= (12.166)式中, C D 是标记分子的浓度; K 是对比度因子; m 为聚合度; P (h ) 为聚合物分子形成因子; .()[]∑-=j,i j i2R Rih exp m1)h (P (12.167)R i , R j 分别为 i,j 两原子距参考坐标原点的距离. 当 h 很小时, 式 (12.167) 可近似表达为:)R h 31exp()h (P 2g 2-≈ (12.168)或写为:2g 2R h 311)h (P 1+≈ (12.169)R g 为回转半径.为计算方便, 引进简约散射强度:[])h (mP K )C 1(C /d )h (d )h (J D D =-Ωσ= (12.170)由此可见, 在小角(小h)范围内, 可以测定样品的回转半径 R g . 将 p(h)~h 曲线外延至 0h →, 可以求出样品的表观分子量, 并由此求得控制分子的分离条件. 表 12.9 给出了不同 h 范围内 SANS 可获得的结构信息.表 12.9 中子散射(NS) 在不同 h 值下可求得的结构参数NS 的 h(nm -1) 值范围 结 构 参 数0. 0.05 ~ 0.3 分子量; 回转半径R g ; 分子链分聚效应(SANS 范围)0. 0.3 3 在一个结晶片层中, 聚集结晶基元(stem)的(IANS 范围) 平均数目及其在一个结晶片层中同一分子的结晶基元之间的平均距离含3 ~ 50 结晶基元之间的直接相关函数 (WANS 范围)§12.14.2 SANS 仪图 12.50 是一种 SANS 仪的装置示意图. 由核反应堆通过核裂变产生的连续冷中子流, 经过弯形导管进入单色器, 再通过速度选择器(它可将中子束按不同能量进行分离), 然后再进入可将中子束准直的导管; 中子束再前行进入斩波器(对反应堆中子源它用于产生脉冲中子束; 对加速器中子源则用于给出单色化脉冲中子束), 然后中子束再入射到样品上, 最后将经过样品散射的中子束通过检测多点计数器组成. 改变样品与中子源间距离器.该检测器是由 1cm2正方形分有 4096 个格子的 BF3(L)和样品与检测器间距离(D), 可获得不同的入射线束与散射线束的角度.图 12.50 SANS 仪示意图§12.14.3 SANS 特点与 X 射线散射相比, 小角中子具有下述特征:1. 反应堆或加速器脉冲中子源的能量是连续的, 亦即其波长是连续的. 常用的中子源波长为0.1~1nm 是研究链结构, 相结构等的理想波段. 采用冷中子源时, 其波长为 1nm 左右, 在较小散射角下, 也可获得满意的分辨率, 且可避免多重 Bragg 背景散射, 其 h 值比 X 射线小 10 倍, 应用更广泛. 使用热中子流则可用 0.1nm 左右的波长. 对研究单胞结构, 单链结构等具有重要意义.2. 中子不带电. 由于中子与原子的相互作用是原子核的相互作用; 而 X 射线与原子的相互作用是核外电子的散射作用. 中子散射性质由原子核所决定.3. 中子具有磁性. 中子是研究带有磁性聚合物的形态结构, 磁涨落的有利工具. X 射线是电磁波, 它不能测定具有磁性聚合物的结构.4. 中子对同一元素的不同同位素具有不同的散射长度. 如氢(H)和重氢(氘,D)分别为=-0.37⨯10-12cm, b D=0.66⨯10-12cm. 用标记方法可以研究处于浓溶液中的聚合物链形态结构等.bh5. 中子穿透性强. 这是因为中子对绝大多数材料的吸收小, 即使波长为 0.5 ~ 1.5nm时, 其吸收系数也很小, 所以中子具有较好的波长选择性.6. 利用冷中子能量低, 速度小的特点, 可以研究聚合物的动态结构.§12.14.4 SANS的应用根据 de Broglie 提出的粒子波动方程:318。
小角X射线散射 PPT课件

为轴比
纪尼叶近似律(一个粒子散射的近似表达式)
2 h I ( h) [ I ( h)] I e n 2 (1 R 2 c ...) 3
Ien e
注:适用于任何形状粒子,但不适用于散射曲线的高角部分
N个粒子的单散射体系,纪尼叶近似律
I ( H ) I e Nn 2 e
a单散系 b稀疏取向系 c多分散系 d稠密粒子系 e密度不均匀粒子系 f任意系 g长周期结构
以单散系为例讲解散 射强度的几个公式
单散系散射强度
X射线是一种电磁波,
X射线散射和衍射都是 由于当X射线照到物体上时,物体的电子作受 迫振动所辐射的电磁波互相干涉引起的物理 现象。
一个电子的散射强度
X射线在晶体中衍射的基本原理
射入晶体的X射线使晶体内原子的电子发生频率相 等的强制振动,因此每个原子可作为一个新的X射 线源向四周发射波长和入射线相同的次生X射线。 他们波长相同,但强度非常弱。但在晶体中存在按 一定周期重复的大量原子,这些原子产生的次生X 射线会发生干涉现象。当次生X射线之间的光程差 等于波长的整数倍时光波才会相互叠加,从而被观 察到。
为电子云密度
对于球形粒子
sinh R hR cosh R 2 I ( h) [ I ( h)] I e n [3 ] 2 ( hR )
2
R为离子半径
球形粒子散射强度图
对于半轴为a,a,wa的回转椭球形粒子
I(h) I n
e 2
0
2
(ha
2
cos a sin a ) cos ada
产生小角X射线散射的情况
X射线小角度衍射ppt课件

四、SAXS的实物举例
1.实物S3-MICRO:
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
2.S3-MICRO的工艺参数:
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
2.发展历史
• 自20世纪30年代发现小角X射线散射现象 以来,它已成为材料几何结构表征的有效手 段之一。
• 历史上,SAXS发展缓慢,主要是因为小角相 机的装配操作麻烦,还受X射线强度的限制, 曝光时间(特别是稀溶液)很长。
• 20世纪70年代以后,随着同步辐射(SR)装 置的建立,以同步辐射为X射线源的小角散 射(SR-SAXS)平台成了小角X射线散射实 验的主要基地。
一、SAXS的概述
1.概念 当X射线照到试样上,如果试样内部存在纳
米尺寸的密度不均匀区(1-100nm),则会在 入射X射线束周围2-5°的小角度范围内出现 散射X射线.称为X射线小角度散射,英文为
Small Angle X-ray Scattering,简称SAXS.
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
• SAXS对试样的适用范围较宽,可以是液体、固体、晶体、 非晶体或它们之间的混合体,也可以是包留物和多孔性材 料等。
• SAXS可以研究高聚物的动态过程,如熔体到晶体的转变过 程。
• 当研究生物体的微结构时,SAXS可以对活体或动态过程进 行研究。
2_小角X射线散射(专题课2)

例2:密度分布呈长度为l 短棒(无限薄)颗粒
2009-5-4
小角X射线散射
2009-5-4
小角X射线散射
对立体角平均:
2009-5-4
小角X射线散射
所以长度为 l 薄短棒散射强度:
同理可得到半径为R, 体积为V圆盘的颗粒的小 角散射强度:
2009-5-4
小角X射线散射
1级Bessel函数
相同回转半径颗粒的小角散射强度的实验曲线:
长X射线的吸收很强。
– 我们必须解决长波长X射线的吸收问题,使得 实验装置更加复杂;
– 长波长X射线工作时X射线探测器的效率会降 低。
2009-5-4
小角X射线散射
• 当研究的晶格面很长,如相当于上百个原
子距离时,散射的角度就会很小。
• 小角X射线散射还可应用于:
胶体、陶瓷、高分子聚合物等颗粒的尺寸、形 状和分布:
与X射线衍射类似,我们也可以将散射强度表示成 密度的函数:
2009-5-4
小角X射线散射
指数部分对角度的平均 及应用Debye公式:
2009-5-4
小角X射线散射
Guinier 导出了一个适用于极小散射角的强 度公式,由于这 个公式采用的粒度参数(回转半 径)适用于任意形状的颗粒。更由于它的简明性和
2. 小角X射线散射
Small Angle X-ray Scattering (SAXS)
2.1. 简介
• X射线散射的波矢(大小)
小于0.1Å-1 。
2009-5-4
小角X射线散射
• 实空间中的长度:
Cu Kα: 100 Å 1000Å
2009-5-4
0.45º 0.045 º
小角X射线散射
第六章小角X光散射

s1 s2 s4
s
s3
Q
4
0
s2I (s)ds
1
2
2
0
q2I (q)dq
积分不变量
I•q2(nm-2)
Q
q (nm)-1
不变量的一般性质(1)
Q
1
2
2
0
q2I (q)dq
V
2
即不变量等于照射体积乘以均方电子密度, 与具体几何形状无关
Q V 2
(r)
r (r)
r
由平均值 <>可得到一个偏差分布(r) (r) (r)
a3
(r)
r
a2
b3
s
A(s) b2
a1
b1
A(s) V (r) exp(i2 s r)dr
在 数 学 上 , 这 种 转 换 就 是 电 子 密 度 函 数 (r) 的 Fourier变换。电子密度函数(r)为实空间中r的函数, 而振幅A(s)为倒易空间中s的函数。
a3
(r)
r
a2
b3
s
A(s) b2
不变量Q定义为I(s)在整个样品空间的积分
Q
I
(s)ds
1
(2
)3
I (q)dq
各向同性材料中I(s)仅依赖于s 的大小(s为标量):
Q
4
0
s2I (s)ds
1
2
2
0
q2I (q)dq
s在各个角度均匀分布, 亦即在球面上分布
球 面 元 面 积 为 4s2 , 厚 度为ds,体积为4s2ds
6.1 预备知识
S0/
A(x) A0 exp(i2 s r)
A1 A0 exp(i2 s r1) A2 A0 exp(i2 s r2 )
小角X射线散射

a. 研究溶液中的微粒;
b. 动态过程研究; c. 研究高分子材料;
百分数等参数,而TEM方法往往 很难得到这些参量的准确结果, 因为不是全部颗粒都可以由 TEM观察到,即使在一个视场范 围内也有未被显示出的颗粒存 在;
d. 电子显微镜方法不能确定颗粒 g. 小角X射线散射方法制样方便. 内部密闭的微孔,SAXS可以; e. 小角X射线散射可以得到样品 的统计平均信息; f. 小角X射线散射可以准确地确 定两相间比内表面和颗粒体积
第四章 小角X射线散射
课程主要内容
• 小角X射线散射基础理论 • 小角X射线散射研究的几种常见体系 • 小角X射线散射系统简介
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍) 玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
——陶瓷可以精确机加工,灯丝位置可准 确定位。
同步辐射X射线
E 2
比表面
• Porod定理主要提示了散射强度随散射角度变化的渐 近行为。 • 它可用于判断散射体系的理想与否,以及计算不变量 Q和比表面SP等结构参数。
Fractal Systems
Characterization of Fractal System
ln[I(h)h-1]
Slope= -
小角X射线散射
当X射线照的试样上,如果试样内部存在纳米尺度的密度 不均匀区域(2-100nm)时,则会在入射X射线束周围 0~4°的小角度范围内出现散射X射线,这种现象称为小角 X射线散射(Small Angle X-ray Scattering,SAXS)。
引起小角X射 线散射的几种 主要情况
不同仪器可能探测的物质结构尺寸范围
小角X射线散射简介(课堂PPT)

9
准直系统
小角X射线散射
Gobel Mirror 线平行汇聚光镜
单色性 高强度 准直光束
抛物线型多层膜,利用不同层面材料的晶面间距值不同, 使所有层面的衍射线变为发散度为0.04°的单色平行光。
Lens 点平行汇聚光镜
电光源的发散光经过Lens的数万条异形光导毛细管后, 将:
a. 研究溶液中的微粒;
b. 动态过程研究;
c. 研究高分子材料;
d. 电子显微镜方法不能确定颗粒内部密闭的微孔,SAXS可以;
e. 小角X射线散射可以得到样品的统计平均信息;
f. 小角X射线散射可以准确地确定两相间比内表面和颗粒体积百分数等
参数,而TEM方法往往很难得到这些参量的准确结果,因为不是全部颗
衍射角度:4-170°
由晶格点阵产生的相干散射
样品
小角X射线散射(SAXS) 散射角: 0-4° 由电子密度变化引起的散射
5
小角X射线散射
小角 X射线散射(Small-Angle X-ray Scattering)是一种用 于纳米结构材料的可靠而且经济的无损分析方法。SAXS能 够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、 粉末和块材的形貌和取向分布等方面的信息。
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
16
分析软件
新型小角X射线散射技术简介
《小角激光散射》PPT课件

4.染料激光器 染料激光器具有增益大、效率高、输出激光可在很 宽的波段范围内调谐等特点。染料激光器以染料作为工 作物质。 染料激光器采用光鼓励方式,常用的鼓励光源有: 单脉冲红宝石激光器,脉冲氮分子激光器,氩离子激光 器和特殊闪光灯等。他们可以激发出不同波长的染料激 光。输出功率亦可从1毫瓦至几百兆瓦。
比于波长四次方的倒数,这被称为有名的瑞利 〔Rayleigh〕定律。
后来者又开展用于尺寸与波长相当〔d~l〕 的有吸收和各项异性的粒子体系。
1944年Debye将Einstein的涨落理论应用到 高分子溶液,建立了理论,测定了橡胶的相对分 子质量,并得到很快开展。1948年Zimm提出有 名的作图法。目前,光散射技术已经成为测定相 对分子质量器
〔一〕激光振荡 在激光工作物质的两端装上反光镜,光就在反光
镜间屡次来回反射。由于光程增长很大,使受激发射 光强急剧增大。这种现象称为激光振荡。
产生激光振荡的条件是两个反射镜之间的光必须 是驻波,波节在两个反射镜处。
此外,放大的增益必须超过由于偏离光轴、反射 镜的漫反射和吸收等造成的损失。
工作物质是实现粒子数反转分布的增益介质。它可以 是固体,如晶体、半导体、铷玻璃等;也可以是液体或气 体。
光学谐振腔是两块相互平行的反光镜,置于工作物质 的两端,这两块反射镜相对的面上镀有多层介质膜,一块 是全反射的,另一块是局部反射的。谐振腔的两块反射镜 使受激辐射的光在平行于腔轴的方向上进展反响和振荡, 从而使光反复的放大。并通过局部反射镜,输出激光。
《小角激光散射》PPT课 件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 k 2 Rc
2
~ 分可得一条直线,斜率为a,则得回转半径
h 2 图,在低角部
RC 3a
单散射系散射的分析解释
确定粒子的回转半径、粒子形状因子
粒子间干涉影响的消除 计算离子体积、粒子质量、比内表面 确定粒子形状、粒子特征函数、距离分布函
小角X射线散射
主要内容
小角X射线散射基础理论
产生小角X射线散射的情况 小角X射线散射的体系 以单散系为例讲解散射强度的几个公式 单散射系散射的分析解释 小角X射线散射系统简介 小角X射线散射的应用
小角X射线散射基础理论
20世纪初,伦琴发现了比可见光波长小的辐射。由于对该射 线性质一无所知,伦琴将其命名为X射线 (X-ray)。 到20世纪30年代,人们以固态纤维和胶态粉末为研究物质发 现了小角度X射线散射现象。 当X射线照射到试样上时,如果试样内部存在纳米尺度的电 子密度不均匀区,则会在入射光束周围的小角度范围内(一 般2 6º )出现散射X射线,这种现象称为X射线小角散射 或小角X射线散射(Small Angle X-ray Scattering),简写 为SAXS 。 SAXS已成为研究亚微米级固态或液态结构的有力工具
X射线与物质的作用
热效应
入射X射线
吸 收 体
透射X射线
散射X射线
相干散射 不相干散射
汤姆逊散射
电子
反冲电子 俄歇电子 光电子
康普顿散 射 光电效应
荧光X射线
X射线
X射线是一种波长很短(0.05-0.25nm)的电磁波
当一束X射线照射到试样时,可观察到两个过程: 1.若试样具有周期性结构(晶区),则X射线被相干 散射,入射光和散射光之间没有波长的改变,这种 过程称为大角X射线衍射效应。 2.若试样具有不同电子密度的非周期性结构(晶区 和非晶区),则X射线被不相干散射,有波长改变, 这种过程称为小角X射线衍射效应。
数、积分不变量 顶峰分析 判断粒子界面性质
小角X射线散射仪
准直系统,获得发散度很小的平行光束,分
点准直和线准直。准直系统的狭缝越细越好, 准直系统长度越长越好,这样可获得发散度 很小的平行光束。 试样架 真空室 接收系统
小角X射线散射系统
SAXS几何装置示意图
X 光源:(1)旋转阳极靶 (2)同步辐射 探测器:(1)照相法 (2)计数管法 (3)位敏探测器 (4)成像板法
锥形准直系统
多用于定量测定
Bruker SAXS仪(德国布鲁克)
Rigaku SAXS仪(日本)
Philips SAXS仪(荷兰)
同步辐射SAXS仪
小角X射线散射方法的特点
研究溶液中的微粒,最为简便 研究生物体微结构,研究活体和动态过程 某些高分子材料的散射强度很强 研究高聚物流态过程 确定粒子内部封闭内孔 获得试样内统计平均信息 可准确确定两相间比内表面和离子体积百分数等参 数 制样方便
因为散射角很小,所以
1 cos2 2 1 2
所以在小角度范围内,一个电子的散射强度与散射角无关
一个静止粒子的散射强度
h
一个 p电子
s
r
如左图所示,入射方向与 散射方向夹角为2θ。
散射方向
散射矢量
2 s s 0 h
o
s0
入射方向
h h 4 sin
为电子云密度
对于球形粒子
sinh R hR cosh R 2 I ( h) [ I ( h)] I e n [3 ] 2 ( hR )
2
R为离子半径
球形粒子散射强度图
对于半轴为a,a,wa的回转椭球形粒子
I(h) I n
e 2
0
2
ha (
2
cos a sin a ) cos ada
2 2 2
为轴比
纪尼叶近似律(一个粒子散射的近似表达式)
h2 2 I ( h) [ I ( h)] I e n 2 (1 R c ...) 3
Ien e
2
k
2 2 RC
2
注:适用于任何形状粒子,但不适用于散射曲线的高角部分
N个粒子的单散射体系,纪尼叶近似律
I ( H ) I e Nn 2 e
a单散系 b稀疏取向系 c多分散系 d稠密粒子系 e密度不均匀粒子系 f任意系 g长周期结构
以单散系为例讲解散 射强度的几个公式
单散系散射强度
X射线是一种电磁波,
X射线散射和衍射都是 由于当X射线照到物体上时,物体的电子作受 迫振动所辐射的电磁波互相干涉引起的物理 现象。
一个电子的散射强度
Thank you
SAXS 准 直 系 统 —针孔准直系统
使用真空准直配和照相法记录X射线强度,可得全方位的小角散 射花样,适用于取向粒子,可避免准直误差,不适用于定量测定
四狭缝准直系统
计数管接收散射X射线强度。第一二狭缝宽度固定。 第三狭缝宽度可调,可挡住前两个狭缝产生的寄生散 射
Kratky U 准直系统
较高的角度分辨率,扩展了粒度的研究范围。可获得小角度 的散射强度数据,使得外推的零角散射强度值精确,提高积 分不变量的计算精度
X射线照到物体上时,物体中的每个电子都变成一个 散射源,一个电子的不同方向的散射强度由汤姆逊公 式决定:
e 4 1 1 cos 2 2 Ie( ) I 0 2 4 2 mc a 2 I 0 — 入射X射线强度 a 试样到接收器距离 e — 电子电荷 m — 电子质量 c — 光速 2 — 散射角
只考虑相干散射(散射角很小,不相散射可忽 略不计),一个固定粒子散射强度
求和形式
I ( h) I e f f j cos( h r ) k j
kj
k
这里 rk j r j r k
单散体系中平均散射强度
sinh rkj I (h) [ I (h)] I e v v (rk ) ( r j ) dvk dv j hrkj
X射线在晶体中衍射的基本原理
射入晶体的X射线使晶体内原子的电子发生频率相 等的强制振动,因此每个原子可作为一个新的X射 线源向四周发射波长和入射线相同的次生X射线。 他们波长相同,但强度非常弱。但在晶体中存在按 一定周期重复的大量原子,这些原子产生的次生X 射线会发生干涉现象。当次生X射线之间的光程差 等于波长的整数倍时光波才会相互叠加,从而被观 察到。
产生小角X射线散射的情况
纳米尺寸的微粒子
纳米尺寸的微孔洞 存在某种任意形式的电子云密度起伏 在高聚物和生物体中,结晶区和非晶区交替
排列形成的长周期结构
其物理实质在于散射体和周围介质的电
子云密度的差异。
小角X射线散射的体系
单散系。由稀疏分散、随机取向的、大小和形状一致的,具有均匀电子 云密度的粒子组成。所谓的大小和形状一致是根据不同的研究对象进行 不同的近似。随机取向是粒子处于各种取向的几率相同,总散射强度是 粒子各种取向平均的结果。稀疏分散是粒子的尺寸比粒子间的距离小得 多,可忽略粒子间散射的相干散射,将散射强度看做多个粒子的散射强 度之和。均匀电子云密度指的是各个粒子的电子云密度相同。 稀疏取向系。由相同形状和大小、均匀电子云密度,但相同一致取向的 粒子组成。 多分散系。由形状和电子云密度相同,但尺寸不同粒子所形成的随机取 向、稀疏分布的粒子体系。 稠密粒子系。大小、形状和电子云密度相同,随机取向的,粒子间距很 小的粒子体系 密度不均匀粒子系。大小、形状相同,随机取向的,稀疏分布的,电子 云密度不均匀的粒子体系。 任意系。不能包括在上述的体系。 长周期结构。
研究高分子结构的范围
通过Guinier散射测定溶液中高分子的形态和尺寸, 测定胶体中胶粒的形状、粒度及粒度分布,研究结 晶高分子中晶粒、共混高分子中微区(分散相、连 续相),高分子中空洞和裂纹的形状、尺寸及其分 布。 通过Zimm图测定粒子量与相互作用参数 通过Bragg衍射测定晶体空间结构分布 通过长周期测定研究高分子体系中晶片的取向、厚 度与结晶百分数 研究分子运动和相变