太阳能光热能电综合利用技术

合集下载

太阳能利用的三种形式

太阳能利用的三种形式

太阳能利用的三种形式太阳能是人类最为普遍使用的一种清洁能源,因为它的使用无污染无排放,而且能源源源不断。

人们利用太阳能的三种形式:太阳光电转换、太阳能热利用、太阳能光热联合利用。

本文将围绕这三种形式展开讲述。

太阳光电转换是目前世界上最为成熟的太阳能技术之一。

太阳光电技术(Photovoltaic,PV)是指将太阳辐射能直接转化成电能的过程,利用这种技术,人们可以最大限度地利用太阳光产生的能量,而不必借助于传输介质如水或风。

太阳光电转换系统由吸收光子的光电池组件和电池污染物导电性能的组成,被吸收的光子产生与光之量相对应的局部电位差(电压)。

PV系统可独立运作,可适用于电源不足的偏远地区。

在未来,太阳光电转换技术必将成为各国推广的主力之一。

太阳能热利用是指将太阳能转化为热能,然后利用热能为生产或民生活动提供能量。

太阳能热利用的利用方式主要有两种:太阳能热水器和太阳能空调。

太阳能热水器是将太阳辐射能够直接被转化为热能来加热水。

太阳能空调是利用太阳辐射和环境空气来加热和制冷。

太阳能热利用在人们生产生活中有着重要的应用,特别是在偏远地区,其优势更为明显。

太阳能光热联合利用是近年来出现的一种新型利用方式。

即将上述两种技术融为一体,使得引进的太阳能光热技术更为复杂化,但同时也带来了更高的利用率和效果。

太阳能光热联合利用通过将光热和太阳光电的形式结合起来,实现将太阳能转化为电和热并应用于各领域中。

太阳能光热联合利用是太阳能应用领域中的最新发展方向,其利用率和效果比较高,是未来太阳能的发展趋势。

总之,太阳能的这三种利用形式分别是太阳光电转换、太阳能热利用、太阳能光热联合利用。

每种形式都有自己的优势,对人们的生产和生活都有着重要的意义,并且在未来的发展中,太阳能利用技术必将得到更加广泛的应用。

一种太阳能光伏光热综合利用技术

一种太阳能光伏光热综合利用技术

一种太阳能光伏光热综合利用技术太阳能是一种清洁、可再生的能源,具有光伏和光热两大利用方式。

光伏利用太阳能将光能转化为电能,光热则是利用太阳能将光能转化为热能。

而太阳能光伏光热综合利用技术则将两种利用方式进行结合,以提高太阳能的整体利用效率。

本文将对太阳能光伏光热综合利用技术进行深入探讨。

一、光伏光热综合利用技术的原理太阳能光伏光热综合利用技术是指将光伏组件与光热集热器结合在一起,同时利用太阳能光伏发电和太阳能光热发电的技术。

该技术的原理是,在太阳能光伏发电阵列的背面,设置光热器件,用于将光伏组件背面的余热转化为热能。

在太阳能光伏组件上方设置光伏发电组件,实现光伏发电。

这样一来,既能够利用太阳能进行光伏发电,又能够利用太阳能进行光热发电,充分利用太阳能资源,提高能源利用效率。

2. 稳定发电:由于光伏和光热两种发电方式可以互补,太阳能光伏光热综合利用技术能够在不同天气条件下稳定发电,保障能源供应。

3. 节约空间:通过将光伏组件与光热集热器结合在一起,节约了光伏和光热两种发电方式各自占用的空间,提高了土地利用率。

4. 环保节能:太阳能是一种清洁、可再生的能源,利用太阳能进行发电减少了对化石能源的依赖,有利于减少温室气体排放,保护环境。

5. 经济效益:太阳能光伏光热综合利用技术可以降低能源成本,提高能源利用效率,具有较好的经济效益。

目前,太阳能光伏光热综合利用技术已经在一些太阳能发电项目中得到应用,取得了一些成功的实践经验。

不少科研机构和企业也在积极开展太阳能光伏光热综合利用技术的研发工作,探索更加高效的技术方案。

未来,太阳能光伏光热综合利用技术将继续得到技术上的突破和改进,更加高效的组件和系统将不断涌现。

政府的支持和政策的倾斜也将推动太阳能光伏光热综合利用技术得到更快速的发展。

太阳能光伏光热综合利用技术是一种具有广阔应用前景的技术,将对我国能源结构调整和能源安全起到重要作用。

相信在不久的将来,太阳能光伏光热综合利用技术将取得更大的突破和进展,为实现清洁、高效的能源利用做出更大的贡献。

太阳能光热发电技术

太阳能光热发电技术

太阳能光热发电技术太阳能光热发电技术是一种利用太阳能将光能转化为热能,再将热能转化为电能的技术。

它是一种可再生能源的形式,对于改善环境污染和解决能源危机具有重要意义。

本文将介绍太阳能光热发电技术的原理、应用以及未来发展前景。

一、原理太阳能光热发电技术借助太阳能热量产生高温蒸汽,进而驱动涡轮机产生机械能,最终通过发电机将机械能转化为电能。

这个过程主要包含三个步骤:集热、热能转化和发电。

集热是将太阳能光线聚焦到一个小区域,使得光能被集中并转化为热能。

这通常通过反射镜或聚光器来实现。

集热器通常采用高温耐热材料,如镜面反射层和高温管道。

热能转化是将集热器中产生的高温热量转化为高压蒸汽。

一个常用的方法是将水通过集热器中的管道加热至沸腾,生成高温高压的蒸汽。

这个过程需要高效的热交换器和节能装置来提高能量转化率。

发电是将高温高压的蒸汽传入涡轮机,利用机械能驱动涡轮旋转,再通过发电机将机械能转化为电能。

这个过程需要高效的涡轮机和发电机来提供稳定和可靠的电能产出。

二、应用太阳能光热发电技术在能源领域有广泛应用。

它可以用于发电厂的建设,为城市和乡村提供稳定的电力供应。

此外,它还可以应用于工业制造过程中的热量需求,比如锅炉供暖、工业生产等领域。

在家庭和商业建筑领域,太阳能光热发电技术可以用于供暖和热水供应。

通过安装太阳能集热器,可以将太阳能转化为热能,提供给家庭和商业建筑的供暖系统和热水系统。

这种应用不仅降低了能源消耗,还减少了碳排放,对环境保护有积极作用。

三、未来发展前景太阳能光热发电技术在未来的发展前景非常广阔。

随着科技的不断进步和技术的不断改进,太阳能光热发电技术将会变得更加高效、稳定和可靠。

首先,在集热器方面,研究人员正在研发新型的材料和结构,以提高集热器的光吸收率和热传导效率。

这将提高太阳能的利用率,降低发电成本。

其次,在热能转化方面,研究人员正在探索新型的热交换器和节能装置,以提高能量转化的效率。

这将减少能量损失,提高系统的热效率。

太阳能光热利用技术研究

太阳能光热利用技术研究

太阳能光热利用技术研究太阳能光热利用技术作为可再生能源的一种重要形式,日益受到人们的关注和重视。

在当前全球温室气体排放增加,能源消耗急剧增长的背景下,太阳能光热利用技术被认为是解决能源危机和环境问题的有效途径之一。

本文将就太阳能光热利用技术的研究进展和应用前景展开讨论。

一、太阳能光热利用技术概述及原理太阳能光热利用技术是指利用太阳能的光热转换性质进行能量转换和利用的过程。

其原理基于太阳能的辐射和吸收。

太阳辐射穿过大气层到达地球表面后,可以通过吸收和反射产生热量。

太阳能光热利用技术主要包括太阳能热水器、太阳能供暖和太阳能发电等多个方面。

1. 太阳能热水器太阳能热水器是太阳能光热利用技术的一种常见应用形式。

其基本原理是通过太阳能热能将水加热到适宜的温度,供人们日常生活使用。

太阳能热水器由太阳能集热器、储存水箱和管道系统组成。

太阳能集热器将太阳辐射转化为热能,传递给水箱中的水,供人们使用时将热水抽出即可。

太阳能热水器广泛应用于房屋、酒店、游泳池等场所,具有绿色环保、经济实用的特点。

2. 太阳能供暖太阳能供暖是指利用太阳能光热转换为热能来供应室内供暖的一种技术。

其原理是通过太阳能集热器将太阳辐射转化为热能,然后通过热传导、辐射等方式将热能传递给室内。

太阳能供暖系统主要包括太阳能集热器、热传输管道和室内散热器等组成。

太阳能供暖技术可以在节能减排的同时为用户提供舒适的居住环境,对于大气污染和碳排放的减少具有重要意义。

3. 太阳能发电太阳能发电是太阳能光热利用技术中的重要领域,其原理是通过太阳能光照辐射使光伏电池中的太阳能光子产生光电效应,将光能转化为电能。

太阳能发电系统主要由太阳能光伏电池组件、负载调节器和储能装置等组成。

太阳能发电技术具有可持续发展、分布式供电等优势,能够广泛应用于农村地区、偏远地区以及电力不足的地方,为能源结构优化和能源供应问题提供新的解决方案。

二、太阳能光热利用技术的研究进展太阳能光热利用技术的研究在过去几十年取得了显著的进展。

太阳能光电-光热综合利用系统

太阳能光电-光热综合利用系统

fe e c diiin uiz t n i i p o e s se r qu n y vso tia i t m r v s l o y t m ef in y Ba e o f q e c dvso fce c . i sd n r u ny e iiin
ph tv l i o rc s s hgh a d i o v r in ef in y i lw. hs a t l r g p S lr o o ot c p we o ti i n t c n e so fce c s o So t i ri e b i s u oa a s i c n
We w i,u h n a gZ a i fiS o h n h iZ ag y n m iWu t g t g , im n in i e L oz og yn ,h oj e,h u c u u, hn a e, i i a n n N igj g a
Ab ta t oa n r y i e o mo sy r s r e sr c:s lr e e g s n r u l e e v d,wie p e d a e a d ce n d s r a ,s f n la .Bu oa n r y ts lr e e g
长 三 角 新 能 源 专 栏
太 阳能光 电一 光热综合利 用系统
魏 葳 骆 仲 泱 赵 佳 飞 1 , 春 晖 张艳 梅 武 婷婷 倪 明 江 2寿 1 浙 江 大 学 能 源 清 洁利 用 国 家重 点 实验 室 2 大连 理 工 大 学 海 洋 能 源利 用 与 节 能教 育部 重 点 实验 室
摘 要 :太 阳能储量 巨大 , 分布 广泛 , 清洁安全 。但 太 阳能 光伏发 电存在成 本较 高和 能量 转化 效率较 低 的 问题 。 因此本 文提 出太 阳能光 电一光热综合 利 用方式 。通过 聚光 降低 成本 , 通过 分频综 合利 用提 高 系 统 效率 。在 分频利 用技 术上 , 寻找 具有 特定吸 收发射 特性 的纳 米流体 流 经光伏 电池 上层 . 吸收 光伏 电池 不 能加 以利 用 的部 分 能量。 外 , 用光 学薄膜 , 光伏 电池 可利用 的波段反 射给 光伏 电池 , 余部 分的能 量 此 利 将 其

光伏发电系统的多能互补与综合利用

光伏发电系统的多能互补与综合利用

光伏发电系统的多能互补与综合利用光伏发电系统作为一种清洁、可再生的能源发电方式,正日益受到全球范围内的重视和广泛应用。

然而,单一的光伏发电系统所产生的电能可能无法满足夜间或阴雨天等电力需求高峰时段的能源需求。

因此,提出了光伏发电系统的多能互补和综合利用技术,旨在优化能源利用效率,实现能源供需的平衡。

本文将从多能互补和综合利用两个方面展开论述。

一、多能互补技术多能互补技术利用不同能源之间的互补关系,将光伏发电系统与其他能源系统相结合,以获取更为稳定可靠的能源供应。

下面将以光伏发电系统与风能发电系统的互补为例进行阐述。

光伏发电系统与风能发电系统的互补可以通过两种方式实现。

第一种方式是光伏与风能发电系统的并网运行。

这种方式下,光伏与风能发电系统分别独立并网,通过光伏逆变器和风力发电机逆变器,将两个系统的直流电能转换为交流电能,并输入到市电网中。

这样一来,无论是白天还是风力较强的夜间,都能够利用两个系统所产生的电能,提供更稳定的电力供应。

第二种方式是光伏与风能发电系统的储能互补。

在这种方式下,光伏发电系统和风能发电系统分别通过储能设备将电能存储起来,以便在夜间或风力较弱的时候供电使用。

例如,通过安装可调控的储能电池组,可以将白天光伏发电系统所产生的电能储存起来,然后在晚上或晴雨天使用。

而当风力较强的时候,风能发电系统则可以将多余的电能储存到电池组中,以备不时之需。

通过光伏发电系统与风能发电系统的互补,不仅可以提高能源利用效率,实现电能供需的平衡,还能够降低对传统化石能源的依赖,减少温室气体的排放,进一步促进清洁能源的发展和可持续利用。

二、综合利用技术综合利用技术将光伏发电系统与其他能源利用系统进行有机结合,最大程度上实现能源的综合利用。

在这方面,光热发电技术和太阳能光热利用是两个常见的综合利用技术。

光热发电技术是利用光伏发电系统中太阳能电池板所产生的热能,通过热电转换模块将其转换为电能的技术。

通过在光伏发电系统上加装光伏热板,可以在发电的同时收集热能,通过热电转换模块将其转换为电能。

太阳能光伏光热综合利用技术的不足

太阳能光伏光热综合利用技术的不足

太阳能光伏光热综合利用技术的不足太阳能光伏光热综合利用技术是一种利用太阳能进行能源转换的方式,将太阳能转化为电能和热能的方法。

然而,这项技术在实际应用中还存在一些不足之处,需要继续完善。

首先,目前太阳能光伏光热综合利用技术的能效还不够高。

虽然太阳能光伏光热技术可以同时产生电能和热能,但目前的转换效率仍然有限。

尤其是在光热转换过程中,因为光热转换器件的材料和结构限制,能量损失较大,导致能量利用率较低。

因此,我们需要更进一步的研究和开发新的材料和技术,来提高太阳能光伏光热技术的能效。

其次,光照条件的不稳定性也是太阳能光伏光热综合利用技术面临的问题之一。

太阳能是由太阳辐射而来的,所以光照条件的不稳定性会直接影响太阳能的利用效果。

在阴天雨天等天气不好的情况下,太阳能的收集效率会大幅下降,甚至无法正常运行。

因此,我们需要研究和开发适应不同光照条件的太阳能收集技术,如通过调整光照角度、改进光热转换器件等措施来提高光伏光热技术的适应性。

此外,太阳能光伏光热综合利用技术的成本仍然较高。

目前,太阳能光伏光热技术的设备和材料成本相对较高,限制了其广泛应用。

特别是在发展中国家和一些经济不发达地区,很难承担得起高昂的设备和材料费用。

因此,我们需要降低太阳能光伏光热技术的成本,提高其经济性,使其更具实用性和可持续性。

最后,太阳能光伏光热综合利用技术的规模化应用还面临一些技术和政策难题。

太阳能光伏光热技术需要大量的设备和设施来实现规模化应用,包括光伏板、光热转换器件、储存装置等。

这不仅需要技术上的支持,还需要政府和相关机构的政策支持,如制定激励政策、推动科技创新等。

因此,我们需要加强技术研发和政策支持,推动太阳能光伏光热综合利用技术实现规模化应用。

综上所述,太阳能光伏光热综合利用技术在目前阶段还存在一些不足之处,包括能效不高、光照条件不稳定、成本较高和规模化应用困难等。

为了充分利用太阳能资源,我们需要不断完善技术和工艺,提高能效,降低成本,推动太阳能光伏光热综合利用技术的可持续发展。

太阳能光热发电技术解析

太阳能光热发电技术解析

太阳能光热发电技术解析太阳能光热发电技术是一种利用太阳能将光能转化为热能,再将热能转化为电能的可再生能源技术。

它不仅对环境友好,而且具有广泛的应用前景。

本文将对太阳能光热发电技术进行详细解析,介绍其原理、发展现状以及未来的发展趋势。

一、太阳能光热发电原理太阳能光热发电技术的原理非常简单,主要分为两个步骤:光能转化为热能,热能转化为电能。

在光能转化为热能的步骤中,太阳光通过太阳能集热器聚焦在热工质上,使其温度升高。

这个过程中,太阳光中的光子能量被吸收,导致热工质分子的热运动增强,从而使得温度升高。

一般来说,常用的热工质包括水、石油、盐等。

在热能转化为电能的步骤中,热工质通过热交换器传递热量给工作介质,使工作介质的温度升高,产生蒸汽。

蒸汽驱动汽轮机运转,进而驱动发电机发电。

发电机通过感应原理将机械能转化为电能,从而实现太阳能光热发电。

二、太阳能光热发电技术的发展现状目前,太阳能光热发电技术已经有了长足的发展。

世界各地都有大量的太阳能光热发电项目正在建设中或者已经投入使用。

在光热发电技术中,最常见和成熟的技术为槽式集热器技术和塔式集热器技术。

槽式集热器技术通过平面镜反射太阳光,将光能集中到集热管上,使得热工质升温。

塔式集热器技术则通过高大的中央塔将太阳光聚焦在塔顶的热工质中,实现高温高压的蒸汽发电。

这两种技术在实际应用中都取得了不错的成果,目前已经被广泛采用。

另外,太阳能光热发电技术还有其他的发展路径,如风云一号-05/06A星,它是中国自主研制的太阳能光热发电技术卫星,通过太阳能电池板将太阳能转化为电能,并通过微型太阳炉将太阳能转化为热能,为地面用户提供电力供应。

三、太阳能光热发电技术的未来发展趋势太阳能光热发电技术具有巨大的潜力和广阔的前景,未来的发展趋势将集中在以下几个方面:1. 提高效率:目前太阳能光热发电技术的效率还有提升的空间。

科研人员可以通过改进反射镜、改良集热器材料等方式,提高能量的转化效率,从而实现更高效的光热发电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核 心 技 术----储能
中国科学院电工所研究员、中国太阳能光热发电权
威专家、中国太阳能光热产业技术创新联盟理事长 王志峰博士,在一次发言中强调:太阳能热发电关 键技术在储能,没有储能就谈不上热发电,这是实 现太阳能光热发电全天候运转的技术保障 。
国家政策
今年6月1日,国家发展和改革委员会颁 布的《产业结构调整指导目录(2011年本)》正 式实施,在指导目录鼓励类新增的新能源门类 中,太阳能光热发电被放在突出位置。
蓄能技术得以实现
蓄能技术得以实现,得益于全新隔热材料的研发 成功 蓄能技术的最大障碍是蓄能的流失 隔热领域,最好的商品化隔热材料隔热率也要将 0.4W/K.M 我们拥有独立知识产权的,具有世界领先水平的, 气凝胶GJ干燥制备技术,生产了导热率0.0140.0018W/K.M的世界终极隔热材料,使蓄能损失 降到极低水平。
太阳能发电 ★ 光伏发电
太阳能光电转换
太阳能光电转换光电转换又称太阳能光伏。就是利用太阳电池直接
将太阳光能转化为电能,而太阳能电池通常是利用半导体器件的光 伏效应原理进行光电转换,因此太阳能发电又称为光伏发电。
世界能源结构预测
光伏发电技术比较
太阳能发电目前困境
1,受气候影响很大,如:阴晴、风沙等
这种现状导致我国光伏产业被打上“代工车间”的烙印。
另外,光伏生产技术更新换代较快,光伏技术已经在朝 着全产业链优化、自动化的方向发展,而我国目前主要 靠进口生产线、并且各产业链单兵作战。
进入光伏发电领域的主要障碍
技术壁垒:光伏设备的设计制造十分复杂,涵盖半
导体物理学、热学、自动控制学和机械设计学等多 门学科
太阳能光热稳衡发电技术
蓄能保温计算示例
蓄能温度120℃, 蓄能箱表面积10平方米
保温层厚度20CM,环境温度20 ℃ 根据付里叶定律计算如下: , 采用原最佳保温材料如苯板时 Q=-λ Aδ t/δ d=-0.05*10*100/0.2=-250w 一天损失率=250*3600*24/180*2000=5.4% 采用气凝胶保温 Q=-λ Aδ t/δ d=-0.015*10*100/0.2=-75w
太阳能光热稳衡发电系统
发明的通过太阳能集热装置高效率地集热,应用适合螺杆 膨胀动力机工作温度的相变材料蓄热,再将所蓄能量均衡 的输送给螺杆膨胀动力发电机发电;这种高效率、无峰谷、 全天候的太阳能发电方式,除了可以广泛应用于广大地区 的日常发电,还能解决海岛、边防、偏远村镇、应急救援、 野外工作等更多用电问阳能集热装置----成熟技术
相变蓄能材料----创新发明
低热源双工质螺杆膨胀发电机----成熟技术
核 心 技 术----蓄能
无论太阳光强弱,将其能量全部储蓄于应用了相变
材料的蓄能装置中。 无论何时发电都由恒温的蓄能装置提供热源。 当然恒流、无峰谷、并且直接输出交直流电直接使 用或并网
太阳能的利用
太阳能的利用主要通过 光—热 光—电 光—化学 光—生物质 等几种转换方式实现
太阳能发电 ★ 光热发电
太阳能光热转换
现代的太阳能科技可以将阳光聚合,并运用其能量产生热水、蒸
汽和电力。集热式太阳能(Solar Thermal)。原理是将镜子反射 的太阳光,聚焦在一条叫接收器的玻璃管上,而该中空的玻璃管 可以让油流过。从镜子反映的太阳光会令管子内的油升温,产生 蒸气,再由蒸气推动㶽轮机发电。
人才壁垒:二十一世纪以来,光伏产业发展很快,
光伏设备行业为了更好地支持光伏产业的发展,需 要不断的开发新设备、扩大生产规模,这意味着对 专业人才有很大的需求。目前,行业内有经验的技 术及服务人员数量较少,进入本行业面临着人才缺 乏的障碍。
光伏发电单位投资总成本
目前光伏发电单位投资总成本为1.90 万元/kw,其中

数据来源:中国光伏发展报告
注意:白天有电,晚上呢?
即使只在白天发电,即使是垃圾电,即使政府给与
大力支持,还是进展缓慢,为什么?
没有调峰谷的蓄能技术
所以有太阳能发电公司,几十亿投入很大一部分建
了火力发电厂调峰,有趣吗?
光热发电逐渐走在前列
主要方式:


碟式发电 槽式发电 塔式发电
一天损失率=75*3600*24/180*2000=1.6%
核 心 技 术----储能
创新思维,双工质驱动螺杆膨胀动力机的成功,使
蓄能材料的温度变得更低。
需要温度达到300-500 ℃ 热损失巨大q=- λ Aδ t/δ d=-0.013*10*300/0.2
太 阳 能
太阳能(Solar)是太阳内部连续不断的核聚
变反应过程产生的能量,是各种可再生能源中 最重要的基本能源,也是人类可利用的最丰富 的能源。太阳每年投射到地面上的辐射能高达 1.05×1018 千瓦时,相当于1.3×106 亿吨 标准煤,大约为全世界目前一年耗能的一万多 倍。按目前太阳的质量消耗速率计,可维持 6×1010 年,可以说它是“取之不尽,用之不 竭”的能源。 地球上的风能、水能、海洋温差能、波浪能和 生物质能以及部分潮汐能都是来源于太阳
太阳能光伏电池组件1.09 万元/kw,占总投资成本的 60%左右。
装机容量 1kw 前期费用、工程设计等 太阳能光伏电池组件 并网逆变器 配电测量及电缆等 设备运输 安装调试&入网检验 合计 投资(人民币,万元/kw) 0.20 1.09 0.20 0.10 0.08 0.23 1.90 比例 10.5% 57.3% 10.5% 5.3% 4.2% 12.1%
2,夜晚不能发电
3,发电不稳定,以至于电网不允许上网 4,各种蓄能方法均不成熟
因此,被称为垃圾电
中国太阳能领域研发和创新能力薄弱
技术层面,光伏应用中存在系统效率低、可靠性低,受
自然条件限制大,光伏系统专用蓄电池的研发成本高等 问题。光伏产业尚未建立起全面的研发和创新体系,也 缺乏一些高新制造产业的支撑,因此我国的太阳电池关 键生产设备基本依赖进口。
相关文档
最新文档