中承式钢管混凝土拱桥设计说明书
跨径160m中承式钢管混凝土悬索线拱桥.PDF

Through the above steps, and strictly obey the traffic law about this kind of bridge design specification requirements, design a qualified bridge. Key words: concrete-filled steel tube arch bridge cable line; Multi-span continuous ChanXiangBan; Rigid beam method; Dr Bridge computer
第二步要对进行计算和验算。计算部分包括手算和电算,手算部分主要确定构件的内 力并对其配筋,采用多跨连续单向板计算桥面板内力,并通过配筋验算;采用了刚性横梁 法计算横梁及纵梁的内力,并且通过配筋验算。电算部分主要是为构件的验算服务;验算 部分主要包括建模正确性验算及全桥安全性验算。本部最为关键的便是建模,最后的计算 是否正确,在很大程度上取决于模型建的是否正确。本设计利用桥梁博士软件计算,定义 好截面尺寸、节点及单元。并将计算好的模型参数赋给模型结构单元。添加约束,输入荷 载后模型就建立完成,进入计算阶段。利用软件就可计算出结构各控制截面的内力。
The second step of calculation and checking. Calculate calculate part includes hand and computer calculation, hand part of the main component of the internal force and the reinforcement is determined, the bridge are calculated by use of a multi span continuous ChanXiangBan panel internal force, and through the reinforcement calculation; Adopted a rigid beam method to calculate the internal force of the beam and the longitudinal beam, and through the reinforcement calculation. Computer parts mainly for calculating the component services; Checking part mainly includes the modeling accuracy checking and the safety of the whole bridge calculation. Based modeling, the most important thing is the final calculation is correct, to a large extent depends on the built model is correct. This design USES a bridge software calculation, Dr Defined section size, node, and the unit. And will calculate a good model parameter is assigned to model structure unit. Adding constraints, input load model is built after the completion, entered into the phase of computing. Using the software can calculate the structure internal force of the control section.
桥梁工程60m钢管混凝土中承式拱桥计算书_secret

白莲崖水库拱桥计算书一、工程概况本桥为钢管混凝土中承式拱桥,两拱角中心跨度为60m ,矢高为10m 。
主拱肋截面为矩形截面,截面尺寸为1m ×0.9m 。
风撑:该桥在主拱肋中心位置设风撑一道。
吊杆:初步采用采用PES(FD)5-91低应力防腐索体及其配用锚具。
预应力钢束:图-1 预应力钢束示意图二、有限元计算分析 1、建模说明全桥共有382个结点,541个单元,其中:主拱肋、风撑、横梁、纵梁采用空间梁单元,吊杆采用空间索单元,桥面板采用板单元。
建立的计算分析模型如图-2、图-3所示。
图-2 第一施工阶段分析模型 图-3 第二施工阶段分析模型 材料:主拱肋、纵梁采用C50混凝土,横梁采用C30混凝土;吊杆采用一般钢材特性,其弹性模量取2.0E+11Pa 。
2、施工阶段划分本文的计算中将施工阶段简单分为2个阶段,具体如下表所示。
表-1 施工阶段说明表3、计算荷载1)一期恒载主拱肋、纵梁、横梁以及桥面板均按实际截面尺寸以及相应标号的混凝土容重计入其自重,吊杆则按其公称截面积以及钢材的容重计入其自重。
2)预应力荷载根据施工阶段,预应力钢绞线采用123)二期恒载这里只考虑桥面铺装层的自重。
4)活载分别计算了汽车荷载、人群荷载以及挂车荷载对结构的影响。
汽车荷载采用QC-20按二车道布置,挂车采用挂-100。
5)温度荷载设计时对结构分别考虑了升温20℃和降温20℃的体系温差。
4、荷载组合根据《公路桥涵设计通用规范》(JTJ021 89)的相关规定进行荷载组合,主要进行下列三种组合。
组合Ⅰ:恒载+汽车荷载+人群荷载组合Ⅱ:恒载+汽车荷载+人群荷载+温度影响力组合Ⅲ:恒载+挂车荷载三、静力分析计算结果三种组合组合Ⅰ:恒载+汽车荷载+人群荷载组合Ⅱ:恒载+汽车荷载+人群荷载+温度影响力组合Ⅲ:恒载+挂车荷载表-2 主拱肋控制截面应力结果中跨施工毕边跨施工毕上桥面铺装组合Ⅰ组合Ⅱ组合Ⅲ拱脚-16.10-15.80-15.70-16.10-16.30-16.10 1/8跨-7.58-8.72-9.07-10.60-11.30-10.80 2/8跨-6.06-6.24-6.75-8.50-9.14-8.47 3/8跨-6.57-7.09-7.48-8.82-9.66-8.92拱顶-5.32-5.98-6.31-7.51-7.98-7.66截面上缘截面下缘组合Ⅰ组合Ⅱ组合Ⅲ组合Ⅰ组合Ⅱ组合Ⅲ边支点σmax-6.51 -6.35 -6.31 -14.85 -4.92 -2.70 σmin-10.91 -11.03 -12.608 -16.32 -11.23 -11.561/2边跨σmax-7.16 -2.80 -2.92 -5.16 -4.68 -4.00 σmin-10.81 -5.97 -6.51 -10.58-10.10 -11.27中支点σmax-5.08 -6.21 -4.71 -8.51 -9.79 -8.51 σmin-7.33 -8.30 -7.38 -10.00 -11.17 -10.171/4中跨σmax-7.46 -6.39 -5.91 -5.59 -5.61 -4.13 σmin-10.75 -9.28 -9.57 -10.76 -10.80 -11.401/2中跨σmax-7.24 -6.60 -5.89 -6.79 -5.87 -4.49 σmin-9.85 -10.04 -10.57 -10.77 -10.78 -11.31表-4 吊杆轴力计算结果吊杆选用PES(FD)5-91,其破断载荷为2984KN,吊杆安全系数可达5.37。
中承式拱桥

图5-3 车辆荷载平面计算模型图
图5-4 车辆荷载和恒荷载平面计算模型图
M中=1.4×1984.125+1×2430.86=5208.74kN·m
5.9 建立全桥模型
图5-5 沈阳市辽河大桥三维有限元模型
图5-6 辽河大桥俯视模型图
图5-6 辽河大桥侧面模型图
图5-7 辽河大桥正面模型图
5.9.1 建立主拱圈模型
1. 桥面铺装及桥面排水 机动车道桥面铺装均采用10cm厚沥青混凝土铺装;人行道采用人行 道砖铺装。全桥共设8处共16套铸铁桥面排水管,桥面雨水直接排于桥 下河道。 2. 人行道板、路缘石及栏杆 人行道板采用10cm钢筋混凝土板,上设2cm厚水泥砂浆压花抹面; 路缘石采用现浇C30钢筋混凝土路缘石;人行道栏杆采用不锈钢管。 3. 伸缩缝 在主桥两侧和引桥桥台处各设一道D50型伸缩缝,全桥共设2道。 4. 支座 本拱桥拱肋与桥墩台固结,不设支座。
5.5 拱肋承载力计算:
按规程CECS28:90验算拱肋的强度。 哑铃型拱肋的截面换算面积: 式中:A0----格构柱横截面面积; Asi,Aci----分别为第i分肢的钢管横截面面积和核心混凝土的横截 面面积; n----肢数; Es----钢材弹性模量。 格构柱的整体承载力设计值按下式计算
N*=*12*0i (5-11)
(5-6)
其中,,,为钢材屈服极限,为混凝土抗压强度标准值,为约束效应 系数,系数,,,。 根据相关文献的计算比较结果,方法二不分抗压和受弯,统一取用 一个弹性变形模量是不合理的,方法三在计算钢管混凝土构件的刚度时 充分考虑了钢管对混凝土的套箍作用。依据方法三得到的轴压刚度往往 比实际构件的刚度偏大。方法一和方法三计算出的抗弯刚度比较接近。 同时根据方法三和方法一计算出的抗弯刚度比较接近。通过对三种刚度 简化计算结果比较分析,认为在计算钢管拱肋刚度时,应以方法一 《CECS 28:90》为准。
中承式钢管砼提篮拱桥施工方案.pdf

《网架结构设计施工与验收规范》( JGJ7-91)
《建筑钢结构焊接规程》( JGJ81-2002)
《钢结构设计施工质量验收规范》( GB50205-2001)
《桥梁用结构钢》( GB/T 714-2000 )
《焊接管理制度》( HJ ZR04-2000)
φ 920×16
(2840+5)× 2000
2.0
±2.0
φ 813×18
(2497+5)× 2000
2.0
பைடு நூலகம்
±2.0
φ 610×12
(1878+5)× 2000
1.5
±1.0
φ 508×12
(1558+5)× 2000
1.5
±1.0
φ 500×12
(1533+5)× 2000
1.5
±1.0
2.3 、下料 ①板材下料方法采用气割。
②采用气割时应将溶渣、飞溅物等清除干净。
③采用半自动切割机下料、开坡口时,须留出合理的切割余量,并在切割过程 中密切观察钢板的热变形情况及其它突发情况,以便及时调整,最终保证切割后钢 板的长、宽及对角线误差合乎要求。
④用半自动切割机加工坡口时,应勤用焊检尺或样板检查坡口,使其角度和钝 边符合工艺文件的要求。
筒体
钢板展开下料规格
对角线允差
每边长度偏差
φ1280×20
(3958+5)× 2000
2.0
±2.0
φ1280×22
(3962+5)× 2000
2.0
±2.0
φ1280×24
中下承式钢筋混凝土拱桥介绍

•其它类型
第二节、拱式组合体系桥的构造
一、拱肋
柔性系杆刚性拱:与普通中下承式拱相同
刚性系杆柔性拱:可将拱肋高h从(1/25~1/50)l压缩到 (1/100~1/120)l,若采用刚性吊杆,则横向刚度较大的拱肋、吊杠于系
杠组成半框架,一般情况下可不设横梁。
行车道系由桥面板和纵、横梁组成
第二节 中下承式钢筋混凝土拱桥的构造
一、拱肋的构造 宽度
构 高度 造
截面变化
二、吊杆的构造 刚性吊杆 柔性吊杆
1、刚性吊杆
刚性吊杆截面一般为矩形,采用预应力混凝土;除承受轴力外,还 必须抵抗上下节点处的局部弯矩。为了减小刚性吊杆承受的弯矩, 其截面尺寸在顺桥方向应设计得小一些,而在横桥向为了增加拱肋 的稳定性,尺寸应该设计得大一些。
1、固定横梁
2、普通横梁 3、刚架横梁(见拱上刚架的构造)
五、拱上门式刚架的构造
拱式组合体系桥
第一节 主要类型及设计特点
拱式组合体系为在拱式桥跨结构中,将梁和拱两种基本结构组合 起来,共同承受荷载,充分发挥梁受弯,拱受压的特点。根据拱肋和 行车道的联接方式不同,拱式组合体系可划分为有推力拱和无推力拱 两种类性。无推力拱又称系杠拱,为本课主要介绍内容。
二、总体布置
1、中承式拱桥 钢筋混凝土或钢管混凝土 两拱肋一般在平行的平面;为了提高横向稳定,也可用提蓝式拱
拱肋 拱轴线一般采用二次抛物线,也可采用悬链线 拱肋一般采用无铰拱;通常,拱肋失跨比取值在1/4~1/7之间
组 成 横向联系 横向联接系一般可做成横撑、对角撑或空格式等构造
吊杆分刚性和柔性吊杆两类 悬挂结构
•刚性系杆柔性拱
中承式钢管混凝土拱桥

宝汉高速公路坪坎至汉中(石门)段石门水库特大桥专项监理细则陕西公路交通工程监理咨询有限公司宝汉高速公路汉坪段PH-J5监理工程师办公室二○一四年十月编制:审核:审批:目录第一章、工程概况 (5)一、工程概况 (5)二、工程地形地貌地质 (5)三、气象 (6)四、工程内容 (8)第二章、监理依据及目标 (10)一、监理依据 (10)二、监理范围 (10)三、监理内容 (11)四、监理方针 (13)五、监理目标 (13)第三章、监理人员及设备 (15)一、监理人员 (15)二、监理设备配置 (20)第四章、监理细则 (22)一、质量监理细则 (22)监理工作要点 (22)施工准备阶段监理 (30)施工阶段监理 (31)1、一般要求 (31)2、 (32)3、 (36)4、 (40)5、 (43)6、 (56)7、 (59)8、 (68)9、 (82)10、 (83)二、安全及环保监理 (84)1、安全监理 (84)2、环保监理 (84)三、工程旁站方案 (86)第一章、工程概况地理位置:石门水库特大桥是“陕西定汉线坪坎至汉中(石门)高速公路”的重要节点工程,该桥跨越316国道和石门水库,桥位距石门水库大坝约4km 。
石门水库是国家级水利风景区,位于汉中市汉台区北18公里的褒河谷口。
桥位情况:大桥两侧分别接石门隧道及牛头山隧道,路线在此处为分离式,上下行相距35m。
桥位处路线与316国道及水库垂直交叉,桥面设计高程高出316国道路面约15m,316国道山体侧有滑塌,塌方碎石堆弃在国道靠近水库侧坡岸上。
水库水面宽约200m,水深20m左右,水库最高蓄水水位622.08m,水库不通航,水面两侧坡岸山体陡峭,有基岩出露。
气象水文:年均气温14.8℃,最高气温38℃,最低气温-10.1℃,属温热地区,夏季受副热带高压影响,冬季,受极地大陆冷气团控制,多西北季风,形成寒冷干燥少雨的天气。
春秋为过渡季节,春暖少雨,秋凉多雨,气候湿润。
中承式钢管混凝土系杆拱桥的设计

道路桥梁2016年10期︱99︱中承式钢管混凝土系杆拱桥的设计李 鑫中信建筑设计研究总院有限公司,湖北 武汉 430010摘要: 中承式钢管混凝土系杆拱桥以其景观优美、经济性好、地质要求低等优点得到广泛修建。
本文以一在建跨径布置为(30+120+30)m 三跨双飞雁中承式系杆拱桥为工程背景。
介绍该桥总体设计及受力特性。
桥面系采用纵横梁协作受力体系,确保了大桥因一对吊杆锈蚀断裂的极端情况下大桥不垮,可为该类桥梁今后的设计提供参考。
关键词:钢管混凝土结构;系杆拱桥;设计中图分类号:U448.22+1 文献标识码:B 文章编号:1006-8465(2016)10-0099-021 工程概况大冶湖特大桥是湖北黄石到阳新一级路跨越大冶湖上的一座特大桥,大桥桥跨布置为:67×30+(30+120+30)+59×30m,全长3967m。
其中通航孔主桥采用(30+120+30)m 的中承式钢管混凝土系杆拱桥,引桥采用T 梁。
其中主通航孔桥梁布置如下图1。
图1大冶湖特大桥主桥桥型布置图2 总体设计2.1 主要技术标准(1)桥面宽度:桥面总宽32.0m;净宽 2-14.75m;双向六车道。
(2)设计荷载: 公路-Ⅰ级;结构体系升温按25℃;体系降温-25℃考虑。
(3)地震烈度:基本地震加速度为0.05g,地震基本烈度为Ⅵ度,按Ⅶ度设防。
2.2 拱肋主桥拱肋结构采用钢管混凝土和混凝土箱形拱;其中主跨桥面以上采用钢管砼桁构式肋拱;边拱肋及主跨桥面以下采用混凝土箱形截面;边拱肋端部设置一条端横梁;横梁采用预应力混凝土结构。
主拱轴线采用悬链线,拱轴系数m=2.0,净矢跨比f/L=1/4.0;边拱轴线采用圆曲线。
钢拱肋采用四肢全桁式结构,拱肋截面详见图2,横向肋间中距35.6m,拱肋高为2.7m,宽为2.0m,上下弦管为两根直径φ700×14mm 的 Q345D 钢管,上下弦杆通过横管和腹管连接,横管和腹管为直径φ300×12mm 的 Q345D 空心钢管。
中承式钢管混凝土拱桥

中承式钢管混凝土拱桥--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________宝汉高速公路坪坎至汉中(石门)段石门水库特大桥专项监理细则陕西公路交通工程监理咨询有限公司宝汉高速公路汉坪段PH-J5监理工程师办公室二○一四年十月编制:审核:审批:目录第一章、工程概况 (5)一、工程概况 (5)二、工程地形地貌地质 (5)三、气象 (6)四、工程内容 (8)第二章、监理依据及目标 (10)一、监理依据 (10)二、监理范围 (10)三、监理内容 (11)四、监理方针 (13)五、监理目标 (13)第三章、监理人员及设备 (15)一、监理人员 (15)二、监理设备配置 (20)第四章、监理细则 (22)一、质量监理细则 (22)监理工作要点 (22)施工准备阶段监理 (30)施工阶段监理 (31)1、一般要求 (31)2、 (32)3、 (36)4、 (40)5、 (43)6、 (56)7、 (59)8、 (68)9、 (82)10、 (83)二、安全及环保监理 (84)1、安全监理 (84)2、环保监理 (84)三、工程旁站方案 (86)第一章、工程概况地理位置:石门水库特大桥是“陕西定汉线坪坎至汉中(石门)高速公路”的重要节点工程,该桥跨越316国道和石门水库,桥位距石门水库大坝约4km 。
石门水库是国家级水利风景区,位于汉中市汉台区北18公里的褒河谷口。
桥位情况:大桥两侧分别接石门隧道及牛头山隧道,路线在此处为分离式,上下行相距35m。
桥位处路线与316国道及水库垂直交叉,桥面设计高程高出316国道路面约15m,316国道山体侧有滑塌,塌方碎石堆弃在国道靠近水库侧坡岸上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中承式钢管混凝土拱桥设计说明书
拱桥指的是在竖直平面内以拱作为主要承重构件的桥梁,是我国公路上使用较广泛的一种桥型,在我国已经有1800年的历史了。
其与梁桥、刚构桥不仅外形不同,而且受力性能有较大差别。
拱式结构在竖向荷载作用下,两端将产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面上的应力分布与受弯梁的应力相比较为均匀,因此可以充分利用主拱截面的材料的强度,使跨越能力大大增大。
其主要优点是可充分的就地取材(砖石、混凝土结构时2),可节省大量的钢材和水泥,而且其受力性能好,维修费用少,外形美观,构造较简单。
此拱桥为中承式钢管混凝土拱桥,净跨径225m,主拱圈线型为二次抛物线。
因为在竖向均布荷载作用下,拱的合理拱轴线为二次抛物线,而此拱桥自重集度较为均匀,且为大跨,故选用二次抛物线形式,其造型优美,构造较简单。
桥梁全长316m,起终点至拱桥桥台处选用等截面梁布置,在跨中位置设置桥墩以分配受力。
此拱桥拱肋截面为三角形桁式结构,主钢管为Φ610×13mm,连接钢管和横撑为Φ325×8mm,拱肋高3.7m,宽1.7m,吊索间距为6m,吊索下设30cm×30cm方形截面横梁。
此中承式钢管混凝土拱桥属钢-混凝土组合结构中的一种,主要用于受压为主的结构。
它一方面借助内填混凝土增强钢管壁的稳定性,同时又利用钢管对核心混凝土的套箍作用,使核心混凝土处于三向受压状态,从而具有更高的抗压强度和抗变形能力。
而且由于其承载能力大,正常使用状态是以应力控制设计,外表不存在混凝土裂缝问题。
另外,钢管本身相当于混凝土的外板,它强度高,质量轻,易于吊装或转体,同时钢管兼做纵向主筋在施工过程中,可作为劲性承重骨架,方便施工,可先将空钢管拱肋合龙,再压注混凝土,从而降低施工难度,省去了支模、拆模等工序,简化了施工工艺,并可适应先进的混凝土泵送工艺。
另外钢管混凝土使构件承载力大大提高,具有良好的塑形和韧性,降低了结构自重和造价,而且其防腐、防火性能好,结构造型美观。
但钢管混凝土拱桥也有其自身的缺点。
此管壁外露的拱桥,在阳光照射下,钢管膨胀,容易造成钢管与内填混凝土之间出现脱空现象。
另外,由于钢管先于管内混凝土受压,容易造成钢管应力偏高,而混凝土不能发挥应有的作用,而且其自重较大,相应的水平推力也较大,增加了下部结构的工程量,对地基要求高。
而且虽然接头连接较为简便,但是接头进行焊接具有许多的难以避免的缺陷,钢管内灌注混凝土的密实度问题也较为突出,钢管的养护比较麻烦,钢管混凝土的动力性能和疲劳性能也必须考虑。