2018年北大自主招生金秋营试题解答 数学 PDF版含答案
2018年北京大学自主招生数学试题含解析

一、选择题(选对得10分,不选得0分,选错扣5分)1、整数z y x ,,满足1=++zx yz xy ,则()()()222111z y x+++可能取到的值为()A.16900B.17900C.18900D.前三个答案都不对2、在不超过99的正整数中选出50个不同的正整数,已知这50个数中任两个的和都不等于99,也不等于100.这50个数的和可能等于()A.3524B.3624C.3724D.前三个答案都不对3、已知⎥⎦⎤⎢⎣⎡∈2,0 x ,对任意实数a ,函数1cos 2cos 2+-=x a x y 的最小值记为()a g ,则当a 取遍所有实数时,()a g 的最大值为()A.1B.2C.3D.前三个答案都不对4、已知2020210-是n 2的整数倍,则正整数n 的最大值为()A.21B.22C.23D.前三个答案都不对5、在凸四边形ABCD 中,4=BC ,60=∠ADC ,90=∠BAD ,四边形ABCD 的面积等于2ADBC CD AB ⋅+⋅,则CD 的长(精确到小数点后1位)为()A.6.9B.7.1C.7.3D.前三个答案都不对二、填空题(填空题共5小题;请把每小题的正确答案填在横线上,每题10分)6、满足等式2015120151111⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++x x 的整数x 的个数是_______.7、已知[]4,2,,,∈d c b a ,则()()()22222cbdacd ab +++的最大值与最小值的和为_______.8、已知对于任意的实数[]5,1∈x ,22≤++q px x ,不超过22q p +的最大整数是_______.9、设bc a c b x 2222-+=,ca b a c y 2222-+=,ab c b a z 2222-+=,且1=++z y x ,则201520152015z y x ++的值为_______.10、设n A A A ,,,21 都是9元集合{}9,,2,1 的子集,已知i A 为奇数,n i ≤≤1,j i A A 为偶数,n j i ≤≠≤1,则n 的最大值为_______.2018年北京大学自主招生选拔录取考试数学部分参考答案一、选择题1、A解析:()()()()()()()2222111x z z y y x z y x+++=+++.令⎪⎩⎪⎨⎧=+=+=+,13,5,2x z z y y x 解得⎪⎩⎪⎨⎧=-==.8,3,5z y x 经检验,这组解满足题意,此时()()()16900111222=+++z y x .2、D解析:考虑将1,2,⋯,99这99个正整数分成如下50组:(1,99),(2,98),⋯,(47,53),(48,52),(49,51),(50).若选出的50个不同的正整数中没有50,则必有2个数位于(1,99),(2,98),⋯,(47,53),(48,52),(49,51)中的同一组,不合题意.所以这50个不同的正整数中必有50,而(1,99),(2,98),⋯,(47,53),(48,52),(49,51)中,每组有且只有一个数被选中.因为50+49=99,所以(49,51)中选51;因为51+48=99,所以(48,52)中选52;以此类推,可得50,51,52,⋯,98,99是唯一可能的选法.经检验,选50,51,52,⋯,98,99满足题意,此时50+51+⋯+98+99=3725,故选D.3、A解析:令[]1,0cos ∈=x t ,令()122+-=at t t h ,[]1,0∈t 则()()()()⎪⎩⎪⎨⎧>-≤≤-<=1,2210,1012a a a a a a g ,故()a g 的最大值为1(0≤a 时等号成立).4、D解析:1()()()()()1555515151521522102345102020202020++++-++=-=-,而1510+模4余2,155+模4余2,15555234++++为奇数,故正整数n 的最大值为24.5、A解析:设四边形ABCD 的面积为S ,直线AC ,BD 的夹角为θ,则2sin 22sin ADBC CD AB AD BC CD AB BD AC S ⋅+⋅≤⋅⋅+⋅≤⋅⋅=θθ,由题意,2ADBC CD AB S ⋅+⋅=,所以D C B A ,,,四点共圆,且BD AC ⊥.故9.634≈=CD ,选A.二、填空题6、11解析:若x 为正整数,则2015120151111⎪⎭⎫ ⎝⎛+>>⎪⎭⎫⎝⎛++e x x ,若x 为负整数,令()2,≥∈-=*n N n n x ,则1111111-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+n x n x .因为数列()2,1111≥∈⎪⎭⎫ ⎝⎛-+*-n Nn n n 关于n 单调递增,故当且仅当2016-=x 时,有2015120151111⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++x x .7、2541解析:注意到()()()()222222bd ac cd ab c bda -++=++,于是()()()()()()22222222211⎪⎭⎫ ⎝⎛+-+=++++=+++cd ab bd ac bd ac cd ab cd ab c b d a cd ab ,显然当0=-bd ac 时,原式取得最大值为1.接下来考虑cdab bdac +-的最大值.由于1+⋅-=+-cb d ac bd a cd ab bd ac ,令αtan =d a ,βtan =c b ,则问题等价于当⎥⎦⎤⎢⎣⎡∈2arctan ,21arctan ,βα时,求βα-tan 的最大值,显然为4321arctan2arctan tan =⎪⎭⎫ ⎝⎛-.因此原式的最小值为2516.注:可以看做向量()d a ,和()c b ,夹角余弦的平方.8、9解析:注意到q px x y ++=2,[]5,1∈x 满足22≤≤-y ,因此符合题意的二次函数只有两个:762+-=x x y ,762-+-=x x y9、1解析:由1=++z y x ,可得()()()()()()()()()()22222223223322322322322=-------=-+-++-+-=-++-++--+=--++-++-+b a c a c b c b a b a c c b a c b a b a abc c b c a c bc ac b a b a ab abc c c b c a b b a bc a ac ab 所以c b a +=或a c b +=或b a c +=,故1201520152015=++z y x .10、9解析:构造是容易的,取{}i A i =,9,,2,1 =i 即可.用0,1表示集合中的元素是否在子集中,如{}9,5,4,3,11=A ,则记()1,0,0,0,1,1,1,0,11=A ,那么j i j i A A A A =⋅.显然,如果当10≥n 时,必然存在m 个向量线性相关,不妨设()0,,0,02211 =+++m m A A A λλλ,其中()m i Z i ,,2,1 =∈λ,11=λ.此时考虑()m m A A A A λλλ+++⋅ 22111,那么根据题意有11A A ⋅为奇数,而()m i A A i ,,3,21 =⋅为偶数,这样就推出了矛盾.因此所求n 的最大值为9.注:用这个方法,可以得出n 元集合至多有n 个包含奇数个元素的子集,使得这些子集中任意两个的交集均包含偶数个元素.。
2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案2018年XXX第二批次自主招生(实验班)数学考试试卷考试时间:90分钟,满分100分一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案)1.化简 (2-m)/(m-2) 的结果是:A。
m-2B。
2-mC。
-m-2D。
-2/(m-2)2.表达式 abc+abc+abc 的所有可能值的个数是:A。
2个B。
3个C。
4个D。
无数个3.某班50名学生可在音乐、美术、体育三门选修课中选择,每位学生至少选择一门。
选择音乐的有21人,选择美术的有28人,选择体育的有16人,既选择音乐又选择美术的有7人,既选择美术又选择体育的有6人,既选择体育又选择音乐的有5人,则三项都参加的人数是:A。
2B。
3C。
4D。
54.已知二次函数 y=x^2-2x-6,当m≤x≤4 时,函数的最大值为2,最小值为-7,则满足条件的 m 的取值范围是:A。
m≤1B。
-2<m<1C。
-2≤m<1D。
-2≤m≤15.适合不等式 2/(3x-y) ≤ 1,且满足方程 3x+y=1 的 x 的取值范围是:A。
x≤1/3B。
-1≤x<1/3C。
x≤1D。
-1≤x≤16.已知 A、B 两点在一次函数 y=x 的图像上,过 A、B 两点分别作 y 轴的平行线交双曲线 y=1/x (x>0) 于 M、N 两点,O 为坐标原点。
若 BN=3AM,则 9OM^2-ON^2 的值为:A。
8B。
16C。
32D。
367.在直角三角形 ABC 中,∠BAC=90°,M、N 是 BC 边上的点,BM=MN=CN/2,如果 AM=8,AN=6,则 MN 的长为:A。
4√3B。
2√3C。
10D。
10/38.将正奇数按如图所示的规律排列下去,若有序实数对(n,m) 表示第 n 排,从左到右第 m 个数,如 (4,2) 表示奇数 15,则表示奇数 2017 的有序实数对是:A。
14-18年北清自招博雅领军数学真题-数论基础与整除

北大博雅15.1.已知n为不超过2015的正整数,且1234n n n n+++的个位数字为0,则满足条件的正整数n的个数为()A.1511B.1512C.1513D.前三个答案都不对清华领军2015.18.已知存在实数r,使得圆周222x y r+=上恰好有n个整点,则n可以等于()A.4B.6C.8D.12分类存疑北大博雅2016.4.函数1,,(,)1,,(),0,qx p q p q NP pf xQ+⎧==∈⎪=⎨⎪∉⎩则满足(0,1)x∈且1()7f x>的x的个数为()A.12B.13C.14D.前三个答案都不对4.【解答】D满足(0,1)x∈,且1()7f x>的x的个数为11,分别为1121312341523344555566,,,,,,,,,,。
【评析】这个函数是非常有名的黎曼函数的一部分,但是对于学生的要求很低,只需要准确理解题意即可,问题本身并不困难。
北大博雅2016.14.已知正整数,,,a b c d满足ab cd=,则a b c d+++有可能等于()A.101B.301C.401D.前三个答案都不对14.【解答】B考虑a=mn,b=pq,c=mp,d=nq则a+b+c+d=mn+pq+mp+nq=(m+q)(n+p),于是a+b+c+d不是质数即可。
如301=7×43=(1+6)×(1+42),于是a=1,b=252,c=42,d=6即得正确答案是B。
【评析】数论不定方程问题,其中的换元方法是数论中的经典。
北大博雅2017.1.若正整数,,a b c满足402a b c++=,则使得10n| abc的最大正整数n是()A.5B.6C.7D.以上答案均不正确【1】Da=25,b=25,c=352时,n 可取4,下面我们将说明n 不可能大于4:若n ≥5,先考虑5n |abc :由于a+b+4=402,而402并不是5的倍数,所以abc 不可能均为5的倍数。
2018北京大学自主招生试题(含语文数学英语)

北京大学【注意事项】本试卷分为语文、数学、英语三部分。
【考试时间】3 个小时语文部分【注意事项】本试卷语文部分分为基础知识题和阅读题两部分.一共 50 道选择题。
第Ⅰ卷(基础知识题)1.【真题】对下面一首诗的赏析,不恰当的一项是()海臧克家从碧澄澄的天空,摸着潮湿的衣角,看到了你的颜色:触到了你的体温;从一阵阵的清风,深夜醒来,嗅到了你的气息:耳边传来了你有力的呼吸。
(1956 年)A.诗人用平实的语言.分别从视觉、嗅觉、触觉、听觉四个方面写出了他对大海的感受。
B.这首诗反映了诗人对大自然壮观的惊喜,也反映了他的人生哲学,表现了一定的人生哲理。
C.由远而近、从白天到夜晚,大海给诗人的感觉不尽相同,这些形成了全诗的发展层次。
D.诗人将自己的感觉加以升华,使大海人格化、生命化、向我们展示出大海的整体形象。
4.【真题】下列各句中使用,全部正确的一项是()①在称雄之前,刘备成功地把自己装扮成一个胸无大志的庸才,这一韬光养晦的做法让他得以与强大的曹操和孙权一起称雄三国时代。
②“手如柔荑,肤如凝脂”,《诗经·硕人》通过对齐女庄姜的细腻描绘,刻画了一个珠圆玉润、亮丽动人的古典美人。
③自 8 月 1 日滴滴收购优步中国的消息正式宣布后,网上盛传商务部反垄断局已两次约谈滴滴并依法进行调查,滴滴对此讳莫如深。
④由于缺少有效监督,《公共场所控烟条例》在许多地方沦为一纸空文,只有真正令行禁止,才能达到公共场所“无烟化”的目标。
⑤城市规划大师卡罗琳·博斯在做主题演讲时说,城市环境和建筑休戚相关,所以要改善城市环境不能忽视城市建筑的整体规划。
⑥他此时正心事重重,尽管窗外鸟语花香,一片春意盎然,他也目不窥园,无心欣赏,还时不时的叹上一口气。
A.①②⑤B.①③④C.②⑤⑥D.③④⑥5.【真题】下图是两副吟咏郑成功的对联,请依文意与对联组成原则,选出最适合填入甲、乙、丙、丁处的内容()四镇多贰心,两岛屯师。
(丙)南天留祠宇,雄图虽渺。
2018北京大学“中学生数学奖”夏令营初赛试题 含答案(精品范文).doc

【最新整理,下载后即可编辑】北京大学“中学生数学奖”夏令营初赛 试题2018年6月23日本试卷共4题,每题30分,满分120分.考试时间180分钟.1.已知a 、b 、c 为整数,且对任意正整数m 、n ,存在整数x 满足如下关系:()2mod .ax bx c m n ++≡求所有满足要求的三元整数组(),,a b c .2.已知实数122018,,,a a a 两两不同,存在t 满足11i i a t a ++=(1,2,,2018i =,并规定20191a a =).求实数t 的可能取值的个数.3.给定正整数n 、k .有一个密码锁,它有n 个按钮,编号分别为1n .打开该锁的密码是长度为k 的按钮序列.当且仅当连续正确的按动这k 个按钮时,密码锁会被打开.(例如3n =,2k =,密码为13时,依次按动1,2,3,2,1,1,3后可以打开该锁,按动2,2,3,1,3后也可以打开该锁.)要保证把这个密码锁打开,至少需要按动多少次按钮?4.如图,ABC ∆中AB AC ≠.点A 所对应的旁切圆圆J 分别与直线BC 、CA 、AB 相切于点D 、E 、F .点M 是线段BC 的中点.点S 在线段JM 上,且满足AS DS AE +=.求证:MS BD CD SJ ⋅=.试卷答案本试卷共4题1.设()2f x ax bx c =++,注意()()()mod f x f x n n ≡+,故本题只需对任意正整数n ,()()()0,1,,1f f f n -组成模n 的完全剩余系.下证0a =,1b =-或1.若0,1a b +≠±,取n a b =+,则()()()01mod f f n ≡,矛盾. 若0a b +=,则()2f x ax ax c =-+,此时()()01f f =,这也不可能. 故1a b +=-或1.当1a b +=时,0a ≠,则1641241248a b a a b +≥-+≥-=. 取164n a b =+,则()()()04mod f f n ≡,矛盾.故0a =. 类似当1a b +=-时,取164n a b =+,可得0a =.故()(),0,1a b =或()0,1-.注意对任意正整数m 、n ,同余方程()mod x c m n +≡和()mod x c m n -+≡显然有解.故()(),,0,1,a b c k =或()0,1,k -,k Z ∈.2.由已知有11i i a t a +=-,不动点方程为1x t x=-,化为210x tx -+=,设此一元二次方程的两根为α与β.当αβ=时,若2t =,则1112i i i a a a +--=-,111111i i a a +=---,2019111201811a a =---,矛盾. 若2t =-,同理可得2019111201811a a =+++,也矛盾. 所以αβ≠,可得1i i i a a t a ααα+--=⋅-,以及1i i i a a t a βββ+--=⋅-, 两式相除得11i i i i a a a a αααβββ++--=--,有2111111i i i i a a a a a a αααααββββ++-⎛⎫--==⋅ ⎪---⎝⎭, 从而40362019120191a a a a αααββ--=⋅--,40361α=, 由对称性,不妨设2018ki e πα=,()40362018k ieπβ-=,其中12018k ≤≤. 另一方面,当12018i j ≤<≤时,由i j a a ≠知,j i j i a a a a ααββ--≠--, 而()21j j t j t a a a a αααββ---=⋅--.所以当12018t ≤<时,21t α≠, 即2220181tki t e πα=≠,即对任意12018t ≤<,tk 都不是2018的倍数, 即(),20181k =,又因为201821009=⨯,所以这样的k 有11201811100821009⎛⎫⎛⎫⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭个,所以2cos 2018k t παβ=+=有1008个取值. 3.最少需要按1k n k +-次.不同的密码共有k n 个,要保证打开密码锁,必须全部试过一遍.从第k 次按键开始,每次按动按钮都可以视为一个长为k 的序列末位,故至少需要1k n k +-次.下面给出按动1k n k +-次可以满足要求的存在性证明. 当1k =时结论显然成立,故下设2k ≥.构造图G ,共有1k n -个顶点,每个顶点对应为一个长为1k -的序列.对顶点A ,B ,若点A 所对应序列的后2k -位与点B 所对应序列的前2k -位相同,则在AB 之间连一条由A 指向B 的有向边.此时每一个长为k 的序列可以对应为该图中的一条边.注意图G 为连通图,且每个顶点的入度和出度均为n ,我们即证明该图中存在欧拉圈.为此给出如下引理:若有向连通图G 中所有顶点的入度和出度都相同,则该图中存在欧拉圈.对图G 的总边数进行归纳证明,若图G 每个顶点出入度为1,且该图中存在圈,再由连通性可得该圈为欧拉圈. 若总边数小于m 时结论成立,考虑总边数等于m 时. 考虑图中的最大有向圈Γ,显然这样的圈存在.若Γ不是欧拉圈,则从图G 中去掉Γ,得到图G '.此时图G '每点的出入度仍相同(但可以为0).取G '中的一条边,使其一个顶点在Γ中,沿该边前进,可以得到图G '中的圈'Γ.注意Γ和'Γ没有公共边,故可将它们拼接得到一个更大的圈.这与Γ的最大性矛盾,故此时结论成立. 综上,引理得证.由引理,我们即可得到本题存在性证明.4.如图,作BDS ∠的平分线交BJ 于P ,以P 为圆心、点P 到直线BC 的距离为半径作P ,则P 与直线AB 、BD 、DS 均相切.过A 作P 的异于直线AB 的切线,交直线DS 于S ',则P 与四边形ABDS '的各边所在直线均相切,由“切线长相等”可得AB BD AS DS ''+=+,又已知AS DS AE AF AB BD +===+,因此AS DS AS DS ''+=+,故SS AS AS ''=-,由“三角形两边之差小于第三边”可知 S '与S 重合,所以P 与四边形ABDS 的各边所在的直线都相切. 作CDS ∠的平分线交CJ 于Q ,以Q 为圆心、点Q 到直线BC 的距离为半径作Q ,类似可证Q 与折四边形ACDS 的各边所在的直线都相切.从而AS 、DS 都与P 和Q 相切,故S 是P 和Q 的内位似中心.故S 、P 、Q 三点共线.下面证明//PQ BC .用反证法.假设直线PQ 与直线BC 相交于T ,因DP 、DQ 分别平分SDT ∠或SDT ∠的邻补角,所以DP 、DQ 、DS 、DT 是调和线束,该线束与直线PQ 截得4点P 、Q 、S 、T 是调和点列,故JP 、JQ 、JS 、JT 是调和线束,该线束再与直线BC 截得4点B 、C 、M 、T 是调和点列,但M 是BC 的中点,矛盾,所以//PQ BC .设PQ 与JD 相交于H .由DP 、DQ 分别平分BDS ∠及其邻补角得DP DQ ⊥,再结合//PQ BC 得PQ DH ⊥,所以 PH QH MS DH PH QH BD CD BD CD SJ HJ HJ HJ JD JD ⋅⋅====⋅=.。
2018年清华北大自招真题

值为( )
A. 63
B. 1009
C. 2018
D. 前三个答案都不
对
【解答】D
【考点】数列问题以及基本不等式的应用
【解析】令 x = k + r(k Z且0 k n −1, 0 r 1) ,当 k = 0 时 x[x] = 0 ; k 1时,则
k2 x[x] = (k + r)k k 2 + k , x[x] 有 k 个取值;
x2 − 2a x − a − 2ax +1 = 0 (x − a)2 − 2a x − a +1− a2 = 0 ( x − a − a)2 = 2a2 −1
,
2a2
−1
0
x − a = a
2a2 −1 0
2a2
−1
,要使原方程有三个互不相等实根,则
a
2019 2018
−1=
2018
,
−a1
+
a2
−
a3
+
... −
a2017
+
a2018
=
(1−
1)(1− 1
1 )(1 − 2
1)...(1− 3
1) 2018
−1
=
−1
,
两式相加即得
a2
+
a4
+ ... +
a2018
=
2018 −1 2
=
2017 2
.
6. 已知实数 A,b,c 成公差非 0 的等差数列,在平面直角坐标系中,点 P 的坐标为(-3, 2),点 N 的坐标为(2,3),过点 P 作直线 Ax+by+c=0 的垂线,垂足为点 M,则 M,N 间的 距离的最大值与最小值的乘积是( )
2018年北京高职自主招生数学(文科)模拟试题一【含答案】
2018年北京高职自主招生数学(文科)模拟试题一【含答案】一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x∈Z|x2﹣2x≤0},集合B={﹣1,0,1},那么A∪B等于()A.{1} B.{0,1} C.{0,1,2} D.{﹣1,0,1,2}2.(5分)下列函数在其定义域上既是奇函数又是增函数的是()A.y=﹣B.y=C.y=x3 D.y=log2x3.(5分)一个算法的程序框图如图所示,如果输出y的值是1,那么输入x的值是()A.﹣2或2 B.﹣2或C.﹣或D.﹣或24.(5分)在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体的体积是()A.B.16 C.D.325.(5分)已知a∈R,那么“直线y=ax﹣1与y=﹣4ax+2垂直”是“a=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知a,b∈R,a>b>0,则下列不等式一定成立的是()A.B.tana>tanb C.|log2a|>|log2b| D.a•2﹣b>b•2﹣a7.(5分)已知点A(2,﹣1),点P(x,y)满足线性约束条件O为坐标原点,那么的最小值是()A.11 B.0 C.﹣1 D.﹣58.(5分)如图,各棱长均为1的正三棱柱ABC﹣A1B1C1,M,N分别为线段A1B,B1C上的动点,且MN∥平面ACC1A1,则这样的MN有()A.1条B.2条C.3条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)已知复数的实部与虚部相等,那么实数a= .10.(5分)已知点P(2,)为抛物线y2=2px上一点,那么点P到抛物线准线的距离是.11.(5分)在△ABC中,已知AB=4,AC=6,A=60°,那么BC= .12.(5分)已知向量,,若||=3,||=,=6,则,夹角的度数为.13.(5分)已知圆C的圆心在x轴上,半径长是,且与直线x﹣2y=0相切,那么圆C的方程是.14.(5分)已知函数f(x)=(1)若a=﹣,则f(x)的零点是.(2)若f(x)无零点,则实数a的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)已知函数f(x)=2sinxcosx+cos2x.(Ⅰ)求f(x)的最小正周期及单调递增区间;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.16.(13分)某市准备引进优秀企业进行城市建设.城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;(Ⅱ)规定得分在85分以上为优秀企业.若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.注:方差.17.(13分)已知数列{an}的前n项和为Sn,,2an+1=Sn+1.(Ⅰ)求a2,a3的值;(Ⅱ)设bn=2an﹣2n﹣1,求数列{bn}的前n项和Tn.18.(14分)如图,在四棱锥A﹣BCDE中,底面BCDE为正方形,平面ABE⊥底面BCDE,AB=AE=BE,点M,N分别是AE,AD的中点.(Ⅰ)求证:MN∥平面ABC;(Ⅱ)求证:BM⊥平面ADE;(Ⅲ)在棱DE上求作一点P,使得CP⊥AD,并说明理由.19.(13分)已知椭圆(a>b>0)过点(0,﹣1),离心率e=.(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(m,0),过点(1,0)作斜率为k(k≠0)直线l,与椭圆交于M,N两点,若x轴平分∠MPN,求m的值.20.(14分)已知函数f(x)=x+alnx,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求函数f(x)在[1,e]上的最小值;(Ⅲ)若函数F(x)=f(x),当a=2时,F(x)的最大值为M,求证:M<.2018年北京高职自主招生数学(文科)模拟试题一参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x∈Z|x2﹣2x≤0},集合B={﹣1,0,1},那么A∪B等于()A.{1} B.{0,1} C.{0,1,2} D.{﹣1,0,1,2}【分析】分别求出集合A,集合B,由此利用并集定义能求出A∪B.【解答】解:∵集合A={x∈Z|x2﹣2x≤0}={∈Z|0≤x≤2}={0,1,2},集合B={﹣1,0,1},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义、不等式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.(5分)下列函数在其定义域上既是奇函数又是增函数的是()A.y=﹣B.y=C.y=x3 D.y=log2x【分析】根据函数奇偶性和单调性的性质进行判断即可.【解答】解:A.y=﹣在定义域上是奇函数,但不是单调函数,不满足条件.B.y=是减函数且为非奇非偶函数,不满足条件.C.y=x3在其定义域上既是奇函数又是增函数,满足条件.D.y=log2x在(0,+∞)上是增函数,是非奇非偶函数,不满足条件.故选:C.【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.3.(5分)一个算法的程序框图如图所示,如果输出y的值是1,那么输入x的值是()A.﹣2或2 B.﹣2或C.﹣或D.﹣或2【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数y=的函数值,若输出的y的值为1,可根据分段函数的解析式,逆推出自变量x的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数y=的函数值,当x<0时,y=|x|﹣1=1,解得:x=﹣2当x≥0时,y=x2﹣1=1,解得:x=,故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.4.(5分)在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体的体积是()A.B.16 C.D.32【分析】由三视图还原原几何体,可知该几何体为三棱锥,侧面PAC为等腰三角形,且平面PAC⊥平面ABC,PA=PC,底面ABC为直角三角形,AB=AC=4,然后由棱锥体积公式求解.【解答】解:由三视图还原原几何体如图:该几何体为三棱锥,侧面PAC为等腰三角形,且平面PAC⊥平面ABC,PA=PC,底面ABC为直角三角形,AB=AC=4,∴该四面体的体积是V=.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.(5分)已知a∈R,那么“直线y=ax﹣1与y=﹣4ax+2垂直”是“a=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由直线y=ax﹣1与y=﹣4ax+2垂直,可得:a•(﹣4a)=﹣1,解得a即可判断出结论.【解答】解:由直线y=ax﹣1与y=﹣4ax+2垂直,可得:a•(﹣4a)=﹣1,解得a=.∴“直线y=ax﹣1与y=﹣4ax+2垂直”是“a=”的必要不充分条件.故选:B.【点评】本题考查了相互垂直的直线斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.(5分)已知a,b∈R,a>b>0,则下列不等式一定成立的是()A.B.tana>tanb C.|log2a|>|log2b| D.a•2﹣b>b•2﹣a【分析】由a>b>0,利用不等式的基本性质与函数的单调性即可判断出结论.【解答】解:∵a>b>0,∴,tana与tanb的大小关系不确定,log2a>log2b,但是|log2a|>|log2b|不一定成立,a•2a>b•2b一定成立.故选:D.【点评】本题考查了不等式的基本性质与函数的单调性,考查了推理能力与计算能力,属于基础题.7.(5分)已知点A(2,﹣1),点P(x,y)满足线性约束条件O为坐标原点,那么的最小值是()A.11 B.0 C.﹣1 D.﹣5【分析】根据向量数量积的定义化简目标函数,作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.【解答】解:=2x﹣y,作出约束条件可行区域如图,作直线l0:y=﹣x,当l0移到过A(﹣2,﹣3)时,Zmin=﹣2×2+3=﹣1,故的最小值为﹣1,故选:C.【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用数形结合是解决本题的关键.8.(5分)如图,各棱长均为1的正三棱柱ABC﹣A1B1C1,M,N分别为线段A1B,B1C上的动点,且MN∥平面ACC1A1,则这样的MN有()A.1条B.2条C.3条D.无数条【分析】任取线段A1B上一点M,过M作MH∥AA1,交AB于H,过H作HG∥AC交BC 于G,过G作CC1的平行线,与CB1一定有交点N,且MN∥平面ACC1A1,则这样的MN 有无数个.【解答】解:如图,任取线段A1B上一点M,过M作MH∥AA1,交AB于H,过H作HG ∥AC交BC于G,过G作CC1的平行线,与CB1一定有交点N,且MN∥平面ACC1A1,则这样的MN有无数个.故选:D【点评】不本题考查了空间线面位置关系,转化思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)已知复数的实部与虚部相等,那么实数a=2.【分析】利用复数代数形式的乘除运算化简,再由实部等于虚部求得a值.【解答】解:∵=的实部与虚部相等,∴a=2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.(5分)已知点P(2,)为抛物线y2=2px上一点,那么点P到抛物线准线的距离是3.【分析】根据点P(2,)为抛物线y2=2px上一点可求出p的值,由抛物线的性质可知焦点坐标,可知抛物线的焦点和准线方程,从而求出所求.【解答】解:∵点P(2,)为抛物线y2=2px上一点,∴(2)2=2p×2,解得p=2,∴抛物线焦点坐标为(1,0),准线方程为x=﹣1,∴点P到抛物线的准线的距离为2+1=3.故答案为:3.【点评】本题主要考查抛物线的简单性质,解题的关键弄清抛物线y2=2px的焦点坐标为(,0),准线方程为x=﹣,属于基础题.11.(5分)在△ABC中,已知AB=4,AC=6,A=60°,那么BC=2.【分析】利用余弦定理即可得出.【解答】解:由余弦定理可得:BC2=42+62﹣2×4×6cos60°=28,解得BC=2.故答案为:2.【点评】本题考查了余弦定理的应用,考查推理能力与计算能力,属于基础题.12.(5分)已知向量,,若||=3,||=,=6,则,夹角的度数为.【分析】根据题意,设,夹角为θ,||=t,(t>0),由数量积的计算公式可得若||=,则有(﹣)2=2﹣2•+2=9﹣2×6+t2=13,解可得t的值,又由cosθ=,计算可得cosθ的值,由θ的范围分析可得答案.【解答】解:根据题意,设,夹角为θ,||=t,(t>0),若||=,则有(﹣)2=2﹣2•+2=9﹣2×6+t2=13,解可得t=4,则cosθ==,则θ=;故答案为:.【点评】本题考查向量数量积的计算公式,注意求出||的值.13.(5分)已知圆C的圆心在x轴上,半径长是,且与直线x﹣2y=0相切,那么圆C的方程是(x﹣5)2+y2=5或(x+5)2+y2=5.【分析】由题意设出圆心坐标(a,0),利用点到直线的距离公式列式求得a值,代入圆的标准方程得答案.【解答】解:由题意设圆心坐标为(a,0),由,得a=±5.又圆的半径r=.圆C的方程是(x﹣5)2+y2=5或(x+5)2+y2=5.故答案为:(x﹣5)2+y2=5或(x+5)2+y2=5.【点评】本题考查圆的标准方程,考查点到直线的距离公式的应用,是基础题.14.(5分)已知函数f(x)=(1)若a=﹣,则f(x)的零点是.(2)若f(x)无零点,则实数a的取值范围是(∞,﹣4]∪[0,2).【分析】(1)由零点的定义,解方程即可得到所求值;(2)讨论x<2,x≥2时,f(x)=0无实数解,即可得到a的范围.【解答】解:(1)若a=﹣,则f(x)=,当x<2时,由2x﹣=0,可得x=;由x≥2时,﹣﹣x=0,可得x=﹣<2,不成立.则f(x)的零点为;(2)若f(x)无零点,即f(x)=0无实数解,当x<2时,2x+a=0即﹣a=2x无实数解,可得﹣a≥4或﹣a≤0,即为a≤﹣4或a≥0;由x≥2可得a﹣x=0无实数解,即有a<2.综上可得a的范围是(∞,﹣4]∪[0,2).故答案为:,(∞,﹣4]∪[0,2).【点评】本题考查函数的零点的求法,注意运用定义和指数函数的值域和单调性,考查运算能力,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)已知函数f(x)=2sinxcosx+cos2x.(Ⅰ)求f(x)的最小正周期及单调递增区间;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.【分析】(Ⅰ)利用二倍角公式和辅助角公式化简,即可求f(x)的最小正周期及单调递增区间;(Ⅱ)根据x在[0,]上,求解内层函数的范围,即可求解最大值和最小值.【解答】解:函数f(x)=2sinxcosx+cos2x=2sin2x+cos2x=sin(2x+)(Ⅰ)f(x)的最小正周期T=;由,得≤x≤所以f(x)的单调递增区间是[,],k∈Z.(Ⅱ)因为x∈[0,]上,所以2x+∈[,]所以当2x+=,即x=时,函数取得最大值是.当2x+=,即x=时,函数取得最小值﹣1.所以f(x)在[0,]区间上的最大值和最小值分别为和﹣1.【点评】本题主要考查三角函数的图象和性质的综合运用.属于基础题.16.(13分)某市准备引进优秀企业进行城市建设.城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;(Ⅱ)规定得分在85分以上为优秀企业.若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.注:方差.【分析】(Ⅰ)根据定义计算乙地对企业评估得分的平均值和方差;(Ⅱ)利用列举法计算基本事件数,求出所求的概率值.【解答】解:(Ⅰ)乙地对企业评估得分的平均值是×(97+94+88+83+78)=88,方差是×[(97﹣88)2+(94﹣88)2+(88﹣88)2+(83﹣88)2+(78﹣88)2]=48.4;…(4分)(Ⅱ)从甲、乙两地准备引进的优秀企业中各随机选取1个,有(96,97),(96,94),(96,88),(93,97),(93,94),(93,88),(89,97),(89,94),(89,88),(86,97),(86,94),(86,88)共12组,…(8分)设“得分的差的绝对值不超过5分”为事件A,则事件A包含有(96,97),(96,94),(93,97),(93,94),(93,88),(89,94),(89,88),(86,88)共8组;…(11分)所以P(A)==;所以得分的差的绝对值不超过5分的概率是.…(13分)【点评】本题考查了计算平均数与方差的应用问题,也考查了列举法求古典概型的概率问题,是基础题.17.(13分)已知数列{an}的前n项和为Sn,,2an+1=Sn+1.(Ⅰ)求a2,a3的值;(Ⅱ)设bn=2an﹣2n﹣1,求数列{bn}的前n项和Tn.【分析】(Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用分组法求出数列的和.【解答】解:(Ⅰ)因为数列{an}的前n项和为Sn,,2an+1=Sn+1.所以:2a2=S1+1=,解得:.所以:2a3=S2+1=a1+a2+1=,解得:.(Ⅱ)因为2an+1=Sn+1,所以:2an=Sn﹣1+1,(n≥2)则:2an+1﹣2an=Sn﹣Sn﹣1=an,所以:.由于:,则:数列{an}是首项,公比是的等比数列.所以:.因为bn=2an﹣2n﹣1,所以:.所以:Tn=b1+b2+…+bn,=+…+,=﹣(3+5+…+2n+1),=,=.所以数列的前n项和为:.【点评】本题考查的知识要点:数列的通项公式的求法及应用,分组法求数列的和.18.(14分)如图,在四棱锥A﹣BCDE中,底面BCDE为正方形,平面ABE⊥底面BCDE,AB=AE=BE,点M,N分别是AE,AD的中点.(Ⅰ)求证:MN∥平面ABC;(Ⅱ)求证:BM⊥平面ADE;(Ⅲ)在棱DE上求作一点P,使得CP⊥AD,并说明理由.【分析】(Ⅰ)只需证明MN∥BC.即可证明MN∥平面ABC.(Ⅱ)可得DE⊥平面ABE,DE⊥BM,BM⊥AE,即可证明BM⊥平面ADE.(Ⅲ)取BE中点F,连接AF,DF,过C点作CP⊥DF,交DE于点P.则点P即为所求作的点.【解答】解:(Ⅰ)因为点M,N分别是AE,AD的中点,所以MN∥DE.因为底面BCDE四边形为正方形,所以BC∥DE所以MN∥BC.因为MN⊄平面ABC,BC⊂平面ABC,所以MN∥平面ABC…(4分)(Ⅱ)因为平面ABE⊥底面BCDE,DE⊥BE,所以DE⊥平面ABE因为MB⊂平面ABE,所以DE⊥BM因为AB=AE=BE,点M是AE的中点,所以BM⊥AE因为DE∩AE=E,DE⊂平面ADE,AE⊂平面ADE,所以BM⊥平面ADE…(9分)(Ⅲ)取BE中点F,连接AF,DF,过C点作CP⊥DF,交DE于点P.则点P即为所求作的点.…(11分)理由:因为AB=AE=BE,点F是BE的中点,所以AF⊥BE因为平面ABE⊥底面BCDE,所以AF⊥平面BCDE.所以AF⊥CP因为CP⊥DF,AF∩DF=F,所以CP⊥平面ADF因为AD⊂平面ADF,所以CP⊥AD…(14分)【点评】本题考查了线面陪平行、垂直的判定,空间动点问题,属于中档题,19.(13分)已知椭圆(a>b>0)过点(0,﹣1),离心率e=.(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(m,0),过点(1,0)作斜率为k(k≠0)直线l,与椭圆交于M,N两点,若x轴平分∠MPN,求m的值.【分析】(Ⅰ)根据过点(0,﹣1),离心率e=,可得b=1,=,再根据a2=b2+c2,即可求出,(Ⅱ)设直线l的方程是y=k(x﹣1),联立方程组消去y,得(1+2k2)x2﹣4k2x+2k2﹣2=0,设点M(x1,y1),N(x1,y1),根据韦达定理以及kMP+kNP=0,即可求出m的值【解答】解:(Ⅰ)因为椭圆的焦点在x轴上,过点(0,﹣1),离心率e=,所以b=1,=,所以由a2=b2+c2,得a2=2,所以椭圆C的标准方程是+y2=1,(Ⅱ)因为过椭圆的右焦点F作斜率为k直线l,所以直线l的方程是y=k(x﹣1).联立方程组消去y,得(1+2k2)x2﹣4k2x+2k2﹣2=0,显然△>0,设点M(x1,y1),N(x1,y1),所以x1+x2=,x1x2=,因为x轴平分∠MPN,所以∠MPO=∠NPO.所以kMP+kNP=0,所以+=0,所以y1(x2﹣m)+y2(x1﹣m)=0,所以k(x1﹣1)(x2﹣m)+k(x2﹣1)(x1﹣m)=0,所以2kx1x2﹣(k+km)(x1+x2)+2km=0,所以2•+(1+m)+2m=0所以=0…(12分)所以﹣4+2m=0,所以m=2.【点评】本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.20.(14分)已知函数f(x)=x+alnx,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求函数f(x)在[1,e]上的最小值;(Ⅲ)若函数F(x)=f(x),当a=2时,F(x)的最大值为M,求证:M<.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围求出函数的单调区间,求出函数的最小值即可;(Ⅲ)求出函数的导数,令g(x)=2﹣x﹣4lnx,所以g(x)是单调递减函数,根据函数的单调性证明即可.【解答】解:(Ⅰ)因为函数f(x)=x+alnx,且a=1,所以f(x)=x+lnx,x∈(0,+∞),所以f′(x)=1+,所以f(1)=1,f′(1)=2,所以曲线在x=1处的切线方程是y﹣1=2(x﹣1),即2x﹣y﹣1=0;(Ⅱ)因为函数f(x)=x+alnx(x>0),所以f′(x)=1+=,(1)当a≥0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增.所以函数f(x)在[1,e]上的最小值是f(1)=1;(2)当a<0时,令f′(x)>0,即x+a>0,所以x>﹣a,令f′(x)<0,x+a<0,所以x<﹣a;(i)当0<﹣a≤1,即a≥﹣1时,f(x)在[1,e]上单调递增,所以f(x)在[1,e]上的最小值是f(1)=1;(ii)当1<﹣a<e,即﹣e≤a≤﹣1时,f(x)在[1,﹣a]上单调递减,在(﹣a,e]上单调递增,所以f(x)在[1,e]上的最小值是f(﹣a)=﹣a+aln(﹣a),(iii)当﹣a≥e,即a≤﹣e时,f(x)在[1,e]上单调递减,所以f(x)在[1,e]上的最小值是f(e)=e+a,综上所述,当a≥﹣1时,f(x)在[1,e]上的最小值是f(1)=1,当﹣e≤a≤﹣1时,f(x)在[1,e]上的最小值是f(﹣a)=﹣a+aln(﹣a),当a≤﹣e时,f(x)在[1,e]上的最小值是f(e)=e+a;(Ⅲ)因为函数F(x)=f(x),所以F(x)=+,所以当a=2时,F′(x)=,令g(x)=2﹣x﹣4lnx,所以g(x)是单调递减函数.因为g(1)=1>0,g(2)=﹣4ln2<0,所以在(1,2)上存在x0,使得g(x0)=0,即2﹣x0﹣4lnx0=0,所以当x∈(1,x0)时,g(x)>0;当x∈(x0,2)时,g(x)<0,即当x∈(1,x0)时,F′(x)>0;当x∈(x0,2)时,F′(x)<0,所以F(x)在(1,x0)上单调递增,在(x0,2)上单调递减.所以当x=x0时,F(x)取得最大值是M=F(x0)=,因为2﹣x﹣4lnx=0,所以M=﹣;因为x0∈(1,2),所以∈(,1),所以M<.【点评】本题考查了求切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道综合题.。
2023年北京市北京大学数学金秋营试题
第一天1.有一些石子,每个石子的重量可能为、、、、12345.求最小的正整数N ,使得只要这些石子的总重量不小于N ,就一定能将这些石子分为5堆,满足第i 堆的总重量不小于i 2023,≤≤i 15.2.对于整系数多项式=++⋅⋅⋅++>−−P x x a x a x a m m m m 01011()(),如果不存在次数小于m 的整系数多项式、Q x R x ()(),使得、P x Q x R x ()()()对应的系数模2同余,就称P x ()是模2不可约的.对正整数n ,求所有形如++⋅⋅⋅++x x x a a a n 122212的模2不可约的多项式,其中>>⋅⋅≥⋅a a a n 012为整数.3.ABCD 为圆O 的圆内接四边形,、AB CD 交于点E ,、AD BC 交于点F ,、AC BD 交于点G .EF 的中垂线分别与AC 的中垂线、BD 的中垂线交于点H 、I ,△HIO 的外接圆和圆O 的公共弦分别与AC 、BD 交于点J 、K .若EF 的中垂线与圆O 相切,证明:△GJK 的外接圆与圆O 相切.4.设=G V E ,()为简单无向图,对于V 的非空子集A ,如果A 中的顶点两两不相邻,且−V A 中的每个顶点均与A 的某个顶点相邻,就称A 是一个极大独立集.求无三角形的2023阶图的极大独立集数量的最大值.第二天1.甲乙两人由甲开始轮流在黑板上写大于1的整数,要求新写的数不能是已经写的数的自然数系数线性组合,第一个不能写数的人输.甲乙谁有必胜策略?2.设n 为正整数,求最小的正整数c ,使得对任意n 次整值多项式P x ()及非负整数k ,cP x k ()()也是整值多项式,其中P x k ()()表示P x ()的第k 阶导数.3.设、m a 是大于1的整数.定义正整数集上的函数f x (),满足:=f 10(),设>x 1的标准分解式为=⋅⋅⋅αααx p p p k k 1212,则令=−−⋅⋅⋅−αααf x m p p p k k k 1111212()()()().令=a a 1,=+a f a n n 1(),=⋯n ,.1,2证明:存在正整数b ,使得数列a n {}从某一项开始恒为b .4.设函数→f g ,:满足:(a )对任意两个不同的整数x y ,,有−−x y f x g y g x f y |()()()(); (b )对任意整数x ,有+>f x g x 022()();(c )存在多项式P x (),使得对任意整数x ,有+<f x g x P x ()()(). 证明:存在正整数m ,函数→c :,及整系数多项式、p x q x ()(),使得对绝对值充分大的整数x ,都有=mf x p x c x ()()()、=mg x q x c x ()()().。
2018年清华大学自主招生试题数学Word版含解析
一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)2 (D)313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2α2α),12b =(2β2β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则)(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为1328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()33sin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]66i ππ-+-1sin )662i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅=2,正确;答案(B),|OA|+|OB|≥22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离1,正确。
2018年___自主招生数学试卷(含答案解析)
2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。
10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。
11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。