七年级下册尺规作图复习课件讲课稿

合集下载

七年级下册尺规作图复习课件ppt

七年级下册尺规作图复习课件ppt

B N
B'
N'
N'
O'
M' A'
O'
M' A'
O'
Байду номын сангаас
M' A'
O
MA



经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(5)题目五:经过直线上一点做已 知直线的垂线。
(6)题目六:经过直线外一点作已 知直线的垂线
(2)若要使自来水厂到两村的输水管用料最省,厂 址应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留 作图痕迹.
.B
A.
a h
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• 例6、如图,有A,B,C三个村庄,现要修
建一所希望小学,使三个村庄到学校的距 离相等,学校的地址应选在什么地方?请 你在图中画出学校的位置并说明理由(保 留作图痕迹).
(3)题目三:作已知角的角平分线。
• 已知:如图,∠AOB, • 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 • 作法: • (1)以O为圆心,任意长度为半径画弧,分别交OA,OB
于M,N; • (2)分别以M、N为圆心,线段MN的长为半径画弧,两
弧交∠AOB内于P;作射线OP。则射线OP就是∠AOB的 角平分线。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

北师大版七年级数学下册 第6讲 尺规作图及平行线 (18张PPT)

北师大版七年级数学下册  第6讲 尺规作图及平行线 (18张PPT)
【点拨】同位角、内错角和同旁内角是研究两条平行 线的重要工具,如果图中没有这三种角,那么可通过 作辅助线构造出这些角.
10.如图,直线 l1∥l2,直线 l3 交 l1 于点 C,交 l2 于点 D,P 是 线段 CD 上的一个动点.当点 P 在线段 CD 上运动时,探究 ∠1,∠2,∠3 之间的关系.
∴∠A B M +∠CDM =∠B M E +∠DM E =∠B M D. 同理,∠N =∠A B N +∠CDN . ∵BN,DN 分别平分∠ABM,∠MDC, ∴∠A B M =2∠A B N ,∠CDM =2∠CDN . ∴∠A B M +∠CDM =2∠A B N +2∠CDN . ∴∠BMD=2∠N.
2.两直线平行,同位角_相__等___; 两直线平行,内错角__相__等____; 两直线平行,同旁内角_互__补_____.
3.同位角__相__等____,两直线平行; 内错角__相__等____,两直线平行; 同旁内角互___补_____,两直线平行; 同_平__行_____(__垂__直____)于第三条直线(在同一平面内),两直线
6.如图,∠B=∠C,∠A=∠D,有下列结论:
①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND.
其中正确的有( A )
A.①②④ B.②③④
C.③④
D.①②③④
7.如图,AB∥CD,探讨∠APC 与∠PAB,∠PCD 的数量关系,
并请你说明立的理由.
解:∠APC=∠PAB+∠PCD. 理由:如图,过点 P 作 PE∥AB. ∵A B ∥CD,PE ∥A B ∴PE ∥A B ∥CD. ∴∠PAB =∠A PE ,∠PCD=∠CPE . ∵∠APC=∠APE+∠CPE, ∴∠APC=∠PAB+∠PCD.

2.4 用尺规作图课件 课件

2.4 用尺规作图课件   课件

2.下列属于尺规作图的是( B ) A.用量角器画一个角等于30°
B.用圆规和直尺作线段AB等于已知线段a C.用三角板作线段AB的垂线
D.用刻度尺画一条线段等于3 cm
选做题
3.如图,已知∠A,∠B,求作一个角,使它等于∠A-∠B.
(不用写作法,保留作图痕迹)
解:作∠COD=∠A, 并在∠COD的内部作∠DOE=∠B, 则∠COE就是所求作的角.
用尺规作一个角等于已知角
已知:∠AOB. 求作:作∠A'O'B',使∠A'O'B'=∠AOB.
作法
(1)作射线O'A'
(2)以点O为圆心,以任意长为半 径画弧,交OA于点C,交OB于点D; O
(3)以点O'为圆心,以OC长为半
作法与示范 径画弧,交O'A'于点C';
O
(4)以点C'为圆心,以CD长为半
选做题
2.如图,已知α和β(α>β),求作∠AOB,使∠AOB=α-β.
做法: (1)作射线__O_A_____; (2)以射线OA为一边作∠AOC=___∠__α__; (3)以____O___为顶点,以射线_O_C_____为一边,在∠AOC的内部作 ∠BOC=__∠__β___,则___∠__A_O_B____就是所求的角。
B
D’ D
是一个正方形
课堂总结 尺规作角
基本工具
圆规 无刻度直尺
尺规判断两个角的大小
用尺规作一个角等于已知角的和、差、倍
基本步骤:一线三弧
画弧必 备条件
圆心 半径
作业布置
必做题
1.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC, 作图痕迹中,弧FG是( D )

《尺规作图》课件PPT课件

《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质

北师大版七年级数学下册尺规作图课件

北师大版七年级数学下册尺规作图课件


2.
2.家 庭 作 业 :

1

P
2

2




(2) 配 套 练 习 ( 同 步 到 本 节 ) ;
( 3) 完 成 导 学 案 ( 同 步 到 本 节 ) ;
( 4) 预 习 下 一 节 , 背 诵 并 默 写 平 方 差 公 式 .
立足教育
首创未来
第二章 相交线与平行线
§2.4尺规作图
1.在具体情境中,理解尺规作图的定 义,会用尺规作一个角等于已知角.
2.通过对角的和、差、倍的关系的分析, 能用尺规作已知角的和、差、倍.
第一环节
如图2-24,要在长方
走进生活 引入课题 形木板上截一个平行四边
形,使它的一组对边在长
方形木板的边缘上,另一
• 请过C点画出与 组对边中的一条边为AB.
圆规
基本工具: 无刻度直尺
尺 规
基本步骤:三弧两线
作 角
圆心 画弧必备条件:
半径
应用: 分类讨论思想
第六环节
布置作业,能力延伸
1.课 堂 作 业 :
( 1) 平 方 差 公 式 文 字 语 言 表 达 2遍 ,
平 方 差 公 式 符 号 表 示 1遍 ;

2

P2

2

1
.1
0




1




1
2
巩固练习
用尺规作图比较两个角的大小. B
D’
O DA
BE’
C
O’ C’
AF’
图案设计 第三环节

七年级下册尺规作图专题复习课件

七年级下册尺规作图专题复习课件

C
• 连接AC,BC。
b
a
• 则△ABC就是所求作的三角形。
A
c
B
题目四:已知两边及夹角作三角形
• 已知:如图,线段m,n, ∠ . • 求作:△ABC,使∠A=∠ ,AB=m,AC=n.
• 作法:
• 作∠A=∠ ;
n
m
C
• 在AB上截取AB=m ,AC=n;
n
• 连接BC。
α
• 则△ABC就是所求作的三角形。
题目一:作一条线段等于已知线段
• 已知:如图,线段a .求作:线段AB,使AB = a .
• 作法:
• 作射线AP;
a
• 在射线AP上截取AB=a .
• 则线段AB就是所求作的图形。 A
B
P
题目二:作一个角等于已知角
• 已知:如图,∠AOB。 • 求作:∠A’O’B’,使A’O’B’=∠AOB • 作法: (1)作射线O’A’; (2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N; (3)以O’为圆心,以OM的长为半径画弧,交O’A’于M’; (4)以M’为圆心,以MN的长为半径画弧,交前弧于N’; (5)连接O’N’并延长到B’。则∠A’O’B’就是所求作的角。
变式2:经过直线外一点作已知直线 的垂线
【考点练习】
• 例1、如图:107国道OA和320国道OB在某市相交于点O,在 ∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、 OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作 法,保留作图痕迹,写出结论)
A D
107国道
C
O
320国道 B
• 例7、如图,A、B两村在一条小河的的同一侧, 要在河边建一水厂向两村供水.

《用尺规作角》示范公开课PPT教学课件【七年级数学下册北师大版】

《用尺规作角》示范公开课PPT教学课件【七年级数学下册北师大版】

能不能用尺规作图的方法,比较这两个角的大小呢?
你能比较两个角的大小吗?
如图,已知∠AOB,∠EO’F,利用尺规作图,比较它们的大小.
O’
E
F
A
O
B
S
J
P
Q
M
分别以O,O’为圆心,以同样长为半径画弧,分别交OA,OB于点J,S,交O’E,O’F于点Q,P; 以S为圆心,以PQ长为半径画弧,交弧JS于点M; 由图知点M在∠AOB内部,所以∠AOB比∠EO’F大.
例 已知:∠1,∠2.求作:∠AOB,使∠ AOB=∠1+ ∠2.
先作出∠NOA=∠1,然后以ON为其中一边作∠NOB=∠2,则∠AOB=∠1+∠2,即为所求.
1
例 已知:∠1,∠2.求作:∠AOB,使∠ AOB=∠1+ ∠2.
P
Q
M
N
1
I
作法: 1.作射线OA,分别以∠1的顶点F和点O为圆心,任意长为半径画弧,交∠1的两边为P、Q两点,交OA于点M;以M点为圆心,以PQ长为半径画弧,交前面的弧于点N,连接ON,则∠AON=∠1;
利用尺规,作一个角等于已知角.
(2) 以点O为圆心,
任意长为半径
交OA于点C, (3) 以点源自’为圆心,画弧, C
D
以OC长为半径
画弧,
C’
(4) 以点C’为圆心,
CD长为半径
画弧,
D’
(5) 过点D’作射线O’B’.
∠A’O’B’就是所求的角.
已知:∠AOB 求作:∠A’O’B’ ,使∠A’O’B’=∠AOB
例 已知:∠1,∠2.求作:∠AOB,使∠ AOB=∠1+ ∠2.
P
Q

新北师大版七年级数学下册第二章《尺规作角》公开课课件.ppt

新北师大版七年级数学下册第二章《尺规作角》公开课课件.ppt

。2020年12月18日星期五2020/12/182020/12/182020/12/18
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/182020/12/182020/12/1812/18/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/182020/12/18December 18, 2020
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/182020/12/18Friday, December 18, 2020
• 10、人的志向通常和他们的能力成正比例。2020/12/182020/12/182020/12/1812/18/2020 11:23:24 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/182020/12/182020/12/18Dec-2018-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/182020/12/182020/12/18Friday, December 18, 2020 • 13、志不立,天下无可成之事。2020/12/182020/12/182020/12/182020/12/1812/18/2020
北师大版七年级数学(下)
用尺规作优美的图案
左面的“雏菊图案”漂亮吗?你想自己把它画出来吗?
教学目标:
1.理解什么叫尺规作角? 2.会用尺规作一个角等于已知角 3.体会文字语言与图形语言的转换.
教学重点:
1.理解尺规作角的含义. 2.掌握尺规作角的方法. 3.熟悉尺规作图的步骤.
自学指导(5分钟 ☺)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 作法:
• 作∠A=∠ ;
n
m
C
• 在AB上截取AB=m ,AC=n;
n
• 连接BC。
α
• 则△ABC就是所求作的三角形。
α A
m
B
题目九:已知两角及夹边作三角形。
• 已知:如图,∠ ,∠ ,线段m .
• 求作:△ABC,使∠A=∠ ,∠B=∠ , AB=m.
• 作法:
• 作线段AB=m;
• 在AB的同旁作∠A=∠ ,作∠B=∠ ,
A D
107国道
C
O
320国道 B
• 例2、三条公路两两相交,交点分别为A,B, C,现计划建一个加油站,要求到三条公路 的距离相等,问满足要求的加油站地址有几 种情况?用尺规作图作出所有可能的加油站 地址。
A
B
C
• 例3、过点C作一条线平行于AB。
C
A
B
• 例3:已知线段AB和CD,如下图,求作一 线段,使它的长度等于AB+2CD.
• ∠A与∠B的另一边相交于C。
• 则△ABC就是所求作的图形(三角形)。
m
C
α
β
α
A
β B
【考点练习】
• 例1、如图:107国道OA和320国道OB在某市相交于点O,在 ∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、 OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作 法,保留作图痕迹,写出结论)
• 作法:
• (1)分别以M、N为圆心,大于 画弧,两弧相交于P,Q;
• (2)连接PQ交MN于O.
的相同线段为半径
P
• 则点O就是所求作的MN的中点。
M
O
N
Q
(3)题目三:作已知角的角平分线。
• 已知:如图,∠AOB, • 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 • 作法: • (1)以O为圆心,任意长度为半径画弧,分别交OA,OB
B N
B'
N'
N'
O'
M' A'
O'
M' A'
O'
M' A'
O
MA



(5)题目五:经过直线上一点做已 知直线的垂线。
(6)题目六:经过直线外一点作已 知直线的垂线
(7)题目七:已知三边作三角形。
• 已知:如图,线段a,b,c.
• 求作:△ABC,使AB = c,AC = b,BC = a.
• 作法:
于M,N; • (2)分别以M、N为圆心,线段MN的长为半径画弧,两
弧交∠AOB内于P;作射线OP。则射线OP就是∠AOB的 角平分线。AMPO
N
B
(4)题目四:作一个角等于已知角。
• 已知:如图,∠AOB。 • 求作:∠A’O’B’,使A’O’B’=∠AOB • 作法: (1)作射线O’A’; (2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N; (3)以O’为圆心,以OM的长为半径画弧,交O’A’于M’; (4)以M’为圆心,以MN的长为半径画弧,交前弧于N’; (5)连接O’N’并延长到B’。则∠A’O’B’就是所求作的角。
a
• 作线段AB = c;
b
• 以A为圆心,以b为半径作弧,
• 以B为圆心,以a为半径作弧与
c
• 前弧相交于C;
C
• 连接AC,BC。
b
a
• 则△ABC就是所求作的三角形。
A
c
B
题目八:已知两边及夹角作三角形。
• 已知:如图,线段m,n, ∠ .
• 求作:△ABC,使∠A=∠,AB=m,AC=n.
• 例7、如图,A、B两村在一条小河的的同一侧, 要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,厂址应选 在哪个位置?
(2)若要使自来水厂到两村的输水管用料最省,厂 址应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留 作图痕迹.
.B
A.
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
• 例4.如图,已知∠A、∠B,求作一个角,使 它等于∠A-∠B.
• 例5、如图,画一个等腰△ABC,使得底边 BC= a ,它的高AD= h
a h
• 例6、如图,有A,B,C三个村庄,现要修
建一所希望小学,使三个村庄到学校的距 离相等,学校的地址应选在什么地方?请 你在图中画出学校的位置并说明理由(保 留作图痕迹).
七年级下册尺规作图复习课件
(1)题目一:作一条线段等于已知 线段。
• 已知:如图,线段a .求作:线段AB,使AB = a .
• 作法:
• 作射线AP;
a
• 在射线AP上截取AB=a .
• 则线段AB就是所求作的图形。 A
B
P
(2)题目二:作已知线段的中点。
• 已知:如图,线段MN.
• 求作:点O,使MO=NO(即O是MN的中点).
相关文档
最新文档