高中数学必修一第一章---总复习课件

合集下载

高中数学课件-高一数学必修1总复习课件1

高中数学课件-高一数学必修1总复习课件1
x
1、定义域 . 2、值域
k>0
k<0
(, 0)(0,+)
(, 0)(0,+)
3、单调性 递减(,0),(0,+) 递增(,0),(0,+)
4、图象
二次函数 y ax2 bx c
1、定义域 2、值域 3、单调性
4、图象
a>0
a<0
.
4ac b2
[
, )
4a
R.
4ac b2
(,
]
4a
(, b ]减, [- b ,)增
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
3.集合间的关系:
子集:AB任意x∈A x∈B.
真子集:AB x∈A,x∈B,但存在
x0∈B且x0A. 集合相等:A=B AB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
第一章 集合与函数概念 第二章 基本初等函数Ⅰ 第三章 函数应用
一、知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合
2、元素与集合的关系: 或 3、元素的特性:确定、互异、无序
例1:判断函数f(x)=1/x在区间(0,+∞)上
是增函数还是减函数?并证明你的结论。 减函数
证明:设x1,x2∈(0,+∞),且x1<x2,则

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
(1)y=f(-x)的图象与y=f(x)的图象关于y轴对称; (2)y=-f(x)的图象与y=f(x)的图象关于x轴对称; (3)y=-f(-x)的图象与y=f(x)的图象关于原点对称; (4)奇函数的图象关于原点对称,偶函数的图象关于 y轴对称; (5)如果函数y=f(x)对定义域内的一切x值,都满足 f(a+x)=f(a-x),其中a是常数,那么函数y=f(x)的图象关
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).

人教高中数学必修一A版《充分条件与必要条件》集合与常用逻辑用语教学说课复习课件

人教高中数学必修一A版《充分条件与必要条件》集合与常用逻辑用语教学说课复习课件

课件 课件
课件 课件
课件
课件
1.记集合 A={x|p(x)},B={x|q(x)},若 p 是 q 的充分不必要条件,
则集合 A,B 的关系是什么?若 p 是 q 的必要不充分条件呢?
提示:若 p 是 q 的充分不必要条件,则 A B,若 p 是 q 的必要不充分 条件,则 B A.
栏目导航
2.记集合 M={x|p(x)},N={x|q(x)},若 M⊆N,则 p 是 q 的什么条 课件 课件 课件 课件 课件 课件 课件 课件
(2)若 p⇒q,但 q p,则称 p 是 q 的充分不必要条件.
(3)若 q⇒p,但 p q,则称 p 是 q 的必要不充分条件.
(4)若 p q,且 q p,则称 p 是 q 的既不充分也不必要条件.
栏目导航
思考 2:(1)若 p 是 q 的充要条件,则命题 p 和 q 是两个相互等价的命
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
充要条件的探求与证明
【例 3】 试证:一元二次方程 ax2+bx+c=0 有一正根和一负根的
充要条件是 ac<0.
[思路点拨] 从“充分性”和“必要性”两个方面来证明.
栏目导航
[证明] ①必要性:因为方程 ax2+bx+c=0 有一正根和一负根,所
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件

高一数学必修1总复习课件

高一数学必修1总复习课件
单调性的判定方法
导数法、定义法、图象法等。
单调性的应用
求极值、求最值、比较大小等。
02
三角函数
角的概念及度量
角的概念
角是由两条射线公共端点出发的 两条射线的位置关系所形成的, 分为平面角和球面角。
角的度量
角度的大小是用实数表示的,通 常使用度、弧度、密位等单位来 度量角的大小。
三角函数的定义
正弦函数
求和公式
Sn=a1*(1-q^n)/1-q,其中Sn是前n项和,a1是 第一项,q是公比
3
应用
利用求和公式可以计算等比数列的和,解决实际 问题
05
算法初步
算法的概念及程序框图
总结词
01
理解算法的概念和程序框图的绘制方法
算法的概念
02
算法是指一系列解决问题的清晰指令,它按照一定的顺序执行
,能够得到确定的结果。
值域的性质
闭区间、开区间、左开右闭、左闭右开等。
值域与定义域的关系
函数的值域总是定义域的子集。
函数的单调性
单调性的定义
如果对于任意$x_{1} < x_{2}$都有$f(x_{1}) leq f(x_{2})$或 $f(x_{1}) geq f(x_{2})$,则称函数在区间内单调递增或单调递减。
子集;不属于某个集合的元素组成的集合称为该集合的补集。
集合的运算
并集
两个集合中所有元素组 成的集合称为这两个集
合的并集。
交集
两个集合中共有的元素 组成的集合称为这两个
集合的交集。
差集
从第一个集合中去掉与 第二个集合共有的元素 组成的集合称为这两个
集合的差集。
集合运算的性质
结合律、交换律、分配 律等。

最新高中数学必修课件-第一章---总复习

最新高中数学必修课件-第一章---总复习
最新高中数学必修课件-第一章--总复习
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
1.集合的概念: 一般地,指定的某些对象的全体
称为集合,简称“集”. 集合中每个对象叫做这个集合的
最新高中数学必修课件-第一章--总复习
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就第一章--总复习
5.集合的表示方法: 描述法、列举法、图表法
6.集合的分类: 有限集、无限集
最新高中数学必修课件-第一章--总复习

高中数学必修一全册课件人教版(共99张PPT)

高中数学必修一全册课件人教版(共99张PPT)
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5

2

3

5

6

7

8

二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};

高中数学必修1总复习课件

高中数学必修1总复习课件

A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
3.集合间的关系:
子集:AB任意x∈A x∈B.
真子集:AB x∈A,x∈B,但存在

x0∈B且x0A.
集合相等:A=B AB且BA.
空集:.
性质:①A,若A非空, 则A.
)

b2 3 2

)=a-2 + b ≥0,∴A≥B.
4


B

1

3.若0<a<1,则不等式(x-a)x-a<0的解集为




1

A.xa<x<a


1


B.xa<x<a




1

C.xx>a或x<a



2.交集: A B {x | x A,且x B}
A
B
A B
A
B
A B
3.全集: 一般地,如果一个集合含有我们所研究问题中涉及
的所有元素,那么就称这个集合为全集.用U表示
4.补集: UA={x|x U,且x A}
A U UA U
U
A
U
A
题型示例
考查集合的含义
例1 已知x {1, 2, x }, 则x 0或2
2




例2 A y y x , B x y x ,
2
求A B.
A [0, ), B R,
A B [0, ).
2
考查集合之间的关系
例3 设A x | x 2 x 6 0 , B x | mx 1 0 ,

人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课

人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课

【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.集合的分类: 有限集、无限集
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
5.集堂
1.集合的概念:
一般地,指定的某些对象的全体 称为集合,简称“集”.
集合中每个对象叫做这个集合的 元素.
2.集合的表示: 集合常用大写字母表示,元素常用小
写字母表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就说a不属 于集合A,记作aA.
相关文档
最新文档