连续系统振动-课件(PPT·精选)
合集下载
《振动力学基础》课件

非耦合振动
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
假设模态法 振动力学课件

3x
2l
1 1.7723
G
l 2
1 (x)
sin
x
2l
0.0681sin
3x
2l
2 4.7795
G
l 2
2
(x)
0.1995sin
x
2l
sin
3x
2l
注意:
由于近似模态不是真正自然振型,故相当于增加约束即刚
度,所以对于各阶近似频率均有 i,即它i 解出了的上
限 。
工程上常取一系列近似方案,并算出结果中选一组最小的 i
I 0
l 1 0
x sin 2 2l
3x
2l
dx
0.3806
lI
0
m12
m21
I 0
l 0
1
x 2l
sin
x
2l
sin
3x
2l
dx
0.038
lI 0
00..30830860
i
(x)
sin
2i
2l
1
x
V 1
2
l 0
GI
(x) (x,t)2
dx
1 2
l
0 GI (x)
l
mij 0 l (x)i (x) j (x)dx mi (xa ) j (xa )
kij
l 0
EI
(
x)i"
(
x)
" j
(
x)dx
k1i'
(
xb
)
' j
(
xb
)
k
2i
(
xb
)
j
理论力学经典课件-振动

2 n
x C1er1t C2er2t
本征值与运动微分方程旳通解旳形式与阻尼比有关。
3. 小阻尼情形
当 n< n 时,阻尼系数 c 2 mk ,这时阻尼较小,
称为小阻尼情形。其两个根为共轭复数,即:
r1 n i
2 n
n2
r2 n i
2 n
n2
其方程旳解为
或
x Aent sin(
2 n
F l 3 3EI
Fl 3 3EI
F ky yst
k
3EI l3
k-等效刚度
Wl 3 mgl 3 yst 3EI 3EI
k
3EI l3
my mg F
F ky yst
my ky 0 此即梁-物块旳运动微分方程
y Asin(nt )
串联弹簧与并联弹簧旳等效刚度
1. 串 联
meq-等效质量:使系统在广 义坐标方向产生单位加 速 度,需要在这一坐标方 向施加的力或力矩。
meq q keq q=0
q=C1cosnt C2cosnt
q
2 n
q=0
q=Asinnt
=
n
keq -系统的固有频率;A meq
q02
q0
n
2
振动的振幅;
arctan
n q0
q0
-振动的初位相; q0-初始广义坐标; q0-初始速度。
l
处于平衡,若k、m、a、l 等均
为已知。
ak
m
求:系统微振动旳固有频率
解:取静平衡位置为其坐标原点,
由动量矩定理,得
F
JO
d 2
dt 2
mgl cos
Fa cos
连续系统的振动课件

形函数与插值函数 构造形函数和插值函数,将节点位移表示为单元 内任意一点位移的函数,实现连续系统振动的离 散化描述。
连续系统振动仿真实例
弦振动仿真
建立弦的有限元模型,通过求解特征值和特征向量,得到弦的自振频率和振型,分析弦的振动特性。
梁弯曲振动仿真
建立梁的有限元模型,考虑剪切变形和转动惯量的影响,计算梁的自振频率和振型,揭示梁的弯曲振动规律。
拓扑优化
通过改变结构拓扑形态来优化振动特性,如减少 质量、提高刚度等。
形状优化
优化结构件的形状以降低振动幅度,例如改变梁 截面形状、板厚度分布等。
参数优化
针对特定连续系统,通过调整参数(如阻尼系数、 刚度分布等)实现振动性能的优化。
06
实验与测量技术
振动测量原理及设备
01
振动测量原理
02
振动测量设备
基于牛顿第二定律与连续系统的振 动特性,推导连续系统的偏微分方 程。
偏微分方程的形式
详细解释偏微分方程中各项的物理 意义,如惯性项、阻尼项和弹性项。
波动方程的推导与解析
01
02
03
波动方程的推导
从偏微分方程出发,通过 引入波动假设,推导连续 系统的波动方程。
波动方程的解析解
利用数学方法求解波动方 程,得到通解,并分析通 解的物理意义。
03
连续系统振动的应用实例
弦的振动与音乐乐器
振动弦上的波传播
当弦受到激励振动时,振动以波 的形式在弦上传播,形成驻波或 行波。这种波传播的现象是音乐
乐器发音的基础。
乐器中的弦振动
许多乐器如吉他、小提琴、钢琴 等都利用弦的振动发声。不同乐 器的音色和音调可以通过调整弦 的张力、长度、直径等参数来实
连续系统振动仿真实例
弦振动仿真
建立弦的有限元模型,通过求解特征值和特征向量,得到弦的自振频率和振型,分析弦的振动特性。
梁弯曲振动仿真
建立梁的有限元模型,考虑剪切变形和转动惯量的影响,计算梁的自振频率和振型,揭示梁的弯曲振动规律。
拓扑优化
通过改变结构拓扑形态来优化振动特性,如减少 质量、提高刚度等。
形状优化
优化结构件的形状以降低振动幅度,例如改变梁 截面形状、板厚度分布等。
参数优化
针对特定连续系统,通过调整参数(如阻尼系数、 刚度分布等)实现振动性能的优化。
06
实验与测量技术
振动测量原理及设备
01
振动测量原理
02
振动测量设备
基于牛顿第二定律与连续系统的振 动特性,推导连续系统的偏微分方 程。
偏微分方程的形式
详细解释偏微分方程中各项的物理 意义,如惯性项、阻尼项和弹性项。
波动方程的推导与解析
01
02
03
波动方程的推导
从偏微分方程出发,通过 引入波动假设,推导连续 系统的波动方程。
波动方程的解析解
利用数学方法求解波动方 程,得到通解,并分析通 解的物理意义。
03
连续系统振动的应用实例
弦的振动与音乐乐器
振动弦上的波传播
当弦受到激励振动时,振动以波 的形式在弦上传播,形成驻波或 行波。这种波传播的现象是音乐
乐器发音的基础。
乐器中的弦振动
许多乐器如吉他、小提琴、钢琴 等都利用弦的振动发声。不同乐 器的音色和音调可以通过调整弦 的张力、长度、直径等参数来实
《振动分析基础》课件

车辆的振动分析
总结词
车辆的振动分析是研究车辆动态特性和提高乘坐舒适性的重要手段,主要关注车辆的平顺性和稳定性 。
详细描述
通过对车辆进行振动测试和分析,可以评估车辆在不同路况下的平顺性和稳定性,优化车辆悬挂系统 和轮胎设计,提高车辆的乘坐舒适性和行驶安全性。同时,还可以研究车辆的动态特性,为车辆的主 动和半主动控制提供依据。
05
振动分析案例研究
机械设备的振动分析
总结词
机械设备的振动分析是振动分析中应用最广泛的一类,通过对机械设备振动特 性的研究,可以预测和解决设备运行中的问题,提高设备稳定性和可靠性。
详细描述
机械设备的振动分析主要研究设备的振动特性、振动源、传递路径和振动对设 备性能的影响。通过测量和分析设备的振动数据,可以识别出设备的故障模式 、预测设备寿命,优化设备设计和改进设备维护策略。
振动分析的重要性
振动分析在工程领域中具有重要意义 ,如机械设备的故障诊断、结构安全 评估、噪声控制等。
VS
通过振动分析,可以深入了解物体的 动态特性,为优化设计、提高产品质 量和可靠性提供依据。
振动分析的应用领域
机械制造
振动分析用于检测机械设备的 工作状态,预防故障发生,提
高生产效率。
航空航天
振动分析用于评估飞行器的结 构安全性,优化设计,降低噪 音和振动对乘客的影响。
THANKS
感谢观看
混合控制技术
混合控制技术是指结合主动和被动控制技术的优点,以提高减振效果的 控制技术。
混合控制技术可以同时使用主动和被动元件,通过主动元件提供反向振 动来抵消原始振动,同时利用被动元件提供额外的阻尼和隔振效果。
混合控制技术可以综合主动和被动控制技术的优点,提高减振效果,但 需要设计合理的控制系统和元件参数,成本也相对较高。
《振动力学结构力学》课件

静力学基础
静力学基本概念:力的平衡、力矩平衡、力系平衡等 静力学基本原理:牛顿三大定律、胡克定律等 静力学基本方法:力法、位移法、能量法等 静力学基本应用:结构分析、结构设计等
弹性力学基础
弹性力学的定义:研究弹性体在外力作用下的变形和应力分布的学科 弹性力学的基本假设:连续性假设、小变形假设、均匀性假设、各向同性假设 弹性力学的基本方程:胡克定律、泊松比定律、弹性模量定律 弹性力学的应用:结构设计、地震工程、航空航天等领域
相位:振动 的起始位置
振型:振动 的形态和形 状
阻尼:振动 的衰减程度
共振:振动 的放大效应
振动系统的基本组成
阻尼:阻碍振动的力,影响 振动的衰减和能量损失
弹簧:连接物体和支撑物的 弹性元件,影响振动的频率 和振幅
质量:物体本身的质量,影 响振动的频率和振幅
支撑物:支撑物体的物体, 影响振动的频率和振幅
振添加动副力标学题 结构力学 PPT课件
汇报人:
目录
PART One
振动力学概述
PART Two
结构力学基本概念
PART Three
振动力学中的基本 理论
PART Five
振动力学与结构力 学的应用
PART Four
结构力学中的基本 理论
PART Six
案例分析
振动力学概述
振动的定义和分类
振动:物体 在平衡位置 附近做往复 运动
振动分类: 自由振动物体在平衡 位置附近做 往复运动, 没有外力作 用
受迫振动: 物体在平衡 位置附近做 往复运动, 受到外力作 用
自激振动: 物体在平衡 位置附近做 往复运动, 没有外力作 用,但受到 自身振动的 影响
振动的物理量描述
无限自由度体系振动(第15讲,11月23日)

=0
频率方程
cos λl cosh λl +1= 0
解得: 解得: 当 i=1,2,3时 λ1l =1.875 时
λ2l = 4.694
λ3l = 7.855
2i −1 当 i ≥ 3时 λil ≈ π , (i = 3,4,⋯ ) 2 EI 2 各阶固有频率: ωi = (λil) 各阶固有频率: , (i =1,2,⋯ ) 4 ρSl
0
y
x
φ(0) = 0 φ′′(0) = 0 φ(l) = 0 φ′′(l) = 0
A =0 4
A = A =0 1 3 A sin λl + A sinh λl = 0 2 4 −A sin λl + A sinh λl = 0 2 4
频率方程: 频率方程: sin λl = 0
iπ 2 EI , (i = 1,2,⋯ ) 固有频率: 固有频率: ωi = ( ) l ρS ω2 2 EI 4 ϕ(x) = A cos λx + A2 sin λx + A3 cosh λx + A4 sinh λx λ = 2 a0 = 1 a0 ρS
再来看空间方程
ϕ '''' ( x ) − λ ϕ ( x ) = 0
4
假定解的形式为: 假定解的形式为:
ϕ ( x ) = De
由此可得: 由此可得:
αx
α = ± λ , ± iλ
无限自由度体系的振动 / 单跨梁的横向弯曲自由振动
于是可得: 于是可得:
ϕ ( x ) = D1eiλ x + D2e −iλ x + D3eλ x + D4 e− λ x
无限自由度体系的振动 / 单跨梁的横向弯曲自由振动
集中质量法 振动力学课件

频率方程 E FM2 0
ml 3 l 4
3072 EI 3072 EI
9 11 7
E
2ml 3
3072 EI
11 7
16 11
11 0 9
9 11 7
E 2 11 16 11 0
7 11 9
92 1 112 72 9 1 11 7 2 1 11 7 112 162 1 112 11 16 1 11 0 16 1 11 0 72 112 92 1 7 11 9 1 0 22 16 1
点。
集中质量法
工程系统的物理参数常常分布不均匀。 惯性和刚性较大的部件可看作质量集中的质点和刚体。
惯性小和弹性强的部件可抽象为无质量的弹簧,它们的质 量可以不计或折合到集中质量上。
物理参数分布均匀的系统,也可近似地分解为有限个集中质 量.集中质量的数量取决于所要求的计算精度。
连续系统离散为有限自由度系统后,可以采用多自由度系统 的分析方法进行分析。
m 2 m 24 12 m 8 m 24 3
m 12
m 3
分8个等面积三角形,每个面积的质量平均分到三角形的三个顶点
根据实际情况的多种集中分配法。
以梁的三自由度系统近似为例:
M
m 4
1 0 0
0 1 0
0 0 1
材料力学得出
f11
f33
9l 3 768 EI
16l 3 f22 768 EI
由此知欲求n阶固有频率自由度至少应求出n+1或更多
9.798 EI l 2 S
0.7%
2
39.48 EI 39.19 EI
l 2 S
l 2 S
0.73% 38.18 EI l 2 S