探讨钢筋混凝土矩形水池结构设计 周晨
探讨钢筋混凝土矩形水池结构设计 周晨

探讨钢筋混凝土矩形水池结构设计周晨摘要:钢筋混凝土矩形水池在生活之中是一种常见的构筑物,在工民建工程之中经常都会有所涉及。
本文笔者依据多年的施工经验探讨了钢筋混凝土矩形水池结构设计的相关问题以及施工之中的重点问题。
关键词:钢筋混凝土;矩形水池;结构设计;施工要点引言钢筋混凝土矩形水池作为一种常用的构筑物类型,被广泛应用到工业与民用建筑中的污水处理、给水装置、消防、循环水场及事故缓冲等工程中。
在矩形钢筋混凝土水池设计过程中,不仅要满足给排水专业的工艺要求,而且要兼顾安全、适用和经济的原则。
在设计过程中把握每个设计细节这是满足全部设计要求的要点。
按照相关设计规定,针对矩形钢筋混凝土水池的设计过程,以及实际经验,探讨矩形钢筋混凝土水池设计的要点。
1 荷载取值1.1池内水压力池内水压力是水池类构筑物的重要荷载。
在设计之中,应该依照满水高度来计算水压。
这是因为:一方面在使用的过程之中因为值班人员疏忽或者存在液位计等部件功能的缺位而导致满池,另一个方面,工艺之上则有可能因为技术改造而高出之前设计水位。
池内水压荷载的取值大小对挡水墙式浅池的下端弯矩的影响比较大。
1.2池外水浮力当有地下水之时,池壁外侧除考虑到地下水的压力之外,还需要考虑到地下水位以下水的浮力对土的有效重度。
并且,地下水对于池体的浮托力也应该重点考虑。
因为地下水位没有掌握好而导致结构选型错误以及抗浮不够的工程事故也经常发生。
地质勘察报告而提供的地下水位通常只是反映勘测期间的地下水位情况。
如果详勘是在当地枯水期进行的,其提供的地下水位标高则是没有办法被设计取用,或者结构计算出现失误。
依据具体的情况,并且结合地方水文资料,制定一个较为适合的地下水位标高进行设计地下水位,如此则可以确保使用阶段结构安全以,并且也可以降低工程造价的目的。
1.3温、湿度作用因为混凝土在硬化的过程之中出现的水化热、以及工艺特殊要求和季节变化,使得池壁出现膨胀或者是收缩。
一旦出现变形,池体之中出现相应的温度和湿度变形应力,较为容易出现有害裂缝。
钢筋混凝土矩形水池结构设计分析探讨_1

钢筋混凝土矩形水池结构设计分析探讨发布时间:2023-02-28T08:37:29.178Z 来源:《中国建设信息化》2022年20期作者:陈永涛[导读] 钢筋混凝土矩形水池广泛应用于建筑施工、污水处理、公共给排水、农业、陈永涛身份证号码:3505831990****0055摘要:钢筋混凝土矩形水池广泛应用于建筑施工、污水处理、公共给排水、农业、工业等领域。
因此,为了满足时代发展对钢筋混凝土矩形水池的技术要求,设计人员需要从水池结构的施工标准入手,优化水池结构的设计,为工程创造更加可观的经济效益和环境效益。
关键词:钢筋混凝土;矩形水池;结构设计;钢筋混凝土矩形水池是目前较为常用的一种水池结构,这种结构通常情况下是由三部分所组成的即池壁、底板以及顶盖,其被广泛的应用于我们日常的生产生活之中。
一、计算水池内力1.底板内力计算。
矩形水池底板内力受到地基反力的影响,使得池壁间距会对底板反力分布情况造成不同程度的影响。
因此,在计算矩形水池底板内力的过程中,首先,考虑池壁刚性角度重叠长度与池壁间距的关系,避免间距过大造成池底发生变形,必要时可采用静力平衡法避免反力分布不均匀移动现象的发生。
其次,地下水位高度小于水池底板高度时,地基压缩性就会呈现均匀变化状态,此时可计算小面积的水池地基反力来完成底板内力的计算。
最后,当矩形水池底板与悬臂板结构较为相似时,可采用剪力计算悬臂板,对于等截面水池底板则应按照直线上内力分布情况计算地基反力。
此过程主要是根据变截面、等截面两种地基反力分布情况计算相应的水池底板内力。
此外,对于多跨连续板则应沿着宽度或是长边计算底板内力,同时按照双向板计算四边的传递弯矩与简支,从而将钢筋混凝土裂缝控制在0.2 mm以下。
2.池壁内力计算。
对于钢筋混凝土矩形水池来说,池壁内力是其内力计算的又一重要环节。
在对池壁内力进行计算时,若池壁长与高的比值不小于3,应在较长的池壁取宽为1 m的板作为计算单元,且这个计算单元内力计算的方向应与单板垂直方向相一致;当矩形水池池壁长与高的比值为0.5~3时,则应按照荷载在双向板上的传递特征,计算两个传递方向上的内力。
浅析钢筋混凝土矩形水池结构设计

其受力状 态 ,如果采用这种方式确 实存 在困难的话 ,也应 当从池壁 内部挑出走 道 板 ,让其成为池壁的不动铰支撑 ,但是从 笔者的设计经验上来看 ,采用 这种方 式 还是 比较 困难 的。这里笔者建议应 当尽可能 的减小走道板水乎方 向的计算跨度 。
2 . 1 . 2 池 壁 内 力 计 算
中图分 类号:G 3 2 2 文献标识码:B 文章编号 1 0 0 7 - 6 3 4 4( 2 0 1 7 )0 8 - 0 3 4 1 - 0 1
摘要 : 钢筋混凝土矩形水池是 目 前较为 常用的一种水 池结构 , 这种结构通常情况下是 由三部分所组成的 即池壁 、 底板以及 顶盖 , 其被 广泛的应用 于我们 日常的生产 生活之 中。 本文在研究 的过程 中对此类结构 的设计 方法以及特点进行 简单 的阐述 , 从荷 栽计算及
R e s e a r c h研 究探讨 3 4 1 ●
浅析钢筋混凝土矩形水池结构设计
刘海 峰 ’ 王 霞
( 1中国城 市建设研 究院有 限公 司山 东分院 , 山东 济南 2 5 0 1 0 1 ; 2山东华城城 建设计 工程 有限公 司 , 山东 济南 2 5 0 1 0 1 )
一
内力组合、内力计算以及构造措施三个方面入手提 出了设计人 员在设计 的过程 中应 当注意 的几点 问题 ,希望能给相关设 计人员提供 定的帮助。
自由的板。其次对于有顶盖 的封闭式水池池壁来说 ,在考虑其边界 条件时间 ,应 当综 合考虑其与顶板 的连接 情况 ,通常情况下使用的都是三边 固接 、顶板铰接的 板 。而当池壁 与顶 板整体连接而且池壁的线 刚度 是顶板线 刚度 的 5倍 以上的话 , 就 可以将池壁顶端作为铰接看 待 ,如果 没有上述条件的话 ,就应 当将其 视为弹性
关于钢筋混凝土矩形水池结构设计的分析

关于钢筋混凝土矩形水池结构设计的分析钢筋混凝水池是工业与民用建筑中一种常见的构筑物,被广范应用于工业与民用建筑的给水、污水、消防工程中。
钢筋混凝土水池按平面形状可以分为矩形水池和圆形水池;按其埋置情况可以分为:全埋式、地下式、半地下式、地面式和架空式五种类型;按照有无顶板可以分为顶板式和敞口式,本文主要是针对地下式敞口水池的结构计算情况进行分析。
地下式水池是指池顶标高与地面一致或高出地面的高度不超过300mm的水池类型。
是由池壁和底板组成,因此在进行结构设计时应分别对池壁和底板进行计算然后对连接部分进行构造处理即可。
其结构计算步骤如下:1 荷载种类及组合1.1池壁荷载池壁承受的荷载除池壁自重和池顶荷载引起的竖向压力或可能的端弯矩外,主要是作用于水平方向的侧压力,主要包括土压力、地面活荷载引起的附加侧向压力及池壁范围内有地下水的时候地下水所引起的侧压力。
对于敞口式水池土压力进行计算时,需考虑池壁范围内地下水的情况,无地下水时池壁按侧压力为三角形进行分布的主动土压力计算,池壁底部土压力标准值 Psk=γHn tan2(45°-φ/2)当池壁范围内有地下水时,地下水位以上的土压力计算同无地下水的情况;地下水位以下的侧压力则除了考虑水压力外还应考虑土的有效重度因水的浮力降低而对土压力的影响,即:池壁底部土压力 Psk=[γ(Hn+Hw)+γs Hw] tan2(45°-φ/2)池壁底部水压力 Pwk=γwHwγ——池外回填土重度,一般可取18KN/m³Hn——池壁净高φ——回填土内摩擦角Hw——地下水位至池壁底部的距离γs——地下水位以下池外回填土的有效重度,一般可取10KN/m³1.2池底荷载池底荷载指水池自重引起的地基反力或地下水浮力。
当地基不是太软弱时,可以测定由水池自重引起的地基反力为均匀分布。
计算时可以采取水池总重除以池底面积。
1.3荷载组合地下式水池在进行承载能力极限状态设计时,一般根据三种荷载组合进行内力计算:(1)池内满水,池外无土;(2)池内无水,池外有土;(3)池内满水,池外有水;第一种荷载组合出现在回填土以前的试水阶段,第二、第三种组合是使用阶段的放空和满池时的工作状态。
论析钢筋混凝土矩形水池设计

论析钢筋混凝土矩形水池设计钢筋混凝土矩形水池结构是一种特殊结构,在工业建筑进和民用建筑的给水工程、排污工程、消防工程中有及其广泛的应用。
在进行钢筋混凝土矩形水池结构设计时,设计人员不仅要对整个工艺流程进行考虑,还要对钢筋混凝土矩形水池结构的生产使用、工程造价等进行考虑。
一般情况下,钢筋混凝土矩形水池结构主要由顶盖、底板、池壁等部分组成,钢筋混凝土矩形水池可以分为带走道板的半封闭池、顶盖封闭池、无顶盖开敞池等几种情况,在进行钢筋混凝土矩形水池设计时,设计人员要根据实际情况,选用合理的形式。
1、荷载及内力组合1.1 荷载分类荷载可以分为池顶荷载、池壁荷载、温度荷载、湿度荷载等几种情况,其中池顶荷载主要是针对有顶盖的封闭式水池,主要包括顶板自重、覆土重力、防水层重量、活荷载、雪荷载等,一般情况下,在计算池顶荷载时,不会同时考虑活荷载和雪荷载。
一般情况下,在进行初步设计或者缺乏相关资料时,设计人员可以选取30°为土的内摩擦角,土的重度可以选取18KN/m3,如果地面没有堆载,地面活荷载可以选用1.5KN/m2-2.0KN/m2。
水池内水压力是水池承受的主要荷载,在进行水池内水压力计算时,如果处于偏安全状态,需要按照满池进行计算。
为了避免出现试块制作的不规范现象,应加强混凝土强度评定,按照《混凝土强度检验评定标准》(GBJ107)的相关规定对混凝土强度进行分批检验,并进行评定,根据强度等级、生产工艺条件以及龄期分配检验批,试块制作的地点应随机选取,保证试块制作的真实性。
为避免混凝土裂缝的发生,最重要的要做好混凝土的早期养护,控制好构件的湿润度,使混凝土尽可能减少收缩,避免内部约束而开裂,同时还要控制好混凝度的温度上升,降低混凝土的温度下降的速率,提高混凝土的极限拉伸值,并采取相应的措施,改善和完善钢筋混凝土矩形水池的空间结构设计。
1.2 内力组合一般情况下,钢筋混凝土矩形水池需要考虑以下几种内力组合:池内水压+ 自重;池外土压+自重;池内水压+自重+温度荷载、湿度荷载。
钢筋混凝土矩形水池结构设计

钢筋混凝土矩形水池结构设计导言钢筋混凝土矩形水池结构一般由池壁、底板和顶盖(是否封闭加盖由工艺需要决定)所组成。
水池按有无顶盖,可分为无顶盖的开敞式水池、有顶盖的封闭式水池和带走道板的半封闭式水池;按水池埋置情况,可分为全埋式、地下式、半地下式、地面式和架空式水池。
本文以春风油田二号联合站建设工程中污水回收及污泥浓缩池为例,简单介绍了水池的结构设计。
矩形水池结构设计1.水池主要荷载作用在水池上的主要荷载:(1)池顶荷载:作用在池顶上的荷载主要有顶板自重、防水层重、覆土重、活荷载和雪荷载。
其中活荷载和雪荷载不同时考虑,计算时取二者中的较大值。
(2)池底荷载:池底荷载为底板所受的地基反力和地下水产生的浮力。
地基反力主要由以下几种荷载引起:1)池顶活荷载q k;2)池顶覆土荷载q s(根据实际计算确定q s值);3)池顶自重G r、池壁自重G w、及支柱自重G c,取单位面积自重和。
(3)池壁荷载:作用在池壁上的荷载主要是水平方向的土压力和水压力。
池壁水压力按三角形分布,一般偏安全的按满池来计算。
池壁土压力按朗肯主动土压力理论计算。
2.水池内力计算(1)水池资料本工程水池为半地上式水池,整体尺寸为18m×20m,池体高出地面0.45m,分五个区格,池深2.65m,局部3.55m。
池顶为预制混凝土盖板,池体混凝土采用C40、S8级抗渗混凝土,钢筋采用HRB400级,最外层钢筋混凝土保护层厚度,池体底板、池壁与池顶盖板均取50mm。
水池的内力计算主要包括池壁板、池底板和池顶板内力计算。
池顶为预制混凝土板,仅对池壁板与池底板进行计算。
(2)池壁板计算进行池壁板的内力计算,首先确定池壁的边界条件,然后考虑“池内有水、池外无土”或“池内无水、池外有土”两种荷载工况进行计算。
跨度为18m的外壁板计算,板厚350mm。
按悬臂板计算,沿池壁高度取1m宽板带作为计算单元进行计算。
1)荷载计算。
a.池内有水,池外无土时(按满水的最不利情况计算)水压力:根据公式计算:=10×3.1=31kN/㎡。
探讨钢筋混凝土矩形水池结构设计

探讨钢筋混凝土矩形水池结构设计摘要:本文探讨了水池结构设计的方法和特点,从荷载计算及内力组合、内力计算、构造措施三个方面提出了设计中一些值得注意的问题.从而使钢筋混凝土矩形水池设计的更加可靠和经济,供同行参考。
关键词:结构设计矩形水池水池荷载内力计算构造措施0 引言钢筋混凝土矩形水池作为特种结构,被广范应用于工业与民用建筑的给水、消防、排污工程中。
钢筋混凝土矩形水池(以下简称水池)池体结构一般由池壁、底板和顶盖(是否封闭加盖由工艺需要决定)所组成。
水池按有无顶盖,可分为无顶盖的开敞式池、有顶盖的封闭式池和带走道板的半封闭池;按安置方式,可分为地上式、半地上式、地下式。
1 水池荷载的计算及内力组合中值得注意的问题1.1 水池荷载分类及选用1.1.1 池顶荷载对于有顶盖的封闭式水池,应计算作用于池顶板上的竖向荷载,主要包括顶板自重、防水层重、覆土重、雪荷载和活荷载。
雪荷载和活荷载不同时考虑。
1.1.2 池壁荷载作用在池壁上的荷载可分为池内水压力、池外土压力和地下水压力。
池内水压是水池承受的主要荷载之一,一般偏安全地按满池来计算水压。
一方面,工艺上有可能挖掘潜力超过原设计水位:另一方面,一旦误操作而造成满池时可保证结构的安全。
对于地下式或半地下式水池,土对池壁有侧压力,侧压力通常用朗肯主动土压力理论计算。
土的各参数可按岩土勘察报告所提供的实际数值取用。
但在初步设计或缺乏资料时,土的内摩擦角可取30,土的重度可取18。
当地面无堆载时,地面活荷载可按1.5~2.0KN/m2考虑。
1.1.3 温、湿度荷载由于混凝土硬化过程中产生的水化热、工艺要求以及季节变化等,造成池壁产生膨胀和收缩。
当变形受到约束时,在池体中产生相应的温度或湿度应力。
温度应力和湿度应力是导致混凝土池壁产生裂缝的主要原因,对于冬夏季或早晚温、湿差大的地区,温、湿度荷载计算是不可忽略的。
温、湿度荷载所产生的内力计算是相当复杂的问题,实际工程中。
05S804矩形钢筋混凝土蓄水池

05S804矩形钢筋混凝土蓄水池05S804矩形钢筋混凝土蓄水池是一种广泛应用于农田水利工程中的重要设施,其作用主要是储存和调节水资源,保障农业生产和生活的正常进行。
本文将介绍05S804矩形钢筋混凝土蓄水池的设计与施工。
05S804矩形钢筋混凝土蓄水池是一种钢筋混凝土结构形式,其池体为矩形,由池壁、池底和池顶三部分组成。
这种结构形式具有施工方便、耐久性好、占地面积小等优点。
在设计05S804矩形钢筋混凝土蓄水池时,需要考虑以下参数:(1)容积:根据实际需要确定,一般不宜小于100立方米。
(2)池壁厚度:一般采用80-150毫米的混凝土,并设置10-30毫米的构造筋。
(3)池底厚度:一般采用150-300毫米的混凝土。
(4)池顶厚度:一般采用50-150毫米的混凝土。
(5)池壁与池底的连接方式:采用坡角连接或直角连接。
(6)池壁与池顶的连接方式:采用坡角连接或直角连接。
(1)荷载:包括池内水压力、池外土压力、雪荷载等。
(2)地震烈度:需要考虑地震对结构的影响。
(3)材料强度:需要根据实际情况选择合适的材料强度。
(1)清理现场:清理施工现场的杂物和障碍物。
(2)测量放线:根据设计图纸进行测量放线,确定池体的位置和尺寸。
(3)材料准备:准备好所需的钢筋、水泥、砂石等材料。
(1)池底施工:先施工池底,然后进行池壁和池顶的施工。
在施工时,需要注意保持池底的平整度和承载力。
(2)池壁施工:在池底施工完成后,进行池壁的施工。
在施工过程中,需要注意保持池壁的垂直度和稳定性。
需要按照设计要求设置构造筋和分布筋,确保结构的强度和稳定性。
(3)池顶施工:在池壁施工完成后,进行池顶的施工。
在施工过程中,需要注意保持池顶的平整度和承载力。
需要按照设计要求设置分布筋和防水层,确保结构的防水性能和使用寿命。
随着建筑信息模型(BIM)技术的不断发展,其在土木工程领域中的应用也越来越广泛。
特别是在水工建筑中,如水池、水库等的设计和施工中,BIM技术发挥了重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨钢筋混凝土矩形水池结构设计周晨
发表时间:2019-01-17T09:43:26.870Z 来源:《防护工程》2018年第31期作者:周晨
[导读] 按照相关设计规定,针对矩形钢筋混凝土水池的设计过程,以及实际经验,探讨矩形钢筋混凝土水池设计的要点。
天津市市政工程设计研究院天津 300392
摘要:钢筋混凝土矩形水池在生活之中是一种常见的构筑物,在工民建工程之中经常都会有所涉及。
本文笔者依据多年的施工经验探讨了钢筋混凝土矩形水池结构设计的相关问题以及施工之中的重点问题。
关键词:钢筋混凝土;矩形水池;结构设计;施工要点
引言
钢筋混凝土矩形水池作为一种常用的构筑物类型,被广泛应用到工业与民用建筑中的污水处理、给水装置、消防、循环水场及事故缓冲等工程中。
在矩形钢筋混凝土水池设计过程中,不仅要满足给排水专业的工艺要求,而且要兼顾安全、适用和经济的原则。
在设计过程中把握每个设计细节这是满足全部设计要求的要点。
按照相关设计规定,针对矩形钢筋混凝土水池的设计过程,以及实际经验,探讨矩形钢筋混凝土水池设计的要点。
1 荷载取值
1.1池内水压力
池内水压力是水池类构筑物的重要荷载。
在设计之中,应该依照满水高度来计算水压。
这是因为:一方面在使用的过程之中因为值班人员疏忽或者存在液位计等部件功能的缺位而导致满池,另一个方面,工艺之上则有可能因为技术改造而高出之前设计水位。
池内水压荷载的取值大小对挡水墙式浅池的下端弯矩的影响比较大。
1.2池外水浮力
当有地下水之时,池壁外侧除考虑到地下水的压力之外,还需要考虑到地下水位以下水的浮力对土的有效重度。
并且,地下水对于池体的浮托力也应该重点考虑。
因为地下水位没有掌握好而导致结构选型错误以及抗浮不够的工程事故也经常发生。
地质勘察报告而提供的地下水位通常只是反映勘测期间的地下水位情况。
如果详勘是在当地枯水期进行的,其提供的地下水位标高则是没有办法被设计取用,或者结构计算出现失误。
依据具体的情况,并且结合地方水文资料,制定一个较为适合的地下水位标高进行设计地下水位,如此则可以确保使用阶段结构安全以,并且也可以降低工程造价的目的。
1.3温、湿度作用
因为混凝土在硬化的过程之中出现的水化热、以及工艺特殊要求和季节变化,使得池壁出现膨胀或者是收缩。
一旦出现变形,池体之中出现相应的温度和湿度变形应力,较为容易出现有害裂缝。
在设计之时,应该考虑到夏季湿差的作用,以及冬季的温差。
前者是因为低温收缩以及湿涨抵消,后者则是因为外界气温低,池壁中水分向外移动,导致外侧湿度逐渐增加。
因为内外侧湿度相差不大,一般则可以不考虑到湿差应力。
但是内外温差还在,冬季则需要考虑到壁面温差应力。
在工程设计之中应该依照规程提供的方法进行计算。
2 矩形水池截面设计
2.1水池基础设计
钢筋混凝土水池基础一般采用筏板基础,即水池的底板作为基础,基础底板下铺设100厚C15素混凝土垫层。
根据地勘报告在设计说明中说明地基承载力特征值fak,基础底面(基础垫层底面)进入持力层不小于300mm。
如果地基土不满足设计承载力,出现以下劣质地质时要对地基进行处理,而不是加厚水池底板。
一是地基土为软弱泥土,含水率过高,流动性较强;二是地基地下有较大的地下水;三是地基底下有软弱夹层。
2.2矩形钢筋混凝土水池底板的计算原则
矩形钢筋混凝土水池底板主要承受地基反力、地下水浮力以及上部结构传下来的荷载。
通常假设底板为简支于池壁之上,池壁在侧压力作用下的底端弯矩传递给底板。
底板根据每格水池平面尺寸的长宽比,分为单向底板(长边/短边>2)或双向底板(长边/短边≤2),分别沿单向或双向截取截条,按单跨或者多跨梁计算。
2.3矩形钢筋混凝土水池抗浮验算
当池体外池底以上存在地下水时,应考虑地下水对池体的浮力。
地下水浮力的影响考虑不周的话会导致池体上浮并造成工程事故。
在地质勘查报告中,一般会反应勘测期间所在场地的地下水位情况及场地地下水位变幅情况,为抗浮计算提供依据。
水池的抗浮计算可按下式计算:Kf(抗浮稳定安全系数,取1.05―1.1)当抗浮安全度不足时,必须采取抗浮措施,如增加池体自重和锚固抗浮。
3 池壁内力计算
浅池池壁在内外水压及土压力作用下,主要为竖向传力。
浅池池壁计算模型为:顶端自由、底端固定边界条件的悬臂构件计算模型。
构造上保证底端有足够的嵌固力。
侧压力引起的M、V,计算公式如下:
V=1
(1)底端剪力:V=-
(2)底端弯矩:MO=-
浅池池壁配筋可采用14@200,在距池底1/3高度处附加14@200的钢筋,可以控制裂缝。
水池顶端宜在内外两侧配置不少于3根的水平加强筋,间距≤10cm,直径不小于池壁受力筋且≥16mm。
4 钢筋混凝土矩形水池施工要点
4.1材料要求
水池混凝土强度等级不小于C25,水池外露时,应考虑混凝土的抗冻等级。
混凝土不得采用氯盐作为防冻、早强的掺合料。
池壁、底板的受力钢筋宜采用小直径钢筋和较密的间距。
受力钢筋每米宽度内不宜小于4根,且不宜超过10根。
钢筋采用HRB335和RRB400级钢
筋。
水池各部位的钢筋间距应在100―250mm范围内。
钢筋混凝土水池的抗渗,宜以混凝土本身的密实性满足抗渗要求。
混凝土抗渗等级si 要满足以下要求:一是Hi/t(最大作用水头与混凝土壁、板厚度之比)30,抗渗等级采用S8。
相应混凝土的骨料应选择良好级配;水灰比不应大于0.50。
4.2壁厚、底板厚度
钢筋混凝土水池构筑物,其壁厚不宜小于200mm,壁厚b=h/10―1/15(经验值);底板不宜小于300mm,底板t=1.2―1.5b选取(经验值)。
4.3配筋
池壁及隔墙根据内力计算决定单层或双层配筋。
水平钢筋应插入邻壁,直线长度不少于25倍的钢筋直径;垂直钢筋应折入底板,其直线长度不少于1/3――1/4:的底板短跨长度。
池壁角隅区域的里外侧均应设置水平加强筋,加强筋插入邻壁的长度不小于1/3池壁高度,且不小于1m。
4.4裂缝
现浇钢筋混凝土水池最容易在角隅处出现裂缝,因此需要在池壁转角处、池壁与底板相交处设置。
暗梁。
、。
暗柱。
4.5变形缝
水池的变形缝(伸缩缝和沉降缝)应做成贯通式,在同一剖面上连同顶板、底板一起断开。
伸缩缝宽度≥20mm,沉降缝宽度≥30mm。
伸缩缝的设置:超过20米需设置伸缩缝。
4.6混凝土水池受力钢筋混凝土保护层最小厚度(a,单位mm)所适应的构建类别及工作环境规定
一是a≥30:适用于墙、板构件与水、土接触或处高温时;二是t≥35:适用于墙、板与污水接触,梁、柱与水、土接触或处高温时;三是t≥40:适用于梁、柱与污水接触,有垫层的下层筋基础、底板;四是t≥70:适用于无垫层的下层筋基础、底板。
5 结语
以上就是对矩形钢筋混凝土水池设计过程中关于计算和构造等方面的一些要点的简要阐述。
在水池的实际设计过程中通过计算确定水池的板厚及配筋后,还同时应该满足水池的一些构造要求,对水池的留洞处池壁的加强,人孔的留设,水池施工缝的留设等,都应严格按照规范和构造的要求进行设计,这样才能设计出质量合格,满足使用要求的产品。
参考文献:
[1]李逸之.矩形钢筋混凝土水池结构设计及其辅助系统开发研究[D].郑州大学,2013.
[2]施骏,施杰.钢筋混凝土矩形水池结构设计中一些值得注意的问题[J].化工设计,2007,05:42-44+39+2.
[3]李扬.钢筋混凝土矩形水池结构设计[J].江西建材,2008,04:43-45.
[4]卢生寿.探讨钢筋混凝土矩形水池结构设计[J].中小企业管理与科技(上旬刊),2009,07:212.
[5]石油化工钢筋混凝土水池结构设计规范[S].SH/T 3132-2002.
[6]给水排水工程钢筋混凝土水池结构设计规程[S].CECS138:2002.北京:中国建筑工业出版社,2002.。