第五章 金属及合金的塑性变形 -答案

合集下载

金属学热处理4-11思考题

金属学热处理4-11思考题

第四章铁碳合金(一)填空题1.Cr、V在γ-Fe中将形成置换固溶体。

C、N则形成间隙固溶体。

2.渗碳体的晶体结构是复杂正交晶系,按其化学式铁与碳原子的个数比为3:1 3.当一块质量一定的纯铁加热到912℃温度时,将发生a-Fe向γ-Fe的转变,此时体积将发生缩小。

4.共析成分的铁碳合金平衡结晶至室温时,其相组成物为α+ Fe3C,组织成物为P。

5.在生产中,若要将钢进行轧制或锻压时,必须加热至γ单相区。

6.当铁碳合金冷却时发生共晶反应的反应式为,其反应产物在室温下被称为。

7.在退火状态的碳素工具钢中,T8钢比T12 钢的硬度,强度。

8.当W(C)=0.77%一2.11%间的铁碳合金从高温缓冷至ES线以下时,将从奥氏体中析出,其分布特征是。

9.在铁碳合金中,含三次渗碳体最多的合金成分点为,含二次渗碳体最多的合金成分点为。

10.对某亚共析碳钢进行显微组织观察时,若估计其中铁素体约占10%,其W(C) = ,大致硬度为11.奥氏体是在的固溶体,它的晶体结构是。

12.铁素体是在的固溶体,它的晶体结构是。

13.渗碳体是和的金属间化合物。

14.珠光体是和的机械混合物。

15.莱氏体是和的机械混合物,而变态莱氏体是和的机械混合物。

16.在Fe—Fe3C相图中,有、、、、五种渗碳体,它们各自的形态特征是、、、、。

17.钢中常存杂质元素有、、、等,其中、是有害元素,它们分别使钢产生、。

18.纯铁在不同温度区间的同素异晶体有(写出温度区间) 、、。

19.碳钢按相图分为、、;按W(C)分为(标出W(C)范围) 、、。

10.在铁—渗碳体相图中,存在着四条重要的线,请说明冷却通过这些线时所发生的转变并指出生成物。

ECF水平线、;PSK水平线、;ES 线、;GS线、。

21 标出Fe—Fe3C相图(图4—3)中指定相区的相组成物:①,②,③,④,⑤。

;22.铁碳合金的室温显微组织由和两种基本相组成。

23.若退火碳钢试样中先共析铁素体面积为41.6%,珠光体的面积为58.4%,则其W(C)=。

第五章塑性变形与回复再结晶--习题集

第五章塑性变形与回复再结晶--习题集

psi是一种压力单位,定义为英镑/平方英寸,145psi=1MpaPSI英文全称为Pounds per square inch。

P是磅pound,S是平方square,I 是英寸inch。

把所有的单位换成公制单位就可以算出:1bar≈14.5psi1 KSI = 1000 lb / in.2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2材料机械强度性能单位,要用到试验机来检测Density of Slip PlanesThe planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur?(112) planar density:The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip.It will help to visualize these two planes as we calculate the atom density.The (110) plane passes through the atom on the lattice point in the center of the unit cell. The plane is rectangular, with a height equal to the lattice parameter a0and a width equal to the diagonal of the cube face, which is 2 a0.Lattice parameter (height):Width:Thus, according to the geometry, the area of a (110) plane would beThere are two atoms in this area. We can determine that by counting the piece of atoms that lie within the circle (1 for the atom in the middle and 4 times 1/4 for the corners), or using atom coordinates as discussed in Chapter 3. Then the planar density isThe interplanar spacing for the (110) planes isFor the (112) plane, the planar density is not quite so easy to determine. Let us draw a larger array of four unit cells, showing the plane and the atoms it passes through.This plane is also rectangular, with a base width of √2 a0 (the diagonal of a cube face), and a height of √3 a0 (the body diagonal of a cube). It has four atoms at corners, which are counted as 1/4 for the portion inside the rectangle (4 x 1/4) and two atoms on the edges, counted as 1/2 for the portion inside the rectangle (2 x 1/2). This is a total of 2 atoms.Base width:Height:Hence, we can calculate the area and density as for the (110) plane.The planar density and interplanar spacing of the (110) plane are larger than that of the (112) plane, thus the (110) plane would be the preferred slip plane1.有一根长为5 m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。

第五章--金属的塑性与变形抗力解析

第五章--金属的塑性与变形抗力解析

金属的塑性变形抗力摘要:塑性加工时,使金属发生塑性变形的外力,称为变形力。

金属抵抗变形之力,称为变形抗力。

变形抗力和变形力数值相等,方向相反,一般用平均单位面积变形力表示其大小。

当压缩变形时,变形抗力即是作用于施压工具表面的单位面积压力,故亦称单位流动压力。

关键字:塑性 变形抗力1、金属塑性的概念所谓塑性,是指金属在外力作用下,能稳定地产生永久变形而不破坏其完整性的能力。

金属塑性的大小,可用金属在断裂前产生的最大变形程度来表示。

一般通常称压力加工时金属塑性变形的限度,或“塑性极限”为塑性指标2、塑性和柔软性应当指出,不能把塑性和柔软性混淆起来。

不能认为金属比较软,在塑性加工过程中就不易破裂。

柔软性反映金属的软硬程度,它用变形抗力的大小来衡量,表示变形的难易。

不要认为变形抗力小的金属塑性就好,或是变形抗力大的金属塑性就差。

3、塑性指标表示金属与合金塑性变形性能的主要指标有:(1)拉伸试验时的延伸率(δ)与断面收缩率(ψ)。

(2)冲击试验时的冲击韧性αk 。

(3)扭转试验的扭转周数n 。

(4)锻造及轧制时刚出现裂纹瞬间的相对压下量。

(5)深冲试验时的压进深度,损坏前的弯折次数。

4、一些因素对塑性的影响规律A 化学成分的影响(1)碳%L L l -=δ%00F F F -=ψ随着含碳量的增加,渗碳体的数量也增加,塑性的降低(2)磷磷一般说来是钢中有害杂质,磷能溶于铁素体中,使钢的强度、硬度增加,但塑性、韧性则显著降低。

这种脆化现象在低温时更为严重,故称为冷脆。

(3)硫硫是钢中有害杂质,它在钢中几乎不溶解,而与铁形成FeS,FeS与Fe的共晶体其熔点很低,呈网状分布于晶界上。

当钢在800~1200℃范围内进行塑性加工时,由于晶界处的硫化铁共晶体塑性低或发生熔化而导致加工件开裂,这种现象称为热脆(或红脆)。

另外,硫化物夹杂促使钢中带状组织形成,恶化冷轧板的深冲性能,降低钢的塑性。

(4)氮590℃时,氮在铁素体中的溶解度最大,约为0.42%;但在室温时则降至0.01%以下。

第五章 金属的塑性变形及再结晶

第五章   金属的塑性变形及再结晶

四、金属的热加工
1.热变形加工与冷变形加工的区别
从金属学的观点来看,热加工和冷加工的区别是以再结晶温 度为界限。在再结晶温度之下进行的变形加工,在变形的同时没 有发生再结晶,这种变形加工称之为冷变形加工。而金属在再结 晶温度以上进行塑性变形就称为热加工。
2.热变形加工对金属组织与性能的影响
(1)改善铸态组织 热变形加工可以使金属铸锭中的组织缺陷显 著减少,如气孔、显微裂纹等,从而提高材料的致密度,使金属 的力学性能得到提高。
在工业上常利用回复现象将冷变形金属低温加热既消除应为去应力退火力稳定组织同时又保留了加工硬化性能这种热处理方法称1再结晶过程变形后的金属在较高温度加热时原子活动能力较强时会在变形随着原子的扩散移动新晶核的边界面不断向变形的原晶粒中推进使新晶核不断消耗原晶粒而长大
金属材料及热处理
第五章 金属的塑性变形及再结晶
二、冷塑性变形对金属组织和性能的影响
2.冷塑性变形对组织结构的影响 1)产生“纤维组织”
塑性变形使金属的晶粒形状发生了变化,即随着金属外形的 压扁或拉长。当变形量较大时,各晶粒将被拉长成细条状或纤维 状,晶界变得模糊不清,形成所谓的“纤维组织”。
2)产生变形织构
由于在滑移过程中晶体的转动和旋转,当塑性变形量很大时, 各晶粒某一位向,大体上趋于一致了,这种现象称择优取向。 这种由于塑性变形引起的各个晶粒的晶格位向趋于一致的晶粒 结构称为变形织构。
二、冷塑性变形对金属组织和性能的影响
3.产生残余内应力
经过塑性变形,外力对金属所做的功,约90%以上在使金属变 形的过程中变成了热,使金属的温度升高,随后散掉;部分功转 化为内应力残留于金属中,使金属的内能增加。残余的内应力就 是指平衡于金属内部的应力,它主要是金属在外力的作用下所产 生的内部变形不均匀而引起的。 第一类内应力,又称宏观内应力。它是由于金属材料各部分变形 不均匀而造成的宏观范围内的残余应力。 第二类内应力,又称微观残余应力。它是平衡于晶粒之间的内应 力或亚晶粒之间的内应力。 第三类内应力,又称晶格畸变内应力。其作用范围很小,只是在 晶界、滑移面等附近不多的原子群范围内维持平衡。

第05章_塑性变形

第05章_塑性变形
断裂:发生在K点。
共七十九页
3. 弹性 变形 I (tánxìng)
变形可逆,去除(qùchú)外力后完 全恢复,变形消失。
特点:服从胡克定律,即应力与应
y
变成正比
e
E为弹性模量、G称为切变模量,
I II III
IV
反映材料对弹性变形的抗力,
代表材料的“刚度” 。
共七十九页
实质: 应力作用下, 材料内部原子间距在 较小的范围内偏离了 平衡位置,但未超过 其原子间的结合力。 材料反应为晶格发生 了伸长(缩短)或歪扭。 原子的相邻(xiānɡ lín)关系 还未发生改变,故外 力去除后,原子间结 合力便可以使变形完 全恢复。
共七十九页
2.1.8 滑移 的位错机制 (huáyí)
➢ 滑移的实质是位错的运动(yùndòng) ➢ 位错的增殖 ➢ 位错的交割 ➢ 位错的塞积 ➢ 加工硬化
共七十九页
A. 滑移的实质(shízhì)是位错的运动
t
t
t
t
大量的理论研究(yánjiū)证明,滑移是由于滑移面上位错运 动而造成的。上图分别表示一刃型和螺型位错在切应力的 作用下的运动过程,通过一根位错从滑移面的一侧运动到 另一侧便造成一个原子间距的滑移。
的力tb,推动
位错线向右运动,使位错线弯曲; b. 接点处的线张力T ,使位错线平
直;稳定时受力平衡有:t b×ds = 2Tsindq /2≈Tdq = Tds/R;将T=aGb2 (弯
sy = tc/cosf cosl
tc是一常数,称为临界分切应力。
共七十九页
sy = tc/cosfcosl
tc取决于金属的本性,不受f、l的影响;屈服强度sy则随拉力
轴相对于晶体的取向(qǔ xiànɡ)不同而不同,即晶体材料存在各向异 性。

上海交大材基-第五章塑性变形与回复再结晶--复习提纲

上海交大材基-第五章塑性变形与回复再结晶--复习提纲

第5章材料的形变和再结晶提纲5.1 弹性和粘弹性5.2 晶体的塑性变形(重点)5.3 回复和再结晶(重点)5.4 高聚物的塑性变形学习要求掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。

1.材料的弹性变形本质、弹性的不完整性及黏弹性;2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折)3.多晶体、合金塑性变形的特点及其影响因素4.塑性变形对材料组织与性能的影响;5.材料塑性变形的回复、再结晶和晶粒长大过程;6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等)7、结晶动力学的形式理论(J-M-A方程)8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。

9重点内容1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量;材料在外力作用下发生变形。

当外力较小时,产生弹性变形。

弹性变形是可逆变形,卸载时,变形消失并恢复原状。

在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律:式中E为正弹性模量,G为切变模量。

它们之间存在如下关系:弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。

在工程上,弹性模量则是材料刚度的度量。

2. 弹性的不完整性和粘弹性;理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。

3. 滑移系,施密特法则(公式),滑移的临界分切应力;晶体中一个滑移面和该面上一个滑移方向组成。

fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。

滑移的临界分切应力:如何判断晶体中各个滑移系能不能开动?解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移?4. 滑移的位错机制,派-纳力(公式);为什么晶体中滑移系为原子密度最大的面和方向?5. 比较塑性变形两种基本形式:滑移与孪生的异同特点;6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响; 会判断多个晶体中哪些晶体会优先发生塑性变形?7. 细晶强化与Hall-Petch 公式, 高温晶界弱化的原因;晶粒细化为何能同时提高材料的强韧性?位错塞积群效应(应力集中区的应力数值等于外加切应力n可启动临近晶粒滑移,故 高温合金为何要采用定向凝固技术获得单晶?晶界滑动机制和扩散性蠕变 8. 固溶强化,屈服现象(吕德斯带),上下屈服点的柯垂耳理论和一般位错增殖理论,应变时效;d c dcττ= 金属有四大著名的强化机制,请给出这几种机制的名称,物理实质,定量描述其强化效果的数学公式。

第5章 金属的塑性变形

第5章 金属的塑性变形
第四章 金属的塑性变形
塑性变形及随后的加热,对金属材料组织和性能有 显著的影响。了解塑性变形的本质、塑性变形及加 热时组织的变化,有助于发挥金属的性能潜力,正 确确定加工工艺
单晶体的塑性变形 多晶体的塑性变形 变形后金属的回复与再结晶 金属的热塑性变形
1
第一节 单晶体的塑性变形 一、单晶体纯金属的塑性变形
T再与ε的关系
如Fe:T再=(1538+273)×0.4–273=451℃
39
2)、金属的纯度 金属中的微量杂质或合金元素,尤其高熔点元素, 起阻碍扩散和晶界迁移作用,使再结晶温度显著 提高。
40
3)、再结晶加热速度和加热时间 提高加热速度会使再结晶推迟到较高温度发生;
延长加热时间,使原子扩散充分,再结晶温度降低。
3、产生织构:金属中的晶粒的取向一般是无规则的随机排列,尽管每个 晶粒是各向异性的,宏观性能表现出各向同性。当金属经受大量(70% 以上)的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面 (晶向)在某个方向出现的几率明 显高于其他方向。金属大变形后形成的这种有序化结构叫做变形织构, 它使金属材料表现出明显的各向异性。 24
在应力低于弹性极限σ e时, 材料发生的变形为弹性变形; 应力在σ e到σ b之间将发生的变 形为均匀塑性变形;在σ b之后 将发生颈缩;在K点发生断裂。
s e
弹性变形的实质是:在应力的作用下,材料内部的原子偏离了平衡位 置,但未超过其原子间的结合力。晶格发生了伸长(缩短)或歪扭。 原子的相邻关系未发生改变,故外力去除后,原子间结合力便可 2 以使变形的塑性:fcc>bcc>chp
8
哪个滑移系先滑移?
当作用于滑移面上滑移方向的切应力分量c(分切应力)大于等于一定的 临界值(临界切应力,决定于原子间结合力),才可进行。

金属塑性成形原理---第五章-塑性成形件质量的定性分析

金属塑性成形原理---第五章-塑性成形件质量的定性分析
对晶粒度的影响,除以上三个基本因素外,还有变 形速度、原始晶粒度和化学成分等。
5.3.4 细化晶粒的主要途径
使塑性成形件获得细晶粒的主要途径有:
(1)在原材料冶炼时加入一些合金元素(如钽、 铌、锆、钼、钨、钒、钛等)及最终采用铝、 钛等作脱氧剂
(2)采用适当的变形程度和变形温度
(3)采用锻后正火(或退火)等相变重结晶 的方法
5.3.3 影响晶粒大小的主要因素
1).加热温度 加热温度包括塑性变形前的加热温度和因溶处理时 的加热温度。 2).变形程度
3)机械阻碍物
有些材料随加热温度升高,晶粒分阶段突然长大, 而不是随温度升高成直线关系长大。这是由于金属 材料中存在机械阻碍物,对晶界有钉札作用,阻止 晶界迁移的缘故。 机械阻碍物在钢中可以是氧化物(如AI2O3等)、氮化 物(如AIN、TiN等)、碳化物(如VC、TiC等);在铝合 金中可以是Mn、Ti、Fe等元素及其化合物。
3).折叠两侧有较重的脱碳、氧化现象。
5.4.2 折叠的类型及形成原因
1.由两股(或多股)金属对流汇合而形成的折叠
这种类型的折叠其形成原因有以下几方面:
1)模锻过程中由于某处金属充填较慢,而在相邻部 分均已基本充满时,此处仍缺少大量金属,形成空 腔,于是相邻部分的金属便往此处汇流而形成折叠
2)弯轴和带枝叉的锻件,模锻时常易由两股流动金 属汇合形成折叠 如图5—25、图5—26所示。
3)由于变形不均习,两股(或多股)金属对流汇合而成 折叠
2.由一股金属的急速大量流动将邻近部分的表层金属 带着流动,两者汇合形成的折叠
3.由于变形金属发生弯曲、回流而形成的折叠
分为两种情况:(1)细长(或扁薄)锻件,先被压 弯发展成的折叠
5.4塑性成形件中的折叠
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章金属及合金的塑性变形与断裂一名词解释固溶强化,应变时效,孪生,临界分切应力,变形织构固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象;应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况;孪生:金属塑性变形的重要方式。

晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。

形成孪晶的过程称为孪生;临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小分切应力;变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构。

二填空题1.从刃型位错的结构模型分析,滑移的移面为{111},滑移系方向为<110>,构成12 个滑移系。

P166.3. 加工硬化现象是指随变形度的增大,金属强度和硬度显著提高而塑性和韧性显著下降的现象,加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的根本原因是位错密度提高,变形抗力增大。

4.影响多晶体塑性变形的两个主要因素是晶界、晶格位向差。

5.金属塑性变形的基本方式是滑移和孪生,冷变形后金属的强度增大,塑性降低。

6.常温下使用的金属材料以细小晶粒为好,而高温下使用的金属材料以粗一些晶粒为好。

对于在高温下工作的金属材料,晶粒应粗一些。

因为在高温下原子沿晶界的扩散比晶内快,晶界对变形的阻力大为减弱而致7.内应力可分为宏观内应力、微观内应力、点阵畸变三种。

三判断题1.晶体滑移所需的临界分切应力实测值比理论值小得多。

(√)2 在体心立方晶格中,滑移面为{111}×6,滑移方向为〈110〉×2,所以其滑移系有12个(×)应为:{110}×6 〈111〉×2 P1663.滑移变形不会引起晶体结构的变化。

4.喷丸处理及表面辊压能显著提高材料的疲劳强度。

(√)5.在晶体中,原子排列最密集的晶面间的距离最小,所以滑移最困难。

(×)6.反复弯折铁丝,铁丝会越来越硬,最后会断裂。

(√)7.金属的加工硬化是指金属冷塑性变形后强度和塑性提高的现象。

(×)8 单晶体主要变形的方式是滑移,其次是孪生。

(√)9.细晶粒金属的强度高,塑性也好。

(×)10.晶界处滑移的阻力最大。

( √)首先明确,滑移变形的微观机制是位错的运动,晶界处产生强烈的晶格畸变,阻碍位错运动;而晶界附近造成严重的位错塞集,产生的应力场强烈阻止滑移的进行,因此晶界处滑移的阻力最大。

四选择题1.能使单晶体产生塑性变形的应力为( B )A.正应力B.切应力2.面心立方晶体受力时的滑移方向为(B )A <111>B <110>C <100>D <112>3.体心立方与面心立方晶格具有相同的滑移系,但其塑性变形能力是不同的,其原因是面心立方晶格的滑移方向较体心立方晶格的滑移方向( B )A.少B.多 C 相等D.有时多有时少4.冷变形时,随着变形量的增加,金属中的位错密度( A)。

A.增加 B 降低C无变化D.先增加后降低5.钢的晶粒细化以后可以( D )。

A.提高强度 B 提高硬度 C 提高韧性D.既提高强度硬度,又提高韧性6.加工硬化现象的最主要原因是( B)。

A.晶粒破碎细化 B 位错密度增加 C 晶粒择优取向D.形成纤维组织7.面心立方晶格金属的滑移系为( A )。

A.{111}<110> B.<110>{111} C.<100>{110} D.<100>{111}8 用铝制造的一种轻型梯子,使用时挠度过大但未塑性变形。

若要改进,应采取下列( A)措施A 采用高强度铝合金B 用钢代替铝C 用高强度镁合金D.改进梯子的结构设计五改错题1.塑性变形就是提高材料塑性的变形。

提高材料的强度,硬度及塑性。

2.滑移面是原子密度最大的晶面,滑移方向则是原子密度最小的方向滑移方向也是原子排列最密的方向,这是因为在晶体的原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离却最大,即密排晶面之间的原子间结合力最弱,滑移的阻力最小。

六简答1 单相合金的冷塑性变形与纯金属的室温塑性变形相比,有何特点。

1 简答:纯金属变形主要借助位错运动,通过滑移和孪生完成塑性变形,开动滑移系需要临界切应力,晶体中还会发生扭转;单相合金的基本变形过程与纯金属的基本过程是一样的,但会出现固溶强化,开动滑移系需要临界切应力较大,还有屈服和应变时效现象。

2 金属晶体塑性变形时,滑移和孪生有何主要区别?2 简答:滑移时原子移动的距离是滑移方向原子间距的整数倍,孪生时原子移动的距离不是孪生方向原子间距的整数倍;滑移时滑移面两边晶体的位向不变,而孪生时孪生面两边的晶体位向不同,以孪晶面形成镜像对称;滑移时需要的临界分切应力小,孪生开始需要的临界分切应力很大,孪生开始后继续切变时需要的切应力小,故孪生一般在滑移难于进行时发生。

3 简述冷加工纤维组织、带状组织和变形织构的成因及对金属材料性能的影响。

3 简答:冷加工纤维组织是纯金属和单相合金在冷塑性变形时和变形度很大的条件下,各晶粒伸长成纤维状;带状组织是复相合金在冷塑性变形和变形度大的条件下第二相被破碎或伸长,沿变形方向成带状分布而形成的;变形织构是金属和合金在在冷塑性变形时晶粒发生择优取向而形成的。

上述冷加工纤维组织、带状组织和变形织构都使材料的性能具有方向性,即在各个方向上的性能不均,对使用性能有不良影响,但少数金属材料,如用作变压器的硅钢片,各向异性能更好满足使用要求。

4 为什么金属材料经热加工后机械性能较铸造态好。

4 简答:金属材料经热加工后机械性能较铸造态好的主要原因是热加工时的高温、大变形量使气泡、疏松和微裂纹得到机械焊合,提高了材料的致密性,消除了铸造缺陷,同时改善夹杂物和脆性相的形态、大小和分布,使枝晶偏析程度减弱,合金成分均匀性提高,热加工中形成合理的加工流线,热加工还可使金属显微组织细化,这些都可以提高金属材料的性能。

5 何为加工硬化?列出产生加工硬化的各种可能机制。

(不必说明),加工硬化现象在工业上有哪些作用?5 简答:金属材料经冷加工后,强度增加,硬度增加,塑性降低的现象称为加工硬化。

产生加工硬化的各种可能机制有滑移面上平行位错间的交互作用的平行位错硬化理论,以及滑移面上位错与别的滑移面上位错林切割产生割阶的林位错强化理论。

加工硬化在实际生产中用来控制和改变金属材料的性能,特别是对不能热处理强化的合金和纯金属尤为重要,可以进行热处理强化的合金,加工硬化可以进一步提高材料的强度;加工硬化是实现某些工件和半成品加工成型的主要因素;加工硬化也会带来塑性降低,使变形困难的影响,还会使材料在使用过程中尺寸不稳定,易变形,降低材料耐蚀性。

6 简要说明第二相在冷塑性变形过程中的作用。

6 简答:第二相在冷塑性变形过程中的作用一般是提高合金强度,但还取决于第二相的种类数量颗粒大小形状分布特点及与基体结合界面结构等,对塑性变形影响复杂。

第二相强度高于基体但有一定塑性,其尺寸、含量与基体基本接近,则合金塑性是两相的变形能力平均值。

第二相硬、脆,合金变形只在基体中进行,第二相基本不变形;第二相均匀、弥散分布在固溶体基体上,可以对合金产生显著强化作用。

7 讨论织构的利弊及控制方法。

7 简答:织构由晶粒择优取向形成,变形织构对再结晶织构形成有主要影响,织构造成材料性能各向异性。

各向异性在不同情况需要避免或利用。

织构控制可以通过控制合金元素的种类和含量、杂质含量、变形工艺(如变向轧制)和退火工艺等多种因素的配合。

8叙述金属和合金在冷塑性变形过程中发生的组织性能的变化。

8 简答:金属和合金在冷塑性变形过程中发生的组织性能的变化主要有晶粒被拉长,形成纤维组织,冷变形程度很高时,位错密度增高,形成位错缠结和胞状组织,发生加工硬化,,变形金属中出现残余应力,金属在单向塑性变形时出现变形织构。

9.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。

因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。

②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。

另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。

加工硬化也是某些压力加工工艺能够实现的重要因素。

如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。

10.为什么细晶粒钢强度高,塑性,韧性也好?答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。

因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。

因此,金属的晶粒愈细强度愈高。

同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。

因此,塑性,韧性也越好。

11.金属经冷塑性变形后,组织和性能发生什么变化?答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。

12.分析加工硬化对金属材料的强化作用?答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。

这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强度。

相关文档
最新文档