第2讲 用样本估计总体

合集下载

第2节用样本估计总体

第2节用样本估计总体

法二 (数据分布法)从茎叶图看,从小到大看,甲的每个数据都比乙对应的 数据小,所以甲的平均数较小;甲的数据在(70,80)内有3个,(80,90)内有2 个,90以上的有1个; 而乙的数据在(70,80)内有1个,(80,90)内有3个,90以上的有2个. 显然乙的数据分布较为集中,所以乙的方差较小.故选D.
第2节用样本估计总体
考纲展示 1.了解分布的意义和作用,能根据 频率分布表画频率分布直方图、 频率折线图、茎叶图,体会它们各 自的特点. 2.理解样本数据标准差的意义和 作用,会计算数据标准差. 3.能从样本数据中提取基本的数 字特征(如平均数、标准差),并做 出合理的解释.
4.会用样本的频率分布估计总体分 布,会用样本的基本数字特征估计总 体的基本数字特征,理解用样本估计 总体的思想. 5.会用随机抽样的基本方法和样本 估计总体的思想解决一些简单的实 际问题.
用茎叶图表示数据的优点是(1)所有的信息都
4.样本的数字特征

字 特
定义

特点
在一组数据中出 体现了样本数据的最大集中点,
现次数最多的数 不受极端值的影响,而且可能不

唯一
将一组数据按大 小顺序依次排列, 处在最中间位置 中位数不受极端值的影响,仅利
反映了各个样本数据聚集
标准差是样本数据到 于样本平均数周围的程度
(A)该校九年级学生1分钟仰卧起坐的次数的中位数为26.25 (B)该校九年级学生1分钟仰卧起坐的次数的众数为27.5 (C)该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320 (D)该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32
解析:由频率分布直方图可知,中位数是频率分布直方图面积等分线对应 的数值,是26.25,故A对;众数是最高矩形的中间值27.5,故B对;1分钟仰卧 起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30 的人数为320,故C对;1分钟仰卧起坐的次数少于20的频率为0.1,所以估 计1分钟仰卧起坐的次数少于20的人数为160,故D错.故选D.

第二节 用样本估计总体

第二节   用样本估计总体

所分的组数 增
加, 组距 减小,相应的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线为总体密度曲线. (3)茎叶图的优点 茎叶图的优点是可以 保留 原始数据,而且可以 随时 记录,这 对数据的记录和表示都能带来方便.
2.样本的数字特征 (1)众数、中位数、平均数
数字特征 定义与求法 一组数据中重复出现次数 最多 的数 把一组数据按 从小到大的 中位数 优点与缺点 众数通常用于描述变量的值出现次数最多的 数. 但显然它对其他数据信息的忽视使得无法客 观地反映总体特征 中位数等分样本数据所占频率, 它不受少数几个
3.如图是 100 位居民月均用水量的频率分布直方图,则 月均用水量为[2,2.5)范围内的居民数有________人.
答案:25
4.一个容量为 200 的样本的频率分布直方图如图所示, 则样本数据落在[5,9)内的频率和频数分别为________.
答案:0.2
40
5.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶 5.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎
图表示,从茎叶图的分布情况看, ________运动员的发挥更稳定 . 表示,从茎叶图的分布情况看, ________ 运动员的发挥更稳定
答案:乙
6.将某选手的 9 个得分去掉 1 个最高分,去掉 1 个最低 分, 7 个剩余分数的平均分为 91.现场作的 9 个分数的茎叶图后 来有 1 个数据模糊,无法辨认,在图中以 x 表示:
B.84,85
C.86,84
D.84,86
解析:选 A 由图可知,去掉一个最高分和一个最低分后, 所剩数据为 84,84,84,86,87. 84+84+84+86+87 ∴平均数为 =85,众数为 84. 5

用样本估计总体课件(第2课时)课件

用样本估计总体课件(第2课时)课件
指样本能否真实地反映总体的特 征和性质。
提高代表性的方法
随机抽样、加大样本量、分层抽 样等。
03 样本的获取方法
随机抽样
01
02
03
简单随机抽样
每个样本单位被选中的概 率相等,适合样本量小的 情况。
分层随机抽样
将总体分成若干层,再从 各层中随机抽取一定数量 的样本单位。
系统随机抽样
将总体中的样本单位按一 定顺序排列,再按照固定 的间隔进行随机抽取。
以及样本数据的准确性。
比例估计在市场调查、民意调 查等领域应用广泛。
回归估计
回归估计是另一种常用的统计推断方 法,通过建立回归模型来估计总体参 数。
在进行回归估计时,需要选择合适的 自变量、建立合适的回归模型,并对 模型进行检验和调整。
回归估计的基本思想是利用已知的自 变量和因变量之间的关系,通过回归 分析来预测因变量的值。
定义
01
非抽样误差是由于除抽样之外的其他因素引起的误差,如测量
误差、系统偏差等。
产生原因
02
由于非随机因素导致样本与总体之间存在偏差。
控制方法
03
提高测量精度、消除系统偏差等,以减少非抽样误差的影响。
误差的来源与控制
抽样误差和非抽样误差是样本估计总体过程中常见的误 差来源。
控制非抽样误差的方法包括提高测量精度、消除系统偏 差等。
经济研究应用
总结词
经济研究中,样本估计总体被广泛应用于宏观经济数据的统计和分析。
详细描述
通过收集部分企业的财务数据、生产数据等,利用样本数据来估计和预测整体经 济的运行状况,如GDP、失业率、通货膨胀率等。这种方法可以帮助政府和决策 者了解经济形势、制定经济政策,促进经济发展和社会稳定。

第2课时 用样本的平均数、方差估计总体的平均数、方差

第2课时 用样本的平均数、方差估计总体的平均数、方差

第2课时用样本的平均数、方差估计总体的平均数、方差教学目标【知识与技能】会用样本平均数、方差估计总体的平均数方差,并进行简单的分析.【过程与方法】经历用样本平均数、方差估计总体的平均数方差的过程,积累统计经验.【情感态度】培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义.【教学重点】会用样本平均数、方差估计总体的平均数方差,并进行简单的分析.【教学难点】理解方差公式,应用方差对数据波动情况的比较、判断.教学过程一、创设情境,导入新课某园艺场采摘苹果,边采摘、边装箱,共装了2 000箱.苹果的市场收购价为4元/kg.现在要估计出这2 000箱苹果的销售收入,我们可以怎样去做?方法一:全面调查,就是一箱箱的称,再根据苹果的总质量估计这2 000箱苹果的销售收入.方法二:采取抽样的方法.该园艺场从中任意抽出了10箱苹果,称出它们的质量,算出平均质量,再估计2 000箱苹果的总质量,从而估计这2 000箱苹果的销售收入.你觉得哪一种方法最合适?【教学说明】教师出示一个实际问题让学生思考,比较两种调查方法,提出自己的观点,激发学生探究的兴趣.二、合作探究,探索新知1.上述问题中,如果10箱苹果的质量分别如下(单位:kg)16,15,16.5,16.5,15.5,14.5,14,14,14.5,15你能估计出2 000箱苹果的销售收入是多少吗?怎样计算?学生尝试解答:(1)算出它们的平均数:x=15.15kg(2)把x作为每箱苹果的平均质量,由此估计出2 000箱苹果的销售收入为:4×15.15×2 000=121 200(元)2.小结:现实生活中,总体平均数一般难以计算出来,通常我们就用样本平均数估计总体平均数.但是要注意:用样本的平均数估计总体的平均数,如果样本容量太小,往往差异较大.【教学说明】学生通过解决问题,体会用样本平均数估计总体平均数的方法和过程,教师强调应该注意的问题.3.我们可以用样本的平均数估计总体的平均数,那么,怎样用样本的方差估计总体的方差呢?问题:甲、乙两台包装机同时包装质量为500克的白糖,怎样比较这两种包装机那一台质量更好呢?4.学生尝试解答:从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?解:(1)x甲=(501+500+503+506+504+506+500+498+497+495)÷10=501,x乙=(503+504+502+498+499+501+505+497+502+499)÷10=501;(2)s2甲=110[(501-501)2+(500-501)2+…+(495-501)2]=12.6,s2乙=110[(503-501)2+(504-501)2+…+(499-501)2]=6.4;(3)∵s2甲=s2乙,∴乙包装机包装10袋糖果的质量比较稳定.5.小结:我们可以用样本的方差来估计总体的方差,从而估计总体数据的波动情况.【教学说明】教师引导学生解决实际问题,经历用样本方差估计总体方差的过程,对解题过程有一个清晰的认识.三、示例讲解,掌握新知【例】王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?【分析】(1)根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答.(2)要比较哪个山上的杨梅产量较稳定,只要求出两组数据的方差,再比较即可解答.解:(1)x甲=40(千克),x乙=40(千克),总产量为40×100×98%×2=7 840(千克);(2)s2甲=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s2乙=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24,∵s2甲>s2乙,∴乙山上的杨梅产量较稳定.【教学说明】教师要引导学生先观察图像获取相关的信息,然后结合问题尝试进行解答,教师对相关的方法进行总结.四、练习反馈,巩固提高为调查八年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成家庭作业所需时间(单位:min)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是56,所以这8名学生每天完成家庭作业的平均时间为56分钟.所以该班学生每天完成家庭作业的平均时间符合学校的要求.五、师生互动,课堂小结1.现实生活中,总体平均数一般难以计算出来,通常我们就用样本平均数估计总体平均数.但是要注意:用样本的平均数估计总体的平均数,如果样本容量太小,往往差异较大.2.我们可以用样本的方差来估计总体的方差,从而估计总体数据的波动情况.课后作业完成同步练习册中本课时的练习.。

高考理科数学 第10章 第2讲

高考理科数学   第10章 第2讲
第十章
统计与统计案例
第2讲 用样本估计总体
【考纲导学】 1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线 图、茎叶图,理解它们各自的特点. 2.理解样本数据标准差的意义和作用,会计算数据标准差.
3.能从样本数据中提取基本的数字特征(平均数、标准差),并给出合理解释.
4.会用样本的频率分布估计总体的分布,会用样本的基本数字特征估计总体的 基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
估计哪个地区用户的满意度等级为不满意的概率大?说明理由.
【解析】(1)如图所示.
通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分
的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散. (2)A地区用户的满意度等级为不满意的概率大. 记CA表示事件:“A地区用户的满意度等级为不满意”;CB表示事件:“B地区
用户的满意度等级为不满意”.
由直方图得P(CA)的估计值为(0.01+0.02+0.03)×10=0.6,P(CB)的估计值为 (0.005+0.02)×10=0.25.
所以A地区用户的满意度等级为不满意的概率大.
【规律方法】(1)明确频率分布直方图的意义,即图中的每一个小矩形的面积是
2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)
最高的矩形的中点即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均 数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小 矩形底边中点的横坐标之和.
判断下面结论是否正确(请在括号中打“√”或“×”) (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( 具体数据信息就被抹掉了.( 相同的数据可以只记一次.( ) ) ) ) )

课件3:用样本估计总体

课件3:用样本估计总体
源自第九章 第2讲第29页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
[学以致用]
2. [2012·陕西高考]从甲、乙两个城市分别随机抽取 16 台自
动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图
所示),设甲、乙两组数据的平均数分别为 x 甲, x 乙,中位数分别
第九章 第2讲
第22页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
第九章 第2讲
第23页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
解析:由频率分布直方图,低于 60 分的同学所占频率为
第九章 第2讲
第3页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
缺点:数据的轻微变化都要重新作图. (2) 茎叶图: 优点:很直观,能看出分布规律,原有信息不会被抹掉,还能添 加新数据.缺点:数据少时方便,数据较多时不方便.
第九章 第2讲
(3)一组数据的方差越大,说明这组数据的波动越大.(√)
(4)一组数据的众数可以是一个或几个,那么中位数也具有相
同的结论.(×)
第九章 第2讲
第14页
高三一轮总复习 ·新课标 ·数学
抓住2个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训

第02讲 用样本估计总体 (精讲)(教师版)

第02讲 用样本估计总体 (精讲)(教师版)

,nx +)标准差与方差据1x ,nx +,标22()(n x x x x +-++-2(n x x ++-知识点三:在频率分布直方图中,众数,中位数,平均数的估计值最高的小矩形底边中点的横坐标即是众数中位数左边和右边的所有小矩形的面积和是相等的“重心”,等于频率分布直方图中每个小矩形的面积乘小矩形底边中点的横坐标3,b ,3,b ,【答案】45 45.85379⨯=975%∴+=25m故选:B.例题4.(PM2.5的浓度(单位:知这组数据的极差为A.73 B.75 C.77 D.79,,n x 的平均数个分数分别为18,,,x x ,6,8,,x 的平均数为228361001081210++++-=x ,28624++=x 8610++++x ,即12864+++=x x x 2624888-⨯=故答案为:14..(2022·全国55%分位数,②众数这两个条件中任选一个,补充在下面问题中的横线上,并解答问题抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数2,3,,)n ,则下列结论正确的是(2,3,,)n ,则它们的众数也满足该关系,12(21)(21)(21)nn y x x x nn++-+-++-=1nx n++- 121b =-,故B 正确;由方差的性质可得2c =C 正确;23,x x ,…,,假设其第80百分位数为1d , 是整数时,x 21,2x x --30,,x 的平均数为10,,x 这10个数的平均数为8,方差为30,,x ___________. 【详解】由题意得12306x x x +++=2309x ++=⨯1081080x ++=⨯=,222121058690x x x =⨯+=++,所以剩余的20个数的平均数为18080520-=, 30221350690660x +=-=+,所以剩余的20个数的方差为66020258-=,故答案为:82022·全国·高一单元测试)敢于冒险奋进精神的载体,A.这组数据的极差为50 B.这组数据的众数为76(0.005+0.75800.3-+故选:CD例题2.(学生人数比例、[(1)估计总体400名学生中分数小于60的人数;分数小于60的频率为()10.020.040.02100.2-++⨯=,所以[)60,70x ∈,即()0.2600.010.25x +-⨯=,解得65x =,则本次考试的及格分数线为65分.例题3.(2022·全国·高一单元测试)中秋佳节来临之际,小李准备销售一种农特产,这段时间内,每售出1箱该特产获利50元,未售出的,每箱亏损30元.经调查,市场需求量的频率分布直方图如图所示.小李购进了160箱该特产,以x (单位:箱,100200x ≤≤)表示市场需求量,y (单位:元)表示经销该特产的利润.(1)根据频率分布直方图估计市场需求量的众数和平均数;(2)将y 表示为x 的函数;(3)根据频率分布直方图求利润不少于4800元的频率.【答案】(1)150,153(2)804800,1001608000,160200x x y x -≤<⎧=⎨≤≤⎩(3)0.9(1)由频率分布直方图,得市场需求量的众数的估计值是150,需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15,则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100160≤<x 时,5030(160)804800y x x x =-⨯-=-,当160200x ≤≤时,160508000y =⨯=,所以804800,1001608000,160200x x y x -≤<⎧=⎨≤≤⎩. (3)当100160≤<x 时,由8048004800x -≥,得120160x ≤<;当160200x ≤≤时,80004800y =>,所以当120200x ≤≤时,利润不少于4800元,所以由(1)知利润不少于4800元的频率为10.10.9-=.同类题型归类练A.此次测试众数的估计值为85(1)求频率分布直方图中a的值;(1)求本次初赛成绩的平均数;(每组数据以区间中点值为代表)(1)求出表中m,p的值;(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均数;(1)请你估计该地区所有用户评分的25%,95%分位数;(1)求频率分布直方图中x的值以及样本中身高不低于175cm的学生人数;(1m ii x x =-∑同理可得21s m ∴=+1⎡、、A .20B .40C .64D .80根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 【答案】C【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确; 该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确; 该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C. 故选:C.3.(多选)(2021·全国·高考真题)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC【详解】由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度;。

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。

通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。

为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。

一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。

二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。

b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。

用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。

c. 引导学生讨论点估计的优点和缺点。

3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。

b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。

c. 引导学生讨论区间估计的优点和缺点。

4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。

要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。

b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。

c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。

5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。

b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。

三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲用样本估计总体一、知识梳理1.统计图表(1)频率分布直方图的画法步骤①求极差(即一组数据中最大值与最小值的差); ②决定组距与组数; ③将数据分组; ④列频率分布表; ⑤画频率分布直方图. (2)频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (3)茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分; 第二步:将最小茎与最大茎之间的数按大小次序排成一列; 第三步:将各个数据的叶依次写在其茎的两侧. 2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把a 1+a 2+…+a nn称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,则这组数据的标准差和方差分别是s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2], s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].常用结论 1.会用三个关系频率分布直方图与众数、中位数与平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.巧用四个有关的结论(1)若x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x -+a ;(2)数据x 1,x 2,…,x n 与数据x ′1=x 1+a ,x ′2=x 2+a ,…,x ′n =x n +a 的方差相等,即数据经过平移后方差不变;(3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2; (4)s 2=1n ∑n i =1 (x i -x -)2=1n ∑n i =1x 2i-x -2,即各数平方的平均数减去平均数的平方.二、教材衍化1.已知一组数据6,7,8,8,9,10,则该组数据的方差是 . 答案:532.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在第 组.解析:由题图可得,前四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第4组.答案:4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)一组数据的方差越大,说明这组数据的波动越大.()(2)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.()(3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一次.()(4)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.()(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.()答案:(1)√(2)√(3)×(4)√(5)√二、易错纠偏常见误区(1)频率分布直方图与茎叶图的识图不清;(2)对方差、平均数的统计意义的认识有误.1.甲、乙两人8次测评成绩的茎叶图如图,由茎叶图知甲的成绩的平均数与乙的成绩的中位数分别是、.解析:由茎叶图可得甲的成绩的平均数为10+11+14+21+23+23+32+348=21.将乙的成绩按从小到大的顺序排列,中间的两个成绩分别是22,23,所以乙的成绩的中位数为22+23=22.5.2答案:2122.52.我市某校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是.解析:依题意得,成绩低于60分的相应的频率等于(0.005+0.01)×20=0.3,所以该班的学生人数是15÷0.3=50.答案:503.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.解析:经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.99=0.98.10+20+10答案:0.98样本的数字特征(典例迁移)(1)在一次歌咏比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为( )A .92,2.8B .92,2C .93,2D .93,2.8(2)(2020·盐城模拟)已知一组数据x 1,x 2,x 3,x 4,x 5的方差是2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的标准差为 .【解析】 (1)由题意得所剩数据:90,90,93,94,93.所以平均数x -=90+90+93+94+935=92.方差s 2=15[(90-92)2+(90-92)2+(93-92)2+(93-92)2+(94-92)2]=2.8.(2)由s 2=1ni =1n (x i -x -)2=2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的方差是8,标准差为2 2. 【答案】 (1)A (2)2 2【迁移探究】 (变条件)本例(2)增加条件“x 1,x 2,x 3,x 4,x 5的平均数为2”,求数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数和方差.解:数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数为2×2+3=7,方差为22×2=8.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-n x-2],或写成s2=1n(x21+x22+…+x2n)-x-2,即方差等于原数据平方的平均数减去平均数的平方.1.(2020·江西景德镇模拟)高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n座城市作试验基地.这n座城市共享单车的使用量(单位:人次/天)分别为x1,x2,…,x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数解析:选B.平均数、中位数可以反映一组数据的集中程度;方差、标准差可以反映一组数据的波动大小,同时也反映这组数据的稳定程度.故选B.2.(2020·甘肃、青海、宁夏联考)从某小学随机抽取100名同学,将他们的身高(单位:厘米)分布情况汇总如下:由此表估计这100名小学生身高的中位数为(结果保留4位有效数字)()A.119.3 B.119.7C .123.3D .126.7解析:选C.由题意知身高在(100,110],(110,120],(120,130]内的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x ,则(x -120)×0.310=0.1,解得x ≈123.3.故选C.3.一组数据1,10,5,2,x ,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为 .解析:根据题意知,该组数据的众数是2,则中位数是2÷23=3,把这组数据从小到大排列为1,2,2,x ,5,10,则2+x 2=3,解得x =4,所以这组数据的平均数为x -=16×(1+2+2+4+5+10)=4,方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.答案:9茎叶图(师生共研)(2020·陕西延安模拟)为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分,制成如图所示的茎叶图.有下列结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分的平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A.①③B.①④C.②③D.②④【解析】对于①,甲得分的中位数为29,乙得分的中位数为30,错误;对于②,甲得分的平均数为15×(25+28+29+31+32)=29,乙得分的平均数为15×(28+29+30+31+32)=30,正确;对于③,甲得分的方差为15×[(25-29)2+(28-29)2+(29-29)2+(31-29)2+(32-29)2]=15(16+1+0+4+9)=6.乙得分的方差为12+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=15×(4+5×[(28-30)1+0+1+4)=2,所以乙比甲更稳定,③正确,④错误.所以正确结论的编号为②③.【答案】 C茎叶图中的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.1.(2020·新疆第一次毕业诊断及模拟测试)某中学高三文科班从甲、乙两个班各选出7名学生参加文史知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x+y的值为()A.8 B.7C.9 D.168解析:选A.因为甲班学生成绩的平均分是85,所以79+78+80+80+x+85+92+96=85×7,即x=5.因为乙班学生成绩的中位数是83,所以若y≤1,则中位数为81,不成立.若y>1,则中位数为80+y=83,解得y=3.所以x+y=5+3=8,故选A.2.某省为了抽选运动员参加“国际马拉松比赛”,将35名运动员的一次马拉松比赛成绩(单位:分钟)制成茎叶图,如图所示.若将运动员按成绩由好到差编号,再用系统抽样的方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为()A.6 B.5C.4 D.3解析:选C.对35名运动员进行编号:00,01,02,…,34,分成七组:00~04,05~09,10~14,15~19,20~24,25~29,30~34,用系统抽样的方法抽7人,则第三组到第六组中占4人,即抽取的成绩在区间[139,151]上的运动员的人数为4,故选C.频率分布直方图(多维探究)角度一求样本的频率、频数(2020·安徽七校联考)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1 200元,每售出一件利润为50元,求该实体店一天获利不低于800元的概率.【解】(1)由题意知,网店销售量不低于50共有(0.068+0.046+0.010+0.008)×5×100=66(天),实体店销售量不低于50共有(0.032+0.020+0.012×2)×5×100=38(天),实体店和网店销售量都不低于50的天数为100×0.24=24,故实体店和网店至少有一边销售量不低于50的天数为66+38-24=80.(2)由题意,设该实体店一天售出x件,则获利为(50x-1 700)元,50x-1 700≥800⇒x ≥50.记该实体店一天获利不低于800元为事件A,则P(A)=P(x≥50)=(0.032+0.020+0.012+0.012)×5=0.38.故该实体店一天获利不低于800元的概率为0.38.角度二求样本的数字特征(2019·高考全国卷Ⅲ改编)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解】 (1)由已知得0.70=a +0.20+0.15,故 a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.(1)频率、频数、样本容量的计算方法 频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数.(2)频率分布直方图中数字特征的计算①最高的小长方形底边中点的横坐标即是众数; ②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.1.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:选B.设中间一组的频数为x ,因为中间一个小长方形的面积等于其他8个长方形的面积和的25,所以其他8组的频数和为52x ,由x +52x =140,解得x =40.2.(2020·河南洛阳调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据直方图完成以下表格; 成绩 [50,60)[60,70)[70,80)[80,90)[90,100]频数(2)求参赛选手初赛成绩的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩?解:(1)填表如下:成绩[50,60)[60,70)[70,80)[80,90)[90,100)频数50150350350100(2)平均数为55×0.05+65×0.15+75×0.35+85×0.35+95×0.1=78,方差s2=(-23)2×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101.(3)进入复赛选手的成绩为80+350-(380-100)350×10=82(分),所以初赛成绩为82分及其以上的选手均可进入复赛.(说明:回答82分以上,或82分及其以上均可)核心素养系列21数据分析——读取统计图中的数据数据分析、数学运算是数学的核心素养,也是数学应用于实际生活问题的核心,提取—计算—应用数据是数学能力的重要体现.(2019·高考全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[-0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.【解】 (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y -=1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s 2=1100i =15n i (y i -y -)2 =1100[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s =0.029 6=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.(1)数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程.主要包括:收集数据,整理数据,提取信息,构建模型对信息进行分析、推断,获得结论.(2)本例由频数分布表可以读出各组频数,可计算出频率从而问题得以解决.(2020·四省八校双教研联考)如图1为某省2018年1~4月份快递业务量统计图,图2为该省2018年1~4月份快递业务收入统计图,对统计图理解错误的是()A.2018年1~4月份快递业务量3月份最高,2月份最低,差值接近2 000万件B.2018年1~4月份快递业务量同比增长率均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关C.从两图中看,增量与增长速度并不完全一致,但业务量与业务收入变化高度一致D.从1~4月份来看,业务量与业务收入有波动,但整体保持高速增长解析:选D.对于A,2018年1~4月份快递业务量3月份最高,有4 397万件,2月份最低,有2 411万件,其差值接近2 000万件,所以A正确;对于B,2018年1~4月份快递业务量的同比增长率分别为55%,53%,62%,58%,均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关,所以B正确;对于C,由两图易知增量与增长速度并不完全一致,其业务量从高到低变化是3月→4月→1月→2月,业务收入从高到低变化是3月→4月→1月→2月,保持高度一致,所以C正确;对于D,由图知业务收入2月相对1月减少,4月相对3月减少,整体不具备高速增长之说,所以D不正确.综上,选D.[基础题组练]1.把样本容量为20的数据分组,分组区间与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,则在区间[10,50)上的数据的频率是( )A .0.05B .0.25C .0.5D .0.7解析:选D.由题知,在区间[10,50)上的数据的频数是2+3+4+5=14,故其频率为1420=0.7.2.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差解析:选A.记9个原始评分分别为a ,b ,c ,d ,e ,f ,g ,h ,i (按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A.3.(2020·陕西咸阳模拟检测(二))PM2.5是衡量空气质量的重要指标,我国采用世界卫生组织的最宽值限定值,即PM2.5日均值在35 μg/m 3以下空气质量为一级,在35~75μg/m 3空气质量为二级,超过75 μg/m 3为超标.如图是某地12月1日至10日的PM2.5(单位:μg/m 3)的日均值,则下列说法不正确的是( )A .这10天中有3天空气质量为一级B .从6日到9日PM2.5日均值逐渐降低C .这10天中PM2.5日均值的中位数是55D .这10天中PM2.5日均值最高的是12月6日解析:选C.这10天中第一天,第三天和第四天,共3天空气质量为一级,所以A 正确; 从题图可知从6日到9日PM2.5日均值逐渐降低,所以B 正确;从题图可知,这10天中PM2.5日均值最高的是12月6日,所以D 正确; 由题图可知,这10天中PM2.5日均值的中位数是41+452=43,所以C 不正确.故选C.4.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是( )A .极差B .方差C .平均数D .中位数解析:选C.由题中茎叶图中数据的分布,可知方差不同,极差不同, 甲的中位数为16+212=18.5,乙的中位数为14+182=16,x -甲=5+16+12+25+21+376=583,x -乙=1+6+14+18+38+396=583,所以甲、乙的平均数相同.故选C.5.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x -8.3 8.8 8.8 8.7 方差s 23.53.62.25.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是 .解析:由题表中数据可知,丙的平均环数最高,且方差最小,说明技术稳定,且成绩好. 答案:丙6.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为 ;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为 . 解析:设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,解得h =0.04.则志愿者年龄在[25,35)年龄组的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:(1)0.04 (2)4407.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:成绩分组 频数 频率 平均分 [0,20) 3 0.015 16 [20,40) a b 32.1 [40,60) 25 0.125 55 [60,80) c 0.5 74 [80,100]620.3188(1)求a 、b 、c 的值;(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P (注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b =1-(0.015+0.125+0.5+0.31)=0.05,a =200×0.05=10,c =200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.所以P =162200=0.81.(3)这次数学测验样本的平均分为x -=16×3+32.1×10+55×25+74×100+88×62200=73,所以这次数学测验的年级平均分大约为73分.8.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数; (2)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为36,众数为33.(2)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为 4.5×36×30=4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136×1+147×3+154×2+189×3+203×1)×30=165.5×30=4 965(元).[综合题组练]1.(2020·安徽五校联盟第二次质检)数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为( )A.σ22 B .σ2 C .2σ2D .4σ2解析:选D.设a 1,a 2,a 3,…,a n 的平均数为a ,则2a 1,2a 2,2a 3,…,2a n 的平均数为2a ,σ2=(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n.则2a 1,2a 2,2a 3,…,2a n的方差为(2a 1-2a )2+(2a 2-2a )2+(2a 3-2a )2+…+(2a n -2a )2n =4×(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n=4σ2.故选D.2.(2020·郑州市第二次质量预测)将甲、乙两个篮球队各5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A .甲队平均得分高于乙队的平均得分B .甲队得分的中位数大于乙队得分的中位数C .甲队得分的方差大于乙队得分的方差D .甲、乙两队得分的极差相等解析:选C.由题中茎叶图得,甲队的平均得分x -甲=26+28+29+31+315=29,乙队的平均得分x -乙=28+29+30+31+325=30,x -甲<x -乙,选项A 不正确;甲队得分的中位数为29,乙队得分的中位数为30,甲队得分的中位数小于乙队得分的中位数,选项B 不正确;甲队得分的方差s 2甲=15×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=185,乙队得分的方差s 2乙=15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s 2甲>s 2乙,选项C 正确;甲队得分的极差为31-26=5,乙队得分的极差为32-28=4,两者不相等,选项D 不正确.故选C.3.(2020·沈阳市质量监测(一))某篮球运动员的投篮命中率为50%,他想提高自己的投篮水平,制定了一个夏季训练计划,为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为46.3.执行训练后也统计了10场比赛的得分,茎叶图如图所示:(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差; (2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?解:(1)训练后得分的中位数为14+152=14.5;平均得分为8+9+12+14+14+15+16+18+21+2310=15;方差为110[(8-15)2+(9-15)2+(12-15)2+(14-15)2+(14-15)2+(15-15)2+(16-15)2+(18-15)2+(21-15)2+(23-15)2]=20.6.(2)尽管中位数训练后比训练前稍小,但平均得分一样,训练后方差20.6小于训练前方差46.3,说明训练后得分稳定性提高了(阐述观点合理即可),这是投篮水平提高的表现.故此训练计划对该篮球运动员的投篮水平的提高有帮助.4.(2020·广州市调研测试)某蔬果经销商销售某种蔬果,售价为每千克25元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每千克10元处理完.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种蔬果日需求量的平均数x -(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250千克该种蔬果,假设当天的需求量为x 千克(0≤x ≤500),利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1 750元的概率.解:(1)x -=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.002 5×100+450×0.001 5×100=265.故该种蔬果日需求量的平均数为265千克.(2)当日需求量不低于250千克时,利润y =(25-15)×250=2 500(元),当日需求量低于250千克时,利润y =(25-15)x -(250-x )×5=15x -1 250(元),所以y =⎩⎨⎧15x -1 250,0≤x <2502 500,250≤x ≤500,由y ≥1 750,得200≤x ≤500,所以P (y ≥1 750)=P (200≤x ≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7. 故估计利润y 不小于1 750元的概率为0.7.。

相关文档
最新文档