第十六章_微生物在医药领域的应用
微生物在药品中的应用

微生物在药品中的应用微生物在药品中的应用是一种古老而又现代的医学治疗方法。
微生物是一类极小的生物体,包括细菌、真菌、病毒等,它们在药品制备中发挥着重要的作用。
微生物可以被用来生产抗生素、疫苗、酶制剂等药品,为人类的健康保驾护航。
本文将探讨微生物在药品中的应用,介绍其在医学领域中的重要性和作用。
一、微生物在抗生素制备中的应用抗生素是一类能够抑制或杀死细菌的药物,是治疗细菌感染疾病的重要药物之一。
而许多抗生素都是通过微生物发酵生产得到的。
最早的抗生素——青霉素就是由青霉菌产生的。
青霉素的发现开创了抗生素时代,使得许多原本无法治愈的细菌感染疾病得以根治。
除了青霉素,链霉素、四环素等抗生素也是通过微生物发酵生产得到的。
微生物在抗生素制备中的应用,为人类的健康提供了重要的保障。
二、微生物在疫苗制备中的应用疫苗是预防传染病的有效手段,可以帮助人体产生免疫力,从而在接触病原体时迅速做出反应,阻止疾病的发生。
而许多疫苗也是通过微生物制备得到的。
比如,乙型肝炎疫苗是利用酿酒酵母表达乙型肝炎病毒表面抗原制备而成的。
疫苗的研发和生产离不开微生物的参与,微生物在疫苗制备中的应用,为预防传染病起到了关键作用。
三、微生物在酶制剂中的应用酶是一类生物催化剂,可以加速生物体内的化学反应速率,起到调节代谢的作用。
在药品制备中,酶制剂也是一种重要的药物。
而许多酶制剂也是通过微生物发酵得到的。
比如,青霉素酶、蛋白酶等酶制剂都是通过微生物生产得到的。
这些酶制剂在医学领域中有着广泛的应用,可以用于治疗消化系统疾病、代谢疾病等。
微生物在酶制剂中的应用,为医学治疗提供了新的思路和方法。
四、微生物在药品研发中的前景随着科技的不断发展,微生物在药品研发中的应用前景也越来越广阔。
通过基因工程技术,科学家们可以改造微生物的基因,使其具有更好的药物生产能力。
比如,利用重组DNA技术,可以构建出高效产生抗生素的微生物菌株,从而提高抗生素的产量和质量。
此外,微生物在药品研发中还可以发现新的药物活性成分,为新药的研发提供新的思路和途径。
微生物技术在医药行业的研究与应用

微生物技术在医药行业的研究与应用近年来,微生物技术在医药行业中得到了广泛的关注和应用。
微生物技术是指利用微生物的特性进行研究和应用的技术,包括基因工程、发酵工程等。
微生物技术在医药领域中的研究和应用具有重要的意义,不仅可以提高药物研发的效率和质量,还可以开发新型治疗手段。
首先,微生物技术在新药研发领域起到了重要的作用。
微生物是一类重要的生物资源,在药物研发过程中具有广泛的应用价值。
利用微生物的发酵特性,可以大规模生产药物原料,例如抗生素、酶类药物等。
同时,利用微生物的基因工程技术,可以改造微生物的基因组,生产新型药物。
例如,通过引入重组DNA技术,可以将目标基因导入到微生物细胞中,使其产生具有特定功能的蛋白质,如人类胰岛素和生长因子。
这些通过微生物技术研发的药物,不仅具有高效率和低成本的优势,还可以减少对动物资源的依赖,避免动物实验的局限性。
其次,微生物技术在疾病诊断和治疗方面也有着重要的应用。
微生物是许多疾病的致病因子,通过微生物技术的研究,可以更好地了解病原体的特性和传播途径。
例如,利用微生物技术可以开展疾病的基因检测,通过对病原微生物的基因组进行测序和分析,可以准确诊断和预测疾病的发展趋势。
同时,通过利用微生物的特性,可以开发新型的疫苗和抗菌剂,防治疾病的有效手段。
例如,通过研究病原微生物的抗药性机制,可以开发新型抗生素,并针对特定的病原菌,在药物选择和使用上提供指导。
此外,微生物技术还在个性化医疗方面发挥着重要的作用。
个性化医疗是指根据个体的遗传背景、环境因素等因素,量身定制的医疗方案。
微生物技术通过研究人类肠道微生物群落的组成和功能,可以揭示肠道微生物与人类健康之间的关联。
例如,通过分析肠道微生物群落的组成,可以预测肠道相关疾病的风险,并提供相应的预防和治疗策略。
此外,微生物技术还可以通过调节肠道微生物群落的结构和功能,实现针对性的干预,例如通过益生菌或粪菌移植等手段,改变肠道微生物的组成,恢复肠道健康。
微生物在生物医学中的应用

微生物在生物医学中的应用微生物是指生活在各种环境中的微小生物体,包括细菌、真菌、病毒等。
这些微生物在生物医学领域中有着广泛的应用,包括药物研发、疫苗生产、诊断和治疗等方面。
一、微生物在药物研发中的应用微生物在药物研发中起到了非常重要的作用。
众所周知,许多广泛使用的药物都是从微生物中提取出来的。
其中最为典型的是抗生素。
抗生素是杀灭细菌的化合物,广泛用于治疗各种细菌感染症状。
最早的一些抗生素是从真菌中提取出来的,例如青霉素和链霉素等。
今天,许多其他类型的抗生素也是从微生物中提取出来的。
当然,由于抗生素被过度使用,已经出现了抗生素耐药性问题,这也促使科学家们在微生物中寻找新的化合物和化学物质,以治疗这些对传统抗生素产生耐药性的细菌种类。
此外,微生物还用于治疗其他类型的疾病。
例如,多肽类抗生素青蒿素是从中药青蒿中提取出来的,并在治疗疟疾方面有着广泛应用。
二、微生物在疫苗生产中的应用微生物也广泛用于疫苗生产。
疫苗是一种激活免疫系统的工具,帮助身体抵御病毒入侵。
最早的疫苗是由英国医生Edward Jenner于1796年发明的。
他研究了乳痘病毒和牛痘病毒之间的关系,发现人接种牛痘病毒后可以免疫乳痘病毒。
之后,研究人员逐渐发现了越来越多微生物相关的疾病,例如肝炎、流感、百日咳等等,并开发出相应的疫苗。
在疫苗生产过程中,微生物被用来制造活体疫苗。
活体疫苗就是将微生物培养在适当的培养基上,然后制造出一种能够加强免疫系统的剂量或体液。
三、微生物在诊断中的应用微生物在诊断中的应用也非常广泛。
现代医学已经开发出许多用于检测微生物的方法,例如细菌培养、PCR技术、ELISA检测、光学检测和基因测序等等。
这些检测方法都需要微生物学家对微生物的生理活动和特性进行深入了解,使得他们能够准确判断出疾病的类型。
四、微生物在治疗中的应用微生物在治疗中的应用也获得了很大发展。
例如,肠道微生物可以影响人体健康,且各个人的微生物组成都有所不同。
微生物在医药领域中的应用

微生物在医药领域中的应用微生物是一类微小的生物体,包括细菌、真菌、病毒等。
在医药领域中,微生物具有广泛的应用。
本文将详细介绍微生物在医药领域中的应用,并探讨其在疾病预防、治疗和药物生产等方面的重要性。
一、微生物在疾病预防中的应用在疾病预防方面,微生物在医药领域中扮演着重要角色。
首先,微生物可以被用作疫苗的生产。
疫苗是预防疾病的有效手段之一,通过注射微生物或其代表性分子来激发免疫系统的反应。
例如,腮腺炎和麻疹等疾病的疫苗是用活体或灭活的病原体制备的。
其次,微生物可以被用于制作抗生素。
抗生素是用来治疗细菌感染的药物,而有些抗生素是由微生物产生的。
例如,青霉素就是由霉菌产生的抗生素,对许多感染具有很强的疗效。
二、微生物在疾病治疗中的应用微生物在疾病治疗方面也发挥着重要作用。
首先,微生物可以用于临床检测。
例如,通过对患者样本中的细菌进行分离和培养,医生可以判断感染的细菌种类,并选择相应的抗生素进行治疗。
其次,微生物可以被用来治疗某些疾病。
例如,益生菌被广泛用于调节肠道菌群,增强人体免疫力。
另外,一些真菌也可以用于治疗特定的疾病,例如抑制癌细胞生长的霉菌。
三、微生物在药物生产中的应用除了在疾病预防和治疗中的应用外,微生物在药物生产方面也起到了关键的作用。
首先,微生物可以被用于生产抗生素和其他药物。
通过大规模培养微生物,可以获得大量的药物产物。
例如,链霉菌被用于生产链霉素,这是一种广泛使用的抗生素。
其次,微生物也可以被用于合成某些药物的中间体。
例如,通过对大肠杆菌的遗传工程改造,可以使其产生特定的化合物,用于制造抗癌药物等。
综上所述,微生物在医药领域中发挥着重要的角色。
它们被广泛应用在疾病的预防、治疗以及药物的生产中。
随着科学研究的不断发展,微生物在医药领域中的应用将进一步拓展,为人类的健康提供更多的帮助。
微生物在药品中的应用

微生物在药品中的应用一、引言微生物是一类极小型的生物体,包括细菌、真菌、病毒等。
在药品生产中,微生物起着不可或缺的作用,不仅可以被应用于制药过程中的原料生产,还可以被利用来合成药物、发酵产物、生物转化等多个环节。
本文将分别从微生物在抗生素、酶制剂和疫苗领域的应用展开阐述。
二、微生物在抗生素中的应用抗生素是一类能抑制细菌生长或导致细菌死亡的药物。
而大部分抗生素都是由微生物产生的代谢产物,如青霉素是由青霉菌产生的。
在抗生素的发现和研发过程中,青霉菌、链霉菌等微生物为人类医学制药做出了巨大贡献。
此外,在抗生素的合成过程中,也离不开微生物酶的催化作用,微生物酶可以作为合成抗生素的催化剂,而同时也可以提高反应速率和纯度。
三、微生物在酶制剂中的应用酶制剂是由活性酶组成的一种复杂化学体系,它可以促进药物的代谢和降解过程。
微生物通过发酵等方式可以高效地产出多种酶制剂。
例如,利用转基因技术将优良微生物转移到高产酶制剂相关基因后进行筛选与改良,提高了目标产品在酶法领域中的应用范围和经济效益。
微生物蛋白工程技术对酶制剂行业起到了积极推动作用。
利用这一技术可以改良目标酶的性能,并通过对基因工程工艺的改良提高了血清替代产品、医药及工业废水处理等领域产品的市场竞争力。
四、微生物在疫苗中的应用疫苗是预防传染病最为有效且经济的手段之一。
而细菌及病毒也是疫苗制备所需原材料之一。
以流感疫苗为例,流感病毒每年都会因为基因变异而需要重新研制新的疫苗。
采用原始病毒种来进行发酵,然后对发酵液进行破碎提取毒素和沉淀分离活性成分并完成后续的精制即可得到满足医学使用要求且其毒力减弱使之变成一种有效但却极为安全地使用于人体上从而达到预防流感这种传染病。
五、总结总体来看,微生物在药品中扮演着多重角色,通过对其应用进行合理开发和利用,可以满足人们对高质量、多样性和廉价性药品的需求。
但值得注意的是,在利用微生物进行医学和工业产品制造过程中需要合理控制其培养条件以及其分离纯化过程,以确保整个过程健康环保地进行。
微生物学在医学中的应用

微生物学在医学中的应用微生物学是研究微生物(包括细菌、病毒、真菌、寄生虫等)的科学,它有着广泛的应用,其中医学领域是它应用最广泛的一个方向。
微生物学在医学中的应用主要包括以下几个方面。
一、微生物在疾病诊断中的应用1.细菌培养细菌培养是细菌学中最基本的实验技术之一,也是诊断病原菌最重要的手段之一。
通过培养,可以得到细菌的单一纯种,进一步进行鉴定和药敏试验,确定病原菌种类和药物敏感性,为治疗提供依据。
2.病毒检测病毒是许多传染病的致病根源,病毒检测可以帮助医生和研究者诊断病毒性疾病,制定相应的治疗方案。
病毒检测的方法包括血清学检测、PCR技术、免疫荧光等方法,其中PCR技术是目前常用的高效病毒检测技术之一。
3.真菌检测真菌感染是一种非常常见的疾病,真菌检测帮助医生确定感染类型和严重程度,所以也是非常重要的。
真菌检测常用的方法包括真菌培养、快速真菌检测技术、血清学检测等。
4.寄生虫检测寄生虫感染是一些热带地区经常出现的疾病,寄生虫检测有助于确定感染类型、严重程度和治疗方案。
寄生虫检测常用的方法包括血液检测、粪便检测、尿液检测等。
二、微生物在药物研发中的应用微生物在药物研发中有着重要作用,其中包括以下几个方面。
1.抗生素的发现和研制抗生素是临床上治疗细菌性感染必不可少的药物之一,而绝大部分抗生素都是从微生物中发现并提取出来的。
比如,青霉素最初就是由青霉属真菌所产生的一种抗生素,而阿奇霉素则是由镰刀菌属真菌所产生的一种。
2.疫苗的研发疫苗是预防传染病的最有效工具之一,大部分疫苗都是以微生物基础研究为基础的。
例如,百日咳疫苗是由百日咳杆菌制备的,流感疫苗则是由多种不同的流感病毒制备并混合而成的。
3.药物筛选微生物在药物筛选中也起到了重要的作用。
在药物研发过程中,首先需要在大量微生物中筛选出具有治疗效果的化合物,这些化合物可以被人工合成为新药,并用于临床治疗。
其中,金黄色葡萄球菌和大肠杆菌等细菌常常被用于药物筛选。
微生物在药学中的应用

研究药物与微生物之间的相互作用,有助于发现潜在的药物相互作 用风险。
药物剂型研究
研究不同剂型的药物对微生物的影响,有助于优化药物剂型设计。
微生物在药品储存和运输中的应用
1 2
药品储存环境监测
监测药品储存环境的微生物状况,确保药品储存 环境的卫生和安全。
药品运输包装材料检测
检测药品运输包装材料的微生物状况,确保药品 在运输过程中不受污染。
微生物在药物作用机制研究中的应用
药物作用机制
微生物可以用于研究药物的作用机制,例如通过基因敲除或基因突变技术,研 究微生物中特定基因对药物作用的影响。
药物靶点筛选
利用微生物基因组学和蛋白质组学技术,可以筛选潜在的药物靶点安全性评价
微生物可以用于药物的安全性评价,例如通过基因突变和致畸实验等手段,评估 药物对人体的潜在危害。
微生物鉴别
通过微生物的形态、生理生化特性等指标,鉴别药物中污染的微 生物种类,有助于预防和控制药品污染。
微生物耐药性检测
检测药物中可能存在的耐药性微生物,为临床用药提供参考,避 免耐药性的传播。
微生物在药物制剂稳定性研究中的应用
药物降解研究
研究微生物对药物降解的作用,有助于了解药物在储存和使用过 程中的稳定性。
微生物酶可以将某些药物进行生 物转化,改变其化学结构,从而 产生新的药效或降低副作用。
药物代谢研究
通过研究微生物酶对药物的代谢 作用,可以深入了解药物在体内 的代谢过程和机制。
基因工程菌在药物生产中的应用
高产菌株的构建
01
通过基因工程技术改造微生物,使其具有更高的药物生产能力
,如提高抗生素的产量。
微生物在药学中的应 用
汇报人: 202X-01-02
微生物学在医学领域中的应用

微生物学在医学领域中的应用微生物学是研究微生物的科学,包括病原微生物和非病原微生物。
在医学领域中,微生物学起着重要的作用。
微生物可以引起许多疾病,如感冒、肺炎、结核病等。
同时,在医学领域中,微生物也被用于预防和治疗疾病。
下面,我们将详细介绍微生物学在医学领域中的应用。
一、微生物在疾病预防中的应用1. 疫苗的研制疫苗是一种预防性疗法,通过注射或口服等方式将病原微生物或其成分注入人体,让人体产生免疫力,从而预防疾病。
疫苗可以预防许多疾病,如麻疹、流行性感冒、流行性腮腺炎等。
目前,疫苗技术已经非常成熟,可以根据病原微生物的不同特性来选择合适的免疫原制备疫苗。
2. 保健品的研制一些微生物可以促进健康,如益生菌。
益生菌是一种有益菌,可以维护肠内微生物平衡、促进食物消化和营养吸收。
目前,市面上已有许多含益生菌的保健品,可以对肠道健康起到积极的作用。
二、微生物在疾病诊断中的应用1. 细菌培养细菌培养是一种常用的细菌检测方法。
通过将病原微生物分离培养在适宜的培养基上,可以鉴定出疾病的致病菌,从而为治疗提供依据。
2. PCR技术PCR(聚合酶链反应)技术是一种高灵敏度、高特异性的微生物检测技术。
通过PCR技术,可以快速检测出微生物的DNA序列,从而诊断出微生物感染,有效地治疗疾病。
三、微生物在疾病治疗中的应用1. 抗生素抗生素是一类能抑制或杀死细菌的药物,是治疗感染的重要手段。
抗生素的研制离不开微生物学的研究。
最早的抗生素是青霉素,它由霉属菌生产,可以抑制革兰阳性细菌的生长。
目前,已有许多种抗生素可供选择,可以根据不同病原微生物的敏感性来选用合适的药物。
2. probioticsprobiotics是指一些有益菌,如乳酸杆菌等。
这些微生物可以直接在肠道内生长并活动,从而抑制有害菌的生长、维护肠道生态平衡。
在肠炎、腹泻等疾病的治疗中,probiotics已经被广泛应用。
总之,微生物学在医学领域中拥有广泛的应用。
无论在疾病预防、诊断还是治疗方面,微生物学都起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、医用抗生素的特点
1.差异毒力大
差异毒力:即抗生素对微生物或肿瘤细胞等靶体 的抑制或杀灭作用,与对机体损害程度的差异比 较。由抗生素的作用机制决定,如青霉素类抗生 素能抑制革兰阳性菌细胞壁生成,而人和动物的 细胞没有细胞壁,所以说青霉素对人和动物没有 作用,因此青霉素可以在临床上用于抗感染。可 以说一种抗生素它的差异毒力越大,越有利于临 床的应用。一般的化学消毒剂对微生物和机体的 毒力无明显差异。
2、影响细胞膜的功能 多黏菌素、两性霉素
3、干扰蛋白质合成
氨基糖苷类、四环素类、大环内酯类以及其他一些抗
生素 4、抑制核酸的合成
博莱霉素、利福平、利福霉素、氟哌酸、氧氟沙星、
阿霉素等。 5、干扰的能量代谢和电子传递体系 素养性太强,限制了在临床上的应用。
七、细菌的耐药性
② 改造现有的抗生素的产生菌,再经筛选获得新抗生
素产生菌。
③ 对已知的抗生素进行结构改造,经筛选后获得新的
半合成抗生素。
④ 新的筛选方法,应用定向生物合成和突变生物合成
的原理等。 ⑤ 现代分子生物学技术设计产生新抗生素。
新抗生素产生菌的常规分离和筛选过程
1.土壤微生物的分离 2.筛选 将可能产生新抗生素的放线菌进行扩大培养,然后选择 合适的方法将有效抗生素从培养液中提取出来,加以精 3.早期鉴别 制纯化。 4.分离精制 5.临床前试验研究和临床试用
抗生素种类 产生菌 青霉素 链霉素 红霉素 多粘菌素 四环素 灰黄霉素 真菌产生 放线菌产生 放线菌产生 细菌产生 放线菌产生 真菌产生
化学结构
作用对象
作用机制 影响细胞壁合成 影响蛋白质合成 影响蛋白质合成 影响细胞膜通透性 影响蛋白质合成 影响核酸合成
β -内酰胺类 抗G+细菌的 氨基糖甙类 大环内酯类 多肽类 四环素类 多烯类 抗G-细菌 抗G+细菌的 抗G-细菌 抗病毒 抗真菌、病毒
五、抗生素的效价和单位
1. 效价 效价是指在同一条件下比较抗生素的被检品和标 准品的抗菌活性,从而得出被检品的效价,我们 用百分比来表示表示: 效价=被检品的抗菌活性∕标准品的抗菌活性 标准品:是指与商品同质的、纯度较高的抗生素, 每毫克含有一定量的单位,可用作效价测定的标 准。
2、单位
抗生素的国际单位:指经国际协议,每毫克含一 定单位的国际标准品,其单位即为国际单位(IU)
合体但靶位仍能保持其功能。
c. 细胞通透性的改变,使药物进入细胞内减少。
3、细菌耐药性产生的防止对策
① 合理使用抗生素,可不用抗生素时尽可能不用,并
注意防止交叉耐药性,同时主张联合用药。
② 寻找新药。努力寻找具有新的化学结构的新抗生素
和改造现有的抗生素,以及新的酶抑制剂。
③ 加强抗药机制的研究,了解细菌耐药性的本质,以
抗生素产生菌的鉴别、抗生素的鉴别。 抗菌抗生素:一般采用琼脂扩散法筛选法。抗肿瘤抗生 采土,以春秋两季采土为宜,取5~10cm深处的土壤, 素可以采用精原细胞核分裂抑制法、噬菌体法、实验动 以无菌生理盐水适当稀释进行涂布法分离。 物模型体内筛选取法等。抗病毒抗生素可采用组织培养 法、噬菌体模型 法、体内筛选法等。 经临床前试验研究后,被审查合格的抗生素方可进入临床 试验阶段。
4.不易使病原菌产生耐药性 某些病原菌耐药现象日趋来重,它们引起的疾 病常成为临床治疗的难题。因些一个优良的抗 生素应不易使病原菌产生耐药性。 其他:良好的抗生素副作用小、不易引起超敏 感反应,吸收快,血浓度高,不易被血清蛋白 结合而失活等特性。
三、寻找新抗生素的基本程序
抗生素获得的几条途径: ① 从自然界分离并筛选新抗生素产生菌。
1、耐药性的概念
耐药性是指在微生物或肿瘤细胞多次与药物接触发生
敏感性降低的现象,是微生物对药物所具有的相对抗
性。耐药性增强,则敏感性降低。
2、耐药性产生机制
① 细菌耐药性产生的遗传机制:耐药性可由染色体或
质粒或两者兼有介导。
② 细菌耐药性产生的生化机制: a. 产生使抗生素结构改变的酶,即钝化酶。 b. 作用靶位的改变,不能与细菌结合或能结合形成复
通气、搅拌及消泡
生素的合成方向,并增加产
量。
发酵终点判断
提取阶段
(1)发酵液预处理 多数发酵产品如抗生素存在于发酵液内,有些存在于 菌丝内。发酵液预处理包括除去发酵液内的杂质离子(Ca2+、 Mg2+、Fe3+等)以及蛋白质,并利用板框压滤机,使菌丝与 滤液分开,便于进一步提取。 (2)提取与精制 提取方法是根据产品的理化性质决定的。目前常用的 提取方法有吸附法、溶媒萃取法、离子交换法和沉淀法。 (3)成品检验 经过发酵与提取得到的成品,应根据药典标准进行检 测,检测的项目根据产品的性质而定。如抗生素一般要进 行效价测定、毒性试验、无菌试验、热原质试验、水分测 定等。 (4)成品分装
3酶制剂及酶抑制剂 (1)酶制剂
①透明质酸酶 ②天冬酰胺酶 ③胶原酶 ④消化酶 ⑤青霉素酰化酶 ⑥青霉素酶
我们在医药方面常用的微生物酶制剂有: 1. 促消化酶类:我们利用微生物生产的种进消 化的酶类有蛋白酶、淀粉酶、脂肪酶和纤维素酶等, 能够治疗消化不良、急慢性肠胃炎、食欲不振等疾 病。 2. 消炎酶类:这类酶制剂中常用的比如溶菌酶, 具有抗菌、抗病毒、抗炎症、促进组织修复等作用, 临床上用于五官科各种粘膜炎症或者龋齿等。 3. 抗肿瘤酶类:酶能治疗某些肿瘤,比如大肠杆 菌产生的天冬酰胺酶就是一种抗白血病的药物。它 的主要作用是水解天冬酰胺成为天冬胺酸和氨。
概 念
抗生素:是生物在其生命活动过程中所产生的, 能在低微浓度下有选择地抑制或影响他种生物 功能的有机物质。
一、抗生素的分类
根据抗生素的化学结构分类 根据抗生素的生物来源分类: 根据抗生素的作用机制分类 根据抗生素的作用对象分类 1. 1.B细菌产生的抗生素:多黏菌素和短杆菌肽等 内酰胺类抗生素:青霉素、头孢霉素 1. 抑制细胞壁合成的抗生素:青霉素、环丝氨酸 1. 抗革兰氏阳性细菌的抗生素:青霉素、红霉素等 2. 2. 放线菌产生的抗生素:链霉素、四环素等 氨基糖苷类抗生素:链霉素、卡那霉素 2. 影响细胞膜功能的抗生素:多黏菌素等 2. 抗革兰氏阴性细菌的抗生素:链霉素、多黏菌素等 3. 3. 真菌产生的抗生素:青霉素和头孢霉素等、 大环内酯类抗生素:红霉素、麦迪霉素 3. 抑制核酸合成的抗生素:丝裂霉素 C等 3. 抗真菌的抗生素:灰黄霉素、制霉菌素等 4. 4. 植物和动物产生的抗生素:蒜素、鱼素等。 四环素类抗生素:金霉素、土霉素等 4. 抑制蛋白质合成的抗生素:链霉素、四环素等 4. 抗病毒的抗生素:四环霉素 5. 多肽类抗生素:多黏菌素、杆菌肽。 5. 抑制生物能作用的抗生素:抗霉素、短杆菌肽 5. 抗癌的抗生素:丝裂霉素、阿霉素等
四、抗生素的制备
获取菌种 孢子制备 种子制备 发酵 成品检验
发酵液预处理 成品包装
提取及精制
( 1 )菌种:菌种都是从自然界分离、纯化及选育后获得的。 这些菌种通常采用砂土管或冷冻干燥管保存。要经常进行 菌种选育工作,用人工方法加以纯化和育种,才能保持菌 种的优良性状不变。菌种制备要保持严格的无菌状态。 ( 2 )孢子制备:将保藏的菌种进行培养,制备大量孢子供 下一步植被种子使用。需氧发酵制备孢子一般是在摇瓶内 进行,通过振荡,外界空气与培养液进行自然交换获得氧 气。培养基要含有生长因子和微量元素,且碳源或氮源不 宜过多,从而保证生产大量的孢子。还要严格控制培养基 的pH、培养温度、培养时间等条件。 ( 3 )种子制备:使有限数量的孢子萌发、生长、繁殖产生 足够量的菌丝体,供发酵培养所用。在种子罐内微生物菌 丝大量生长、繁殖,因而缩短了下一步发酵罐内菌丝生长 的时间。种子罐中的培养液要尽可能与发酵液一致。而且 要有易吸收的碳源和氮源。
(二)教学要求 1.掌握抗生素的概念、特点和医用抗生素的特点。 2.熟悉抗生素的效价和单位表示方法。
3.了解抗生素效价的生物测定方法、微生物在其 他药物生产中的应用。
微生物种类多、数量大、个体小、面积大、新陈代谢
能力强、吸收多、转化快、生长旺、繁殖速度快,广 泛应用于制药工业中。如抗生素、维生素、氨基酸、 酶及酶抑制剂以及微生态制剂都有是利用微生物发酵 制成的。利用“工程菌”作为制药工业的发酵产生菌可
便有针对地解决耐药菌对人类的危害。
第二节、其他发酵产品
1.维生素 2.氨基酸 (1)维生素C (1)谷氨酸 (2)维生素B2 (2)赖氨酸 (3)维生素B12
谷氨酸是制造味精的原料,味精就是谷氨酸钠盐。另外, 谷氨酸在医疗上可以用于肝昏迷、神经衰弱、配制营养 注射液等。 谷氨酸产生菌主要是棒状杆菌属、短杆菌属和节杆菌属, 谷氨酸产生菌的共同特点是革兰氏阳性短杆菌,无鞭毛, 无芽胞,生长需要适量生物素,而且需要氧气,也就是 说都是
发酵注意因素
析,测定抗生素含量、发酵 无菌操作 前体是抗生素分子的前身或 液PH、含糖量和含氮量、 营养需要 其组成部队分,直接参与抗 菌丝含量及形态观察等,据 PH 生素的生物合成而自身无显 此判断合适的和罐时间。 温度 著变化。加入前体可控制抗 前体
微生物的发酵
目前应用微生物工业把发酵由微生物扩大到植 物、动物,因此工业微生物学家将所有通过微 生物或其他生物细胞(动、植物细胞)或经过
生物工程改造了的“工程菌”的培养来制备工 业产品或转化某些物质的过程,统称为发酵。
微生物发酵的一般工艺
微生物发酵的一般工艺也就是利用深层培养,进
行微生物发酵生产所需要产品的过程。微生物发 酵一般分发酵与提取2个阶段。其生产的一般工艺 流程如下。
顾用药习惯,仍沿用单位表示。 内完全抑制金黄色葡萄球菌生长的最小青霉素量为 U。这个 量相当于青霉素G钠盐0.5988μ g,1mg=1670U。
六、抗生素的作用机制
1、抑制细胞壁的合成