Banach不动点定理的推广及应用
15 巴拿赫不动点定理

1.5 Banach 不动点定理及应用巴拿赫不动点定理(Banach Fixed Point Theorem ),又称为压缩映射定理或压缩映射原理,它是用泛函分析方法统一处理许多关于解的存在性和唯一性问题(如微分方程、代数方程组、积分方程等)的一个重要定理.许多方程求解问题往往可以转化为求某映射的不动点,而压缩映射原理描述了映射不动点的存在性和唯一性的充分条件,并提供了一个迭代程序,按此程序逐次逼近可求不动点的近似值和误差,这是代数方程,微分方程,积分方程,泛函方程以及计算数学中的一个很重要的方法.1.5.1 Banach 不动点定理及推论定义 1.5.1 不动点(Fixed points)设X 是一个非空集合,:A X X →为映射,如果存在x X ∗∈满足()A x x ∗∗=,则称x ∗为映射A 的不动点.例如(1)从R 到R 上的映射2:f x x →有两个不动点,即0x =和1x =.(2)从2R 到2R 上的映射:(,)(,)f x y y x →有无穷多个不动点,即直线y x =上的所有点均是不动点.设f 是空间X 到自身的映射,方程()0f x =的求解可转化为求映射:()T x f x x α→+的不动点,其中常数0α≠(显然当Tx x ∗∗=时,即()f x x x α∗∗∗+=,可得()0f x ∗=).关于不动点的定理,最简单而又最广泛应用的是著名的压缩映射原理.定义 1.5.2 压缩映射(Contraction mapping)设X 是一个度量空间,:A X X →为映射,如果存在常数(0,1)α∈,对于任何,x y X ∈,有(,)(,)d Ax Ay d x y α≤则称A 为X 上的压缩映射.称常数α为压缩系数.显然压缩映射是连续映射.下面的压缩映射原理是由Banach 于1922年给出的,也称为Banach 不动点定理.定理 1.5.1 Banach 不动点定理(压缩映射原理Contraction mapping principle )设X 是完备的度量空间,:A X X →是压缩映射,则A 在X 中具有唯一的不动点,即存在唯一的x ∗,使得()x A x ∗∗=.证明 任取0x X ∈,构造点列{}n x :10()x A x =,21()x A x =,32()x A x =,43()x A x =,…,1()n n x A x −=,….下面证明 (1)证{}n x 为基本列;(2)证n x x ∗→,()x A x ∗∗=;(3)证x ∗的唯一性.(1)证{}n x 为基本列.因为A 是压缩映射,所以不妨设(,)(,)d Ax Ay d x y α≤,其中(0,1)α∈,记100(,)d x x c =,于是有2110100(,)(,)(,)d x x d Ax Ax d x x c αα=≤≤; 23221210(,)(,)(,)d x x d Ax Ax d x x c αα=≤≤;34332320(,)(,)(,)d x x d Ax Ax d x x c αα=≤≤;…… ……1112120(,)(,)(,)n n n n n n n d x x d Ax Ax d x x c αα−−−−−−=≤≤.因此对于正整数k 有1121(,)(,)(,)(,)n n k n n n n n k n k d x x d x x d x x d x x +++++−+≤+++L110()n n n k c ααα++−≤+++L0(1)1n k c ααα−=−01nc αα≤−0→ (n →∞) 故{}n x 为基本列.(2)证n x x ∗→,()x A x ∗∗=.因为X 是完备的度量空间,所以基本列{}n x 收敛,不妨设n x x ∗→(n →∞);又知压缩映射是连续映射以及1()n n x A x −=,于是lim n n x x ∗→∞=1lim ()n n A x −→∞=1(lim )n n A x −→∞=Ax ∗=.(3)证x ∗的唯一性.若存在1x X ∗∈且11()x A x ∗∗=,那么111(,)(,)(,)d x x d Ax Ax d x x α∗∗∗∗∗∗=≤于是1(1)(,)0d x x α∗∗−≤,从而1(,)0d x x ∗∗≤,即1x x ∗∗=.□注1 Banach 不动点定理给出了在完备度量空间X 中求解不动点的迭代法,即1x X ∀∈,由1n n x Ax +=(1,2,n =L )获得不动点n x x ∗→.第n 次迭代后的近似解n x 与不动点x ∗的误差估计:根据上述定理证明的第二部分知0(,)1nn n k d x x c αα+≤−,于是令k →∞有01000(,)(,)(,)111n n nn d x x c d x x d Ax x αααααα∗≤==−−−.即00(,)(,)1nn d x x d Ax x αα∗≤−.注 2 Banach 不动点定理中的两个条件压缩性和空间的完备性都是十分重要的.例如当(,)(,)d Ax Ay d x y <时,未必存在不动点.设:A →R R ,()arctan 2A x x x π=+−,那么,x y ∀∈R ,有(,)d Ax Ay Ax Ay =−(arctan )(arctan )22x x y y ππ=+−−+−(arctan arctan )x y x y =−−−2()1x yx y ξ−=−−+(由Lagrange 中值定理知存在(,)x y ξ∈或(,)y x ξ∈) 22()1x y ξξ=−+(,)x y d x y <−=.但是,当Ax x =时,方程arctan 2x π=无解,因此映射A 在R 中没有不动点.Lagrange 中值定理:如果函数()f x 在闭区间[,]a b 连续,在开区间(,)a b 内可导,那么在(,)a b 内至少存在一点ξ(a b ξ<<),使得()()()()'f b f a f b a ξ−=−.推论 1.5.1 设X 是完备的度量空间,映射:A X X →是闭球0(,)B x r 上的压缩映射,并且00(,)(1)d Ax x r α≤−,其中(0,1)α∈是压缩系数,那么A 在0,)B x r 中具有唯一的不动点.证明 显然0,)B x r 是完备度量空间X 的闭子集,所以0,)B x r 是完备的子空间.0,)x B x r ∀∈,有0(,)d x x r ≤,于是0000(,)(,)(,)d Ax x d Ax Ax d Ax x ≤+0(,)(1)d x x r αα≤+−(1)r r αα≤+−r ≤即0(,)Ax B x r ∈.可见A 是完备度量空间0(,)B x r 到0,)B x r 上的压缩映射,因此A 在0,)B x r 中具有唯一的不动点.□设映射:A X X →,记n nA AA A =64748L ,那么映射:n A X X →.推论 1.5.2 设X 是完备的度量空间,映射:A X X →,如果存在常数(0,1)α∈和正整数n ,使得,x y X ∀∈有(,)(,)n n d A x A y d x y α≤那么A 在X 中存在唯一的不动点.证明 显然n A 是压缩映射,所以n A 在X 中存在唯一的不动点x ∗,即n x A x ∗∗=.于是1()()n n n A Ax A x A A x Ax ∗+∗∗∗===可得Ax ∗也是n A 的不动点,由不动点的唯一性知:Ax x ∗∗=.同时易得2A x x ∗∗=,3A x x ∗∗=,…,n A x x ∗∗=下面证明x ∗的唯一性.设存在1x X ∗∈且11()x A x ∗∗=,得112A x x ∗∗=,113A x x ∗∗=,…,11n A x x ∗∗=,那么11(,)(,)d x x d Ax Ax ∗∗∗∗==K 1(,)n n d A x A x ∗∗=1(,)d x x α∗∗≤于是1(1)(,)0d x x α∗∗−≤,从而1(,)0d x x ∗∗≤,即1x x ∗∗=.□1.5.2 Banach 不动点定理的应用◇ 求方程的近似解定理 1.5.2 设:f →R R 是可微函数,且()1'f x α≤<,则方程()f x x =具有唯一解.证明 根据Lagrange 中值定理知存在(,)x y ξ∈,使得()()()()'f x f y f x y x y ξα−=−≤−,因此f 是完备度量空间R 上的压缩映射,于是由压缩映射原理知,()f x x =具有唯一解.例 1.5.1 求方程510x x +−=的根.解 显然函数5()1g x x x =+−的导函数为4()510'g x x =+>,即g 单调递增,且115()0232g =−<,(1)1g =,所以原方程只有一个根而且在(0.5,1)内.原方程可写为 51x x −=由于51x −不是一个压缩映射,即54(1)5'x x −=在(0.5,1)内并不小于1.将上式改造为5(1)x x λλ−=,即为5(1)(1)x x x λλ−+−=,于是当(0.5,1)x ∈及(0,1)λ∈时有54[(1)(1)]15'x x x λλλλ−+−=−−1λ<−.令14λ=,531()(1)44f x x x =+−,那么在(0.5,1)上()f x 满足 3()14'f x << 于是得()f x 是(0.5,1)上的压缩映射,取00.75x =,由迭代1()n n x f x +=可得10.7521x =,20.7533x =,30.7540x =,40.7544x =, 50.7546x =,60.7547x =,70.7548x =,80.7548x =,….若取8x 作为不动点x ∗的近似解,其误差为80.750.75210.750.000810.75nx x ∗−≤−=−.□◇ 解线性代数方程组定理 1.5.3 设1111n n nn a a A a a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠L M M L ,1nn x x x ⎛⎞⎜⎟=∈⎜⎟⎜⎟⎝⎠M R ,1n n b b b ⎛⎞⎜⎟=∈⎜⎟⎜⎟⎝⎠M R ,若对每个1i n ≤≤,矩阵A 满足11n ij j a =<∑,即11max 1nij i nj a α≤≤==<∑,则线性方程组Ax b x +=具有唯一解x ∗.证明 在n R 上定义距离1(,)max{i i i nd x y x y ≤≤=−,其中T 12(,,,)n n x x x x =∈L R ,T 12(,,,)n n y y y y =∈L R ,易验证(,)n d R 是完备的度量空间.令映射:(,)(,)n n T d d →R R 为Tx Ax b =+.记T 12(,,,)n Tx u u u u ==L ,T 12(,,,)n Ty v v v v ==L ,于是11111n i j j n n ni j n j a x b u u u a x b ==⎛⎞+⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠+⎜⎟⎝⎠∑∑M M ,11111n i j j nn ni j n j a y b v v v a y b ==⎛⎞+⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠+⎜⎟⎝⎠∑∑M M . 因此1(,)max{}i i i nd Tx Ty u v ≤≤=−11max{()}nij j j i nj a x y ≤≤==−∑111max{}max{}nij j j i ni nj a x y ≤≤≤≤=≤⋅−∑(,)d x y α=由11max 1nij i nj a α≤≤==<∑可知T 是压缩映射,从而存在唯一的不动点x ∗,即线性方程组Ax b x +=具有唯一解x ∗,且可根据迭代1n n x Ax b +=+求得方程的近似解.□◇ 证明隐函数存在定理定理 1.5.4 设二元函数(,)F x y 在区域{(,),}x y a x b y ≤≤−∞<<+∞上连续,关于y 的偏导数存在,且满足条件0(,)'y m F x y M <≤≤,其中m ,M 是正常数,则存在连续函数()y f x =,[,]x a b ∈满足:[,]x a b ∀∈,(,())0F x f x =.证明 在完备度量空间[,]C a b 中定义映射T :()[,]x C a b φ∀∈,1()()()(,())T x x F x x Mφφφ=−. 由于(,)F x y 是连续函数,所以[,]T C a b φ∈,即:[,][,]T C a b C a b →.下面证T 是压缩映射.设,[,]C a b φϕ∈,根据微分中值定理得,存在(0,1)θ∈,使得11()(,())()(,())T T x F x x x F x x M Mφϕφφϕϕ−=−−+ 1()()[(,())(,())]x x F x x F x x Mφϕϕφ=−+− 1()()[(,()(()())](()()'y x x F x x x x x x Mφϕφθϕφϕφ=−++−− (1)()()mx x Mφϕ≤−−. 记1mMα=−,显然01α<<,于是有T T φϕαφϕ−≤−,因此 [,](,)max ()()()()x a b d T T T x T x φϕφϕ∈=−[,]max ()()x a b x x αφϕ∈≤−(,)d αφϕ=因此T 是压缩映射,由压缩映射原理知存在唯一的()[,]f x C a b ∈,使得()()()Tf x f x =即(,())0F x f x =,[,]x a b ∈.□◇ 在微分方程方面的应用设(,)f t x 在矩形区域00{(,),}D t x t t a x x b =−≤−≤连续,那么存在0M >使得(,)t x D ∀∈有(,)f t x M ≤,进一步假定(,)f t x 关于变量x 满足李普希兹(Lipshitz)条件:存在常数K ,12(,),(,)t x t x D ∀∈有1212(,)(,)f t x f t x K x x −≤−,那么有微分方程为00d (,)d ()xf x t tx t x ⎧=⎪⎨⎪=⎩ (2.4) 定理 1.5.5 (皮卡德Picard 定理)满足上述条件的微分方程(2.4)在区间00[,]t t ββ−+上有唯一解,其中1min{,,}2b a M Kβ=. 证明 设00[,]J t t ββ=−+,则J 上的连续函数组成的空间()C J 是完备的度量空间,显然()C J 的子集0{(),()}E x x C J x t x M β=∈−≤是闭集,于是E 也是完备的度量空间.通过积分可将微分方程(2.4)写成积分方程00()(,())d tt x t x f x τττ=+∫.()x t E ∀∈定义:00()()(,())d tt Tx t x f x τττ=+∫,下面验证Tx E ∈.由于(,)f t x 在在矩形区域00{(,),}D t x t t a x x b =−≤−≤连续,所以()()Tx t 在00[,]J t t ββ=−+上连续, 00()()Tx t x =,以及00()()(,())d tt Tx t x f x τττ−=∫(,())d tt f x τττ≤∫0M t t ≤−M β≤,于是Tx E ∈,即T 映射为:T E E →.再证T 是压缩映射.根据李普希兹条件得1212()()()()(,())d (,())d ttt t Tx t Tx t f x f x ττττττ−=−∫∫012max Jt t K x x τ∈≤−−12(,)Kd x x β≤又由β的定义知12K αβ=≤,于是1212(,)(,)d Tx Tx Kd x x β≤,即T 是压缩映射.因此T 在E 中存在唯一的不动点x ∗,即存在00[,]J t t ββ=−+上的连续函数x ∗,满足积分方程0()(,())d tt x t x f x λτττ=+∫,两边微分可得x ∗是微分方程(2.4)的唯一解,并且x ∗是迭代序列012,,,,,n x x x x L L 的极限,其中010()(,())d tn n t x t x f x τττ+=+∫.□◇ 在积分方程方面的应用设(,)K t τ在矩形区域{(,),}D t a t b ττ=≤≤连续,()[,]f x C a b ∈,且[,]t a b ∀∈有(,)d baK t M ττ≤<+∞∫,那么费雷德霍姆(Fredholm)积分方程为()()(,)()d ba x t f t K t x λτττ=+∫. (2.5)定理 1.5.6 对于任意的()[,]f x C a b ∈,当1Mλ<时,Fredholm 积分方程(2.5)有唯一连续解()x t ∗,并且函数()x t ∗是迭代序列012,,,,,n x x x x L L 的极限,其迭代过程为1()()(,)()d bn n a x t f t K t x λτττ+=+∫.证明 设()()()(,)()d bn aTx t f t K t x λτττ=+∫,由(,)K t τ的连续性知,T 是从[,]C a b 到[,]C a b 上的映射:[,][,]T C a b C a b →.(),()[,]x t y t C a b ∀∈有(,)max{()()()()a t bd Tx Ty Tx t Ty t ≤≤=−max{(,)()d (,)()d }b baaa t bK t x K t y λτττλτττ≤≤=−∫∫max{(,)[()()]d }baa t bK t x y λττττ≤≤=−∫max{(,)()()d }baa t bK t x y λττττ≤≤≤−∫max{()()}a bM x y τλττ≤≤≤−(,)Md x y λ=由于1M λ<,即T 是压缩映射,根据压缩映射原理知T 在[,]C a b 上存在唯一的不动点()x t ∗,即为Fredholm 积分方程的唯一连续解,且函数()x t ∗是迭代序列012,,,,,n x x x x L L 的极限,其迭代过程为1()()(,)()d bn n ax t f t K t x λτττ+=+∫.□◇ 牛顿迭代法的证明牛顿迭代法(Newton's method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在 17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要.牛顿迭代法是求方程根的重要方法之一,而且其最大优点是在方程的单根*()0f x =附近具有平方收敛,该法还可以用来求方程的重根、复根,另外该方法广泛用于计算机编程中.定理 1.5.6 设f 是定义在[,]a b 上的二次连续可微的实值函数,*x 是f 在(,)a b 内的单重零点,那么当初值0x 充分靠近存*x 时,由关系式1()n n x g x +=,()()()n n n 'n f x g x x f x =−所定义的迭代序列收敛于*x .证明 因为*()0f x =,依据中值定理可得***1()()()()'f x f x f x f x x k x x ξ=−=−≤−.由于*x 是f 的单重零点,所以存在*x 的某闭邻域*1()(,)U x a b ⊂,使得*1()x U x ∀∈,()0f x ≠,而且()"f x 连续.于是2()[()]"'f x f x 在*1()U x 上有界2k ,所以*1()x U x ∀∈,有 2*21222[()]()()()()()1()[()][()]'""'''f x f x f x f x f x g x k f x k k x x f x f x −=−=≤≤−. 显然当*1212x x k k −<时,1()2'g x <.令**2121(){}2U x x x x k k =−<以及***12()()()U x U x U x =I ,于是()g x 在邻域*()U x 内为压缩映射,根据压缩映射原理可知命题成立.□。
巴拿赫不动点定理及其应用

巴拿赫不动点定理及其应用
巴拿赫不动点定理是函数分析中的一项基本定理,又称为Banach不动点定理。
该定理是由波兰数学家斯蒂芬·巴拿赫于1922年提出的。
巴拿赫不动点定理可以简单地表述为:在完备度量空间中,连续映射必有不动点。
这个定理的意义在于,对于一些映射或者变换,必然存在一个点不会移动,这个点就被称作“不动点”。
而根据巴拿赫不动点定理,只要一个映射是连续的并且作用于完备度量空间,那么它必然存在不动点。
这个定理有很多应用,下面列举一些常见的:
1.在求解微积分方程、微分方程、积分方程时,巴拿赫不动点定理是很重要的工具。
2.在数值分析中,巴拿赫不动点定理可以用于求解线性方程组、优化问题以及非线性方程组的数值解。
3.在动力学系统中,巴拿赫不动点定理可以用于证明某些系统存在定点。
4.在实际应用中,巴拿赫不动点定理可以用于证明某些算法的收敛性以及求解某些不动点问题。
总之,巴拿赫不动点定理是数学中的一项重要定理,它的实际应用十分广泛。
Banach空间上的不动点理论及其应用

Banach空间上的不动点理论及其应用Banach空间是数学中的一个重要概念,它在函数分析领域具有广泛的应用。
不动点理论是研究映射在自身上是否存在不动点的数学理论。
本文将介绍Banach空间上的不动点理论,探讨其应用领域和意义。
一、Banach空间的定义和性质Banach空间是一个完备的向量空间,具有一个范数,使得该空间中的任意Cauchy序列收敛于该空间中的某一元素。
Banach空间的一个重要性质是完备性,即任意柯西序列在该空间内收敛。
Banach空间的完备性对于不动点理论的推导和证明至关重要。
二、不动点理论的基本概念在Banach空间上,给定一个映射F,若存在一个元素x使得F(x) = x,则称x为F的不动点。
不动点理论研究的是映射在自身上是否存在不动点,并通过各种方法寻找和证明不动点的存在性和唯一性。
三、不动点理论的证明方法1. 压缩映射原理:若存在一个常数k (0<k<1),使得对于任意x和y,有d(F(x),F(y)) ≤ kd(x,y),其中d为Banach空间中的距离函数。
则F为压缩映射,且存在唯一的不动点。
2. 构造性证明:通过构造合适的映射函数,找到不动点的存在性和唯一性。
3. Brouwer不动点定理:对于n维球面上的连续映射,存在至少一个不动点。
4. Kakutani不动点定理:对于凸紧合集上的凸映射,存在至少一个不动点。
等等。
四、应用领域不动点理论在许多领域具有广泛的应用,包括:1. 微分方程:通过不动点理论,可以证明微分方程存在解,且解的存在是稳定的。
2. 经济学:不动点理论在经济学中的应用较为常见,特别是涉及到均衡分析和最优化问题。
3. 优化问题:通过将优化问题转化为不动点问题,可以使用不动点理论来解决各种优化问题。
4. 图像处理:不动点理论在图像处理中的应用,如图像恢复、压缩感知等方面具有重要意义。
5. 动力学系统:不动点理论在动力学系统中的应用广泛,通过不动点理论可以研究动力学系统的稳定性和渐进行为。
banach空间中的积分算子不动点定理及其应用

banach空间中的积分算子不动点定理及其应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!在数学领域中,Banach空间是一种非常重要的空间概念,它是一个完备的赋范空间。
完备度量空间上不动点定理的推广及应用

完备度量空间上不动点定理的推广及应用徐龙华【摘要】Banach 在1922年证明了完备度量空间上压缩映射不动点的存在性。
通过对 Ba-nach 不动点定理条件的研究,给出了 Banach 压缩映像原理的推广,并提出 Banach 不动点定理在存在唯一性方面的应用。
%Banach proved that the fixed point of contraction mapping existed on the complete metric spacein 1922. Based on the Banach fixed point theorem condition research,the paper provided the generalization of Banach contraction mapping principle and put forward the existence uniqueness of the Banach fixed point theorem in application areas.【期刊名称】《重庆理工大学学报(自然科学版)》【年(卷),期】2015(000)004【总页数】4页(P143-146)【关键词】完备度量空间;压缩映射;不动点【作者】徐龙华【作者单位】安康学院数学与统计系,陕西安康 725000【正文语种】中文【中图分类】O177.5把一些方程的求解问题转化为求映射的不动点,以及用逐次逼近法来求不动点,这是代数方程、微分方程、积分方程、泛函方程以及计算数学中的一个很重要的方法。
这个方法起源很早,一直可以追溯到牛顿求代数方程根时所用的切线法,后来Picard用逐次逼近法求解常微分方程。
求不动点的问题本质上是算子方程Tx=x 的求解问题。
不动点存在唯一性的判定定理一般是基于Banach不动点定理[1-3]。
1922年Banach把这个方法的基本点提炼出来,用度量空间以及其中的压缩算子的一些概念更一般地描述了这个方法[4]。
第5讲 巴拿赫不动点定理

An x∗ = x∗
下面证明
x∗
的唯一性.设存在
x∗ 1
∈X
且
x∗ 1
=
A(
x∗ 1
)
,得
A2
x∗ 1
=
x∗ 1
,A3
x∗ 1
=
x∗ 1
,…,An
x∗ 1
=
x∗ 1
,
那么
d
(
x∗
,
x∗ 1
)
=
d ( Ax∗ , Ax1∗ )
=…
=
d
(
An
x∗
,
An
x∗ 1
)
≤
α
d
(
x∗ 1
,
x
∗
)
于是
(1
−
α
)d
(
4
44
f ' (x) < 3 < 1 4
于是得 f (x) 是 (0.5,1) 上的压缩映射,取 x0 = 0.75 ,由迭代 xn+1 = f (xn ) 可得 x1 = 0.7521 , x2 = 0.7533 , x3 = 0.7540 , x4 = 0.7544 ,
x5 = 0.7546 , x6 = 0.7547 , x7 = 0.7548 , x8 = 0.7548 ,….
d (xn
,
xn−1 )
=
d
( Axn−1,
Axn−2
)
≤
α
d (xn−1,
xn − 2
)
≤
α
c n−1 0
.
因此对于正整数 k 有
第 1-5-1页
西安电子科技大学理学院 杨有龙
浅谈Banach不动点原理与应用
浅谈Banach不动点原理与应用作者:王涛廖雷来源:《文存阅刊》2018年第22期摘要:Banach不动点定理是度量空间理论的一个重要工具。
本文介绍了泛函分析中的Banach不动点原理在解决线性方程组解的存在问题时的应用,在证明数值分析中迭代法原理的应用。
关键词:Banach;不动点;迭代法一、预备知识定义1:设X是度量空间,T是X到X中的映射,如果存在一个数a,0定理1:(Banach不动点原理):设X是完备的度量空间,T是X上的压缩映射,那么T 有且只有一个不动点,即方程Tx=x,有且只有一个解。
定理2:设X是完备的度量空间,T是X上的压缩映射,对所有x,y∈X,成立d(Tx,Ty)≤ad(x,y),对任意x0∈X,定义xn=Txn-1,则存在唯一不动点x*,使得xn→x*,且d(xn,x*)≤ d(xn,xn-1)≤d(x1,x0) [1]。
二、Banach不动点原理的在数学其他学科中的应用(一)不动点原理在解决线对方程组AX+b=X,其中X=(x1,x2,…,xn)T∈in,A=(aij)n×n,b(b1,b2,…,bn).对in取范数‖x‖2=|x1|.下面使用Banach不动点原理讨论此方程组在系数满足什么条件时,存在唯一解。
(二)Banach不动点原理在证明数值分析中的迭代法的应用定理3:迭代法不动点原理设映射g(x)在[a,b]上有连续的一阶导数,且满足:(1)封闭性:对x∈[a,b],有g(x)[a,b]。
(2)压缩性:L∈(0,1),使得对x∈[a,b],|g (x)|≤L则g(x)在[a,b]上存在唯一的不动点X*,且对x0∈[a,b],xk=g(xk-1)收敛于X*,且|x*-xk|≤|xk-xk-1|≤|x1-x0|有使用Banach不动点原理对推论证明:由原理内容知,g(x)是[a,b]到[a,b]的线性映射;R和[a,b]均完备;条件(2)等价于g(x)为压缩映射。
不动点定理和Banach压缩映像定理的应用
不动点定理和Banach压缩映像定理的应用一、引言在数学中,不动点定理和Banach压缩映像定理是两个非常重要的定理。
不动点定理是一个基本定理,它能够帮助我们证明很多问题。
而Banach压缩映像定理则是一个实用定理,它能够帮助我们求解很多实际问题。
本文将重点讨论这两个定理的应用。
二、不动点定理不动点定理(Fixed point theorem)是数学中一种基本的定理,也是一个非常重要的定理。
它的实质是给定一个运算,能够保证这个运算至少有一个不变点。
例如,在一维空间中,一条直线与 x 轴的交点就是一个不动点。
不动点定理的常用形式有 Banach定理,Brouwer定理和Kakutani定理等。
这三种定理都是确保在一定条件下,给定一个映射,必定存在一个不动点。
其中,Banach定理是应用最广泛的一种不动点定理。
三、Banach压缩映像定理Banach压缩映像定理(Banach contraction mapping theorem)是应用最广泛的不动点定理之一。
它是一种强化的不动点定理,能够给出一个更加精确的结论。
该定理的实质是,给定一个映射,如果它能够将任意两个点映射到更靠近一起的两个点,那么这个映射一定存在不动点。
具体来说,设 (X,d) 是一个非空完备度量空间,f:X → X是一个压缩映像,即存在常数0≤s<1,使得对于任意x,y∈ X,有:$d(f(x),f(y))≤s\times d(x,y)$则 f 存在唯一的不动点 z,即 f(z)=z。
在实际中,Banach压缩映像定理被广泛应用于求解非线性方程组的根。
例如,对于一个形如 f(x)=0 的方程组,可以通过适当的转化,将它表示成 g(x)=x 的形式,然后应用Banach压缩映像定理求解。
此外,Banach压缩映像定理还在优化算法、控制论等领域得到广泛应用。
四、应用举例下面我们通过两个具体的例子来说明不动点定理和Banach压缩映像定理的应用。
Banach不动点定理的推广
Banach不动点定理的推广在函数分析领域中,Banach不动点定理是一条非常重要且广泛应用的定理。
它是泛函分析的基石之一,被广泛应用于数学、物理学和工程学等领域。
本文将探讨Banach不动点定理的推广及其应用。
1. Banach不动点定理回顾Banach不动点定理是指,对于一个完备的度量空间中的压缩映射,一定存在一个不动点。
简单来说,如果一个映射将一个元素映射到它自身,那么这个元素就是一个不动点。
这个定理的重要性在于提供了解决方程和优化问题的方法。
2. Banach不动点定理的推广一般情况下,Banach不动点定理是在完备度量空间中的压缩映射上成立的。
但是,对于一些非完备度量空间或者非压缩映射,我们也可以进行一些推广,以适用于更广泛的情况。
2.1 一般度量空间上的不动点定理在一般度量空间上,如果存在一个映射,使得映射的迭代序列收敛到某点,那么这个点就是一个不动点。
这一推广定理消除了完备度量空间和压缩映射的限制。
2.2 有界线性算子上的不动点定理在某些情况下,我们可以将Banach不动点定理推广到有界线性算子上。
具体而言,如果一个有界线性算子的谱半径小于1,那么这个算子存在唯一的不动点。
3. Banach不动点定理的应用Banach不动点定理的应用非常广泛,下面我们将介绍其中的两个典型应用。
3.1 迭代法求解方程Banach不动点定理为求解方程提供了一种迭代的方法。
通过将原方程转化为不动点方程的形式,我们可以通过迭代逼近不动点来获得原方程的解。
这在实际问题中具有重要的应用,如求解非线性方程、微分方程等。
3.2 最优化问题Banach不动点定理在最优化问题中也有广泛的应用。
通过将最优化问题转化为不动点方程的形式,我们可以利用迭代方法逐步逼近最优解。
这种方法在经济学、金融学和工程学等领域中得到了广泛的应用。
4. 小结Banach不动点定理的推广使其适用范围更广,不仅局限于完备度量空间和压缩映射。
同时,该定理在方程求解和最优化问题中发挥了重要作用,为我们提供了一种有效的方法。
几类不动点定理的推广及证明
几类不动点定理的推广及证明几类不动点定理的推广及证明引言:不动点定理是数学中一个重要的定理,它在很多领域都有广泛的应用。
不动点,顾名思义,是指函数中某一点在映射后仍保持不变的点。
不动点定理从不动点的角度给出了函数存在或唯一性的条件。
本文将介绍几类不动点定理的推广,并给出证明。
一、Banach不动点定理的推广及证明:Banach不动点定理是最经典的不动点定理之一。
它适用于完备度量空间中的压缩映射,并保证了该映射存在唯一的不动点。
然而,在非完备度量空间中的压缩映射是否存在不动点呢?为了解决这个问题,可以引入相似性映射的概念。
相似性映射是指满足$d(f(x),f(y))\leq k\cdot d(x,y)$的映射,其中$k\in(0,1)$,$d$表示度量空间中的距离函数。
根据较弱的条件,我们可以推广Banach不动点定理到非完备度量空间中的相似性映射,并得到存在不动点的结论。
证明:设$X$为一个非完备度量空间,$f:X\rightarrow X$为一个相似性映射,即存在$k\in(0,1)$,使得$d(f(x),f(y))\leqk\cdot d(x,y)$对任意$x,y\in X$成立。
我们需要证明$f$存在一个不动点。
首先选取$X$中的任意点$x_0$,定义序列$\{x_n\}$如下:$$x_n=f(x_{n-1}),\ n=1,2,3,\cdots$$接下来,我们证明$\{x_n\}$是一个Cauchy序列。
由相似性映射的性质可知:$$d(x_{n+1},x_n)=d(f(x_n),f(x_{n-1}))\leq k\cdotd(x_n,x_{n-1})$$不妨设$m>n$,则有:$$d(x_m,x_n)\leq\sum_{i=n}^{m-1}d(x_{i+1},x_i)\leq\sum_{i=n}^{m-1}k^{i-n}d(x_1,x_0)$$利用等比数列求和公式,可以得到:$$d(x_m,x_n)\leq\frac{k^n}{1-k}\cdot d(x_1,x_0)$$ 由于$k\in(0,1)$,故$\frac{k^n}{1-k}$是一个有界数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= T T … T …
= (m ) 7
一 是压缩映射 , 则
=
一 有 唯一 的不 动 点
∈X使 得
∈ X。
= 因为 ( x T )= “
证明: 由定 理 2 1 有 唯 一 的 .
T 故 x 也 是 的 唯 一 不 动 点 , 以 = 所 即 是 的不 动 点 。 Y = r 显 然 若 y Y 也 是 7 m的不 动 点 , 由 的不 动 点 的 唯一 性 , 必 有 =Y 知 即 的不 动 点 是 唯 一 的 , 毕 。 证
22 ・ 楚 雄 师 范 学 院 学 报 2 0 年 第 3期 01
张
超 : Bar c 不 动 点 定 理 的 推 广 及 应 用 t h a
2 主 要 结 果
定 理 2 1l ( n c 不 动 点 定 理 ) ( d 是 完备 距 离 空 间 , . Ba a h J 设 X, )
收 稿 日期 :2 0 — 1 — 2 09 1 3
基 金 项 目 : 淮 南 师 范 学 院 青 年 教 师 科 研 资 助 计 划 ( 目编 号 :2 0 L q 6 。 项 0 7 k0 ) 作 者 简 介 :张
・
超 ( 9 4 ) 男 ,安 徽 固 镇 人 ,硕 士 , 副 教 授 ,研 究 方 向 :金 融 数 学 。 17一 ,
f一5由不动点定理告诉我们任意一个从非空凸紧集到自身的凸值上半连续对应有一个不动点由于是非空凸紧集以?是一个凸值上半连续对应所以存在一个pe满足pe由p以p
第二 十 五卷 第三 期
21 0 0年 3月
楚
雄
师
范
学
院
学
报
Vo . No 1 25 .3
M a .2 0 r O1
J OURNAL OF CHUXl ONG N0RM AL UN1 VERSI TY
说 配置 ( , , , , , )和 价格 向量 P … Y … 构 成 一个 竞 争 ( 瓦 尔拉 斯 ) 衡 。 果 它们 满 或 均 如 足下 列 条 件 :
( )利 润最 大 化 : 于 每一 个 厂商 , 是 下 列 最大 化 问题 的解 : x 1 对 Y j map
例 设 F 一 R且 F( 在 R上 可 导 , 且 满 足 l ( ) 并 )l F’ ≤ <l 则 由 中值定 理 l ( , ) F
F( )I=I ( ( 一Y ≤ l 一Yl( Y ) F )l 在 戈与 Y之 间 )且 ( ), Y )≤ Ⅱd F( F( ) ( Y 。 , ) 0≤ O L<l 故 F是 压 缩 映 射 , , 尺完 备 , 而 方 程 F( 从 )=X 必 有 唯 一 的实 数 根 X o 任 取 X ∈R由
.
・y,
| l1 E
( )效 用 最大 化 : 于每 一个 消费 者 i 是 下 列最 大 化 问题 的解 : a ( ) 2 对 , m x
Yi∈ i
,
s. P ≤P +∑ ( ‘ ) . ’ ‘ P 。
:
1
I
一
,
() 3 市场出清: 对于每一种商品 :1 , 凡有∑ : +∑y 。 , …,, 2
形 式 ,并 举 例 说 明 了 B n c 不 动 点 定 理 在 经 济 上 的 应 用 。 a ah 关键 词 :压缩 映射 ;B nc a a h不 动 点 定 理 ;完 备 空 问 ;均 衡 中 图 分 类 号 :O1 文 章 标 识 码 :A 8 文 章 编 号 :1 7 — 7 0 ( 0 0 0 — 0 2 — 0 61 46 2 1 ) 3 02 4
1 引言
不 动点 理 论 是 目前 正 在 迅 速 发 展 的非 线 性 泛 函 分 析 理 论 的 重要 组 成 部 分 ,它 与 近 代 数 学 的许 多分 支 有 着 紧密 的联 系 。泛 函 分 析 以其 高度 的 统一 性 和 广 泛 的应 用 性 在 现 代 数 学 领域 占有 重 要 的地 位 。微 积 分 中的 隐 函数存 在 唯 一性 定 理 ,代 数方 程 、微 分 方 程 和积 分 方 程 的求 解 都 可 以 归结 为 泛 函分 析 中的 B n c a ah不 动点 定 理来 求 某 映射 的不 动 点 。B n c a ah不 动 点定 理 实 际 上是 算 子 方程 的求解 问题 ,它提 供 了解 的逼 近 程序 和近 似解 的构 造 。本 文 就从 其数 学 本质 出发 ,讨 论完 备 赋 范 线 性 空 间 B n c 动 点 定 理 ,给 出 了定 理 的一 些 推 广 结 果 a ah不 和 改进 形式 ,并 举 例说 明 了 B nc a ah不 动 点定 理 在 经 济上 的应用 。 定 义 1 1l 称 : X,) ( , 是 一个 压 缩 映 射 。 ._ ( P 一 P) 如果 存 在 0< < 1 得 P( x ) 使 T,
B n c 不 动 点 定 理 的 推 广 及 应 用 a ah
张 超
( 南 师 范 学 院数 学 与 计 算 科 学 系 ,安 徽 淮 南 2 2 0 ) 淮 3 0 1
摘 要 :本 文 主要 讨 论 完 备距 离空 间 中 B nc a ah不 动 点 定 理 , 给 出 了 定 理 的 一 些 推 广 结 果 和 改 进
≤ a ( y ( , ∈ ) p , ) V Y 。
定义 1 24 .l
设 是 线 性 空 间 , 称 E为一 凸集 , 果 A Ec 如 +( 1一A) ∈E( , Y V Y∈
E, V0 ≤ A ≤ 1 。 )
定 义 13 .
给定 一 个 私有 制 经 济 ( ,≥ , ) , ( 0 , , , , 们 h )I { < 0… 0) )我 J
,
一 并 且 对 任 意 , Y∈
Байду номын сангаас
有 d T , )≤ O ( ) , 中 0 < 0< 1 则 存 在 唯 一 的 ∈X使 得 T = 。 ( x d , ) 其 , , x 现 在 我 们 将 定 理 2 1进 行 推 广 , 以下 定 理 : . 有 定 理 2 2 设 ( , )是 完 备 的 , 是 到 自身 的映 射 , 存 在 n > 1 . d 且 使