2008年全国高中数学联合竞赛一试试题参考答案及评分标准A
08年全国高中数学联赛试题及答案

2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。
中国数学会普及工作委员会和重庆市数学会负责命题工作。
2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括6道选择题、6道填空题和3道大题,满分150分。
答卷时间为100分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括3道大题,其中一道平面几何题,试卷满分150分。
答卷时问为120分钟。
一 试一、选择题(每小题6分,共36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )。
(A )0 (B )1 (C )2 (D )32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )。
(A )[1,2)- (B )[1,2]- (C )[0,3] (D )[0,3)3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。
(A )24181 (B )26681 (C )27481(D ) 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。
(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。
2008年全国高中数学联赛预赛试题及答案(江西赛区)

2008年全国高中数学联赛江西省预赛试题一、选择题(每小题6分,共36分)1、若函数()()2lg 43f x ax x a =-+-的值域为R ,则实数a 的取值范围是( ). A 、()4,+∞ ;B 、[]0,4;C 、()0,4;D 、()(),14,-∞-+∞ .2、设221a b +=,()0b ≠,若直线2ax by +=和椭圆22162x y +=有公共点,则a b 的取值范围是( ).A 、11,22⎡⎤-⎢⎥⎣⎦; B 、[]1,1-; C 、(][),11,-∞-+∞ ; D 、[]2,2-.3、四面体ABCD 的六条棱长分别为7,13,18,27,36,41,且知41AB =,则CD = .A 、7 ;B 、13 ;C 、18 ;D 、27.4、若对所有实数x ,均有sin sin cos cos cos 2k k k x kx x kx x ⋅+⋅=,则k =( ). A 、6; B 、5; C 、4; D 、3.5、设(212n n a +=,n b 是n a 的小数部分,则当*n N ∈时,n n a b 的值( ).A 、必为无理数;B 、必为偶数;C 、必为奇数;D 、可为无理数或有理数.6、设n 为正整数,且31n +与51n -皆为完全平方数,对于以下两个命题:(甲).713n +必为合数;(乙).()28173n n +必为两个平方数的和. 你的判断是( )A.甲对乙错;B. 甲错乙对;C.甲乙都对;D.甲乙都不一定对. 二、填空题(每小题9分,共54分)7、过点()1,1P 作直线l ,使得它被椭圆22194x y +=所截出的弦的中点恰为P ,则直线l 的方程为 .8、设x R ∈,则函数()f x =的最小值为 .9、四面体ABCD 中,面ABC 与面BCD 成060的二面角,顶点A 在面BCD 上的射影H 是BCD ∆的垂心,G 是ABC ∆的重心,若4AH =,AB AC =,则GH = .10、000sin 20sin 40sin80⋅⋅= .11、数列{}n a 满足:11a =,且对每个*n N ∈,1,n n a a +是方程230n x nx b ++=的两根,则201kk b==∑ .12、从前2008个正整数构成的集{}1,2,,2008M = 中取出一个k 元子集A ,使得A 中任两数之和不能被这两数之差整除,则k 的最大值为 . 三、解答题:13、(20分)AD 是直角三角形ABC 斜边BC 上的高,(AB AC <),12,I I 分别是,ABD ACD ∆∆的内心,12AI I ∆的外接圆O 分别交,AB AC 于,E F ,直线,EF BC 交于点M ;证明:12,I I 分别是ODM ∆的内心与旁心.14、(20分)设,,x y z 为非负实数,满足1xy yz zx ++=,证明:11152x y y z z x ++≥+++.15、(20分)对于2n 元集合{}1,2,,2M n = ,若n 元集{}12,,,n A a a a = ,{}12,,,n B b b b = 满足:,A B M A B ==∅ ,且11n nk k k k a b ===∑∑,则称A B 是集M 的一个“等和划分”(A B 与B A 算是同一个划分).试确定集{}1,2,,12M = 共有多少个“等和划分”.2008年全国高中数学联赛江西省预赛试题解答一、选择题(每小题6分,共36分)1、若函数()()2lg 43f x ax x a =-+-的值域为R ,则实数a 的取值范围是( ). A 、()4,+∞ ;B 、[]0,4;C 、()0,4;D 、()(),14,-∞-+∞ .答案:B .解:欲使()f x 的值域为R ,当使真数243ax x a -+-可取到一切正数,故或者0a =;或者0a >且()24430a a --≥,解得04a ≤≤2、设221a b +=,()0b ≠,若直线2ax by +=和椭圆22162x y +=有公共点,则a b 的取值范围是( ).A 、11,22⎡⎤-⎢⎥⎣⎦; B 、[]1,1-; C 、(][),11,-∞-+∞ ; D 、[]2,2-.答:C . 解:将2axy b-=代入椭圆方程并整理得,()22223121260a b x ax b +-+-=, 因直线和椭圆有公共点,则判别式()()()222212431260a a b b -+-≥,利用221a b +=,化简得22a b ≥,所以1ab≥.即(][),11,a b ∈-∞-+∞ .3、四面体ABCD 的六条棱长分别为7,13,18,27,36,41,且知41AB =,则 CD = .A 、7 ;B 、13 ;C 、18 ;D 、27. 答案:B .解:四面体中,除CD 外,其余的棱皆与AB 相邻接,若长13的棱与AB 相邻,不妨设13BC =,据构成三角形条件,可知{}7,18,27AC ∉,36, 7AC BD ⇒=⇒=,{}{},18,27AD CD ⇒=,于是ABD ∆中,两边之和小于第三边,矛盾。
2016年全国高中数学联合竞赛试题与解答(A卷)

2016 年全国高中数学联合竞赛一试(A 卷)说明:1. 评阅试卷时,请依据本评分标准.填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次给分,解答题中第 9 小题 4 分为一个档次,第 10、11 小题 5 分一个档次,不要增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,共 64 分1.设实数 a 满足 a < 9a 3-11a <| a | ,则 a 的取值范围是2.设复数 z , w 满足 | z |= 3,(z + w )(z - w ) = 7 + 4i ,其中 i 是虚数单位,z , w 分别表示 z , w 的共轭复数,则 (z + 2w )(z - 2w ) 的模为3.正实数 u , v , w 均不等于 1,若 log u vw + log v w = 5 , log v u + log w v = 3 ,则 log w u 的值为4.袋子 A 中装有 2 张 10 元纸币和 3 张 1 元纸币,袋子 B 中装有 4 张 5 元纸币和 3 张 1 元纸币.现随机从两个袋子中各取出两张纸币,则 A 中剩下的纸币面值之和大于 B 中剩下的纸币面值之和的概率为5.设 P 为一圆锥的顶点,A ,B ,C 是其底面圆周上的三点,满足∠ABC =90°,M 为 AP 的中点.若 AB =1,AC =2, AP = 2 ,则二面角 M —BC —A 的大小为6 . 设 函 数 f (x ) = sin 4 kx + cos 4kx , 其 中 k 是 一 个 正 整 数 . 若 对 任 意 实 数 a , 均 有10 10{ f (x ) | a < x < a +1} = { f (x ) | x ∈ R },则 k 的最小值为7.双曲线 C 的方程为 x 2- y 2= 1,左、右焦点分别为 F 、 F ,过点 F 作直线与双曲线 C 的右半支交于3 1 2 2点 P ,Q ,使得 ∠F 1 PQ =90°,则 ∆F 1 PQ 的内切圆半径是8.设 a 1 , a 2 , a 3 , a 4 是 1,2,…,100 中的 4 个互不相同的数,满足(a 11 + a 22 + a 32 )(a 22 + a 32 + a 42 ) = (a 1a 2 + a 2 a 3 + a 3 a 4 ) 2则这样的有序数组 (a 1 , a 2 , a 3 , a 4 ) 的个数为二、解答题:本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分 16 分)在 ∆ABC 中,已知 AB ∙ AC + 2BA ∙ BC = 3CA ∙ CB .求 sin C 的最大值.10.(本题满分 20 分)已知 f (x ) 是 R 上的奇函数, f (1) = 1 ,且对任意 x < 0 ,均有 f ( x x-1) = xf (x ) .求 f (1) f (1001) + f (12) f (991) + f (13) f (981) +… + f (501) f (511) 的值.11.(本题满分 20 分)如图所示,在平面直角坐标系 xOy 中,F 是 x 轴正半轴上的一个动点.以 F 为焦点, O 为顶点作抛物线 C .设 P 是第一象限内 C 上的一点,Q 是 x 轴负半轴上一点,使得 PQ 为 C 的切线,且|PQ |=2.圆 C 1 , C 2 均与直线 OP 相切于点 P ,且均与轴相切.求点 F 的坐标,使圆 C 1 与 C 2 的面积之和取到最小值.2016 年全国高中数学联合竞赛加试一、(本题满分 40 分)设实数a,a, …,a2016满足 9a> 11a2(i= 1,2,… ,2015)。
2008年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学 解析版

2008年普通高等学校招生全国统一考试理科数学 第Ⅰ卷参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,, 一、选择题 1.函数y )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c bC .2133-b cD .1233+b cA .B .C .D .4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2 B .1 C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()f x f x x --<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x y a b +=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B. C. D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .48第Ⅱ 卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c-=. (Ⅰ)求tan cot A B 的值;(Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.C DE AB21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>.答案与解析:1.C解析: 由(1)x x x -≥≥0,0得0x x =≥1,或; 2.A解析:根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图象可知. 3. A解析:2(),322AD AB AC AD AD AB AC -=-=+=c +b ,1233AD =c +b4. D解析:222()(21)2(1)0,1a i i a ai i a a i a +=+-=-+->=- 5.C解析:243511014,104,3,10454013595a a a a a d S a d +=+==-==+=-+=由得6. B解析:2(1)2(1)21,(1),()y x xy x e f x e f x e --=⇒=-==7. D解析:3212211,,11(1)2x x y y y x x x =+''==+=-=----,2,2a a -==-8.A解析:π55cos 2sin(2)sin 2()3612y x x x ππ⎛⎫=+=+=+ ⎪⎝⎭,只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D解析:由奇函数()f x 可知()()2()0f x f x f x x x --=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或. 10.D解析:由题意知直线1x ya b +=与圆221x y +=22111a b+1,≥.另解:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知cos sin 1a b αα+=由⋅≤m n m n可得cos sin 1a b αα=+11.C解析:由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO a ==(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为11AO AB =. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC=--,11AB AB AA =+ 2111126,,333OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=.12.B解析:分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=. 另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9解析:如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处时,函数2z x y =-有最大值9. 14. 答案:2解析:由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38解析:设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====.16.答案:16解析:设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12 故EM AN ,所成角的余弦值16AN EMAN EM⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===故EM AN ,所成角的余弦值16AN EMAN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a B b A c-= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B-==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥.tan tan 2CED FDC ∠=∠=,∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD==,DG =,EG ==,CE =222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x在3a ⎛--∞ ⎪⎝⎭,递增,33a a ⎛--+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)2313--,且23a >解得:74a ≥20.解:(Ⅰ)对于甲:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e =. (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b -+=124x =-=将数值代入,有4=解得3b = 故所求得双曲线方程为:221369x y -=.22. 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>. 22.解析:(Ⅰ)证明:()ln f x x x x =-,()ln f x x '=-,当(01)x ∈,时,()ln 0f x x '=-> 故函数()f x 在区间(01),是增函数; (Ⅱ)证明:(数学归纳法证明)(ⅰ)当1n =时,101a <<,11ln 0a a < 211111()ln a f a a a a a ==->由函数()f x 在区间(01),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立; (ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤那么当1n k =+时,由()f x 在区间(01],是增函数,1101k k a a a +<<<≤得 1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==, 121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立; 根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立.(Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得 k k k k a a b a b a ln 1--=-+11ln k i i i a b a a ==--∑ 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥0 若对任意i k ≤都有b a i >,则k k k k a a b a b a ln 1--=-+ 11ln k i i i a b a a ==--∑11ln k i i a b a b ==--∑11()ln k i i a b a b==--∑b ka b a ln 11--> b ka b a ln 11--≥)(11b a b a --->0=,即1k a b +>成立.。
2008年全国高中数学联合竞赛试题及解答.(B卷)

2008年全国高中数学联合竞赛(B 卷)一试一、选择题:本大题共6个小题,每小题6分,共36分。
2008B1、函数xx x x f -+-=245)(2在)2,(-∞上的最小值为( )A. 3B. 2C. 1D. 0 ◆答案: B★解析:当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2008B 2、设)4,2[-=A ,{}04|2≤--=ax x x B ,若A B ⊆,则实数a 的取值范围为( ) A. )3,0[ B. ]3,0[ C. )2,1[- D. ]2,1[- ◆答案: B★解析: 因240x ax --=有两个实根 12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a -且42a <,解之得03a ≤<.2008B 3、甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为32,乙在每局中获胜的概率为31,且各局胜负相互独立,则比赛停止时已打局数ξ的数学期望是( ) A.243670 B. 81274 C. 81266D. 81241◆答案:C★解析:[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==, 4520(4)()()9981P ξ===, 2416(6)()981P ξ===, 故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.2008B 4、若三个棱长均为整数(单位:cm )的正方体的表面积之和为5642cm ,则这三个正方体的体积之和为( )A. 5863cmB. 5643cm 或5863cmC. 7643cmD. 7643cm 或5863cm ◆答案: D★解析:设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.2008B 5、方程组⎪⎩⎪⎨⎧=+++=+=++000y xz yz xy z xyz z y x 的有理数解),,(z y x 的个数为( ) A. 4 B. 3 C. 2 D. 1 ◆答案: C★解析:若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩2008B 6、设ABC ∆D 的内角C B A ,,所对的边c b a ,,成等比数列,则BC B AC A cos cot sin cos cot sin ++的取值范围为( ) A. ),215(+∞- B. )215,215(+- C. )215,0(+ D. ),0(+∞ ◆答案:B★解析:设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A C B C B B C B C ++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩,解得11,2211.22q q q ⎧<<⎪⎪⎨⎪><-⎪⎩或q <<,因此所求的取值范围是.二、填空题:本大题共6小题,每小题9分,共54分。
2008年全国高中数学联合竞赛一试试题解析

2008年全国高中数学联合竞赛一试试题一、选择题(本题满分36分,每小题6分)1.函数f (x )=5−4x +x 22−x在(−∞,2)上的最小值是()A.0 B.1 C.2 D.3解答f (x )=2−x +12−x⩾2,等号成立时x =1.所以选C .2.设A =[−2,4),B ={x |x 2−ax −4⩽0},若B ⊆A ,则实数a 的取值范围为()A.[−1,2)B.[−1,2]C.[0,3]D.[0,3)解答设f (x )=x 2−ax −4,依题意f (x )=0的两根x 1,x 2∈[−2,4).由于∆=a 2+16>0,于是 f (−2)=2a ⩾0,f (4)=12−4a >0,a 2∈[−2,4)⇒a ∈[0,3).所以选D .3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.24181 B.26681 C.27481 D.670243解答由于比赛不满6局时胜者比对方多2分,则比赛局数只能是2,4,6.其中2局分胜负的情况为甲或乙胜2局;4局分胜负的情况为甲或乙胜3局负1局,且负的1局在前2局.于是需要比赛6局的情况是在前4局中,甲或乙在1,2局和3,4局中均为1胜1负.相应分布列为局数ξ246概率P (23)2+(13)2C 12·13(23)3+C 12·23(13)34(13)2(23)2于是Eξ=2×59+4×2081+6×1681=26681.所以选B .4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564cm 2,则这三个正方体的体积之和为()A.764cm 3或586cm 3B.764cm 3C.586cm 3或564cm 3D.586cm 3解答设三个正方体的棱长分别为a,b,c ,则6(a 2+b 2+c 2)=564⇒a 2+b 2+c 2=94.由于(3k ±1)2≡1(mod 3),于是a,b,c 中必有2个数为3的倍数,不妨设为a,b .检验得32+62=45⇒c =7;32+92=90⇒c =2.从而a 3+b 3+c 3=586或764.所以选A .5.方程组 x +y +z =0,xyz +z =0,xy +yz +xz +y =0的有理数解(x,y,z )的个数为()A.1B.2C.3D.4解答xyz +z =z (xy +1)=0⇒z =0或xy =−1.当z =0时, x +y =0,xy +y =y (x +1)=0⇒ x =0,y =0或 x =−1,y =1.当xy =−1时, (x +y )2=y −1,xy =−1⇒(y −1y )2=y −1⇒y 2+1y 2=y +1⇒y 4−y 3−y 2+1=(y −1)(y 3−y −1)=0.由于y 3−y −1=0没有有理根,则y =1⇒x =−1.于是有理解(x,y,z )的个数为2,所以选B .6.设△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin A cot C +cos A sin B cot C +cos B的取值范围是()A.(0,+∞) B.(0,√5+12)C.(√5−12,√5+12) D.(√5−12,+∞)解答设等比数列a,b,c 的公比为q ,则b =aq,c =aq 2.于是 a +b >c,b +c >a ⇒ q 2−q −1<0,q 2+q −1>0⇒√5−12<q <√5+12.sin A cot C +cos A sin B cot C +cos B =sin A cos C +cos A sin C sin B cos C +cos B sin C =sin (A +C )sin (B +C )=sin B sin A =b a =q ∈(√5−12,√5+12).所以选C .二、填空题(本题满分54分,每小题9分)7.设f (x )=ax +b ,其中a,b 为实数,f 1(x )=f (x ),f n +1(x )=f (f n (x )),n =1,2,···,若f 7(x )=128x +381,则a +b =.解答f 2(x )=a (ax +b )+b =a 2x +ab +b =a 2x +b (1−a 2)1−a ,f 3(x )=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b =a 3x +b (1−a 3)1−a ,···,f 7(x )=a 7x +b (1−a 7)1−a =128x +381⇒a =2,b =3.所以a +b =5.8.设f (x )=cos 2x −2a (1+cos x )的最小值为−12,则a =.解答设t =cos x ∈[−1,1],则f (x )=2t 2−1−2a (1+t )=2t 2−2at −2a −1=2(t −a 2)2−a 22−2a −1.于是 a 2∈[−1,1],−a 22−2a −1=−12或 a 2>1,1−4a =−12或 a 2<−1,1=−12.解得a =−2±√3(−2−√3舍去).所以a =−2+√3.9.将24个志愿者名额分配给3所学校,则每校至少有一个名额且各校名额互不相同的分配方法共有种.解答将24个志愿者名额分配给3所学校,每校至少有一个名额的分配方法有C 223=253种;3所学校名额相同的分配方法有1种;有且仅有2所学校名额相同的分配方法(即满足2x +z =24且x =z 的正整数解)有10×3=30种.所以3所学校名额互不相同的分配方法共有253−1−30=222种.10.设数列{a n }的前n 项和S n 满足:S n +a n =n −1n (n +1),n =1,2,···,则通项a n =.解答S n +a n =2S n −S n −1=n −1n (n +1)=2n +1−1n ⇒2(S n −1n +1)=S n −1−1n ⇒数列{S n −1n +1}是公比为12的等比数列,且S 1−12=−12,于是S n −1n +1=−(12)n ⇒S n =1n +1−(12)n (n ∈N ∗).所以a n =S n −S n −1=1n +1−(12)n −1n +(12)n −1=(12)n −1n (n +1).11.设f (x )是定义在R 上的函数,若f (0)=2008,且对任意x ∈R ,满足f (x +2)−f (x )⩽3·2x ,f (x +6)−f (x )⩾63·2x ,则f (2008)=.解答f (2008)=f (0)+[f (2)−f (0)]+[f (4)−f (2)]+···+[f (2008)−f (2006)]⩽2008+3(20+22+···+22006)=2008+41004−1=22008+2007;f (2004)=f (0)+[f (6)−f (0)]+[f (12)−f (6)]+···+[f (2004)−f (1998)]⩾2008+63(20+26+···+21998)=2008+64334−1=22004+2007,又 f (x +6)−f (x )⩾63·2x ,f (x )−f (x +2)⩾−3·2x⇒f (x +6)−f (x +2)⩾60·2x ⇒f (2008)−f (2004)⩾60·22002⇒f (2008)⩾f (2004)+60·22002=64·22002+2007=22008+2007.所以f (2008)=22008+2007.12.一个半径为1的小球在一个内壁棱长为4√6的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.解答如图,小球O 是正四面体P −DEF 的内切球.设AC 的中点为G ,作OM ⊥P G 于M .则有r =1⇒P O =3⇒P M =2√2=13P G ,同理AN =2√2=13AF ⇒MN =2√6.于是小球在正四面体一个面内能接触到的区域是以MN 为边长的正三角形及内部,其面积为正四面体一个面面积的14.所以该小球永远不可能接触到的容器内壁的面积为正四面体表面积的34,即S =34×4×√34×(4√6)2=72√3.三、解答题(本题满分60分,每小题20分)13.已知函数f (x )=|sin x |的图像与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,求证:cos αsin α+sin 3α=1+α24α.解答如图,直线y =kx (k >0)与f (x )=|sin x |的图像相切于点A (α,−sin α)(π<α<3π2),由于(−sin x )′=−cos x,于是有−sin αα=−cos α⇒α=tan α.所以cos αsin α+sin 3α=cos α2sin 2αcos α=12sin 2α=1+tan 2α4tan α=1+α24α.14.解不等式log 2(x 12+3x 10+5x 8+3x 6+1)<1+log 2(x 4+1).解答解析一:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+5x 8+3x 6−2x 4−1<0⇒(x 4+x 2−1)(x 8+2x 6+4x 4+x 2+1)<0⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).解析二:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+3x 8+x 6+2(x 8+x 6)<2x 4+1⇒x 6+3x 4+3x 2+1+2(x 2+1)<2x 2+1x 6⇒(x 2+1)3+2(x 2+1)<(1x 2)3+2x 2⇒x 2+1<1x 2⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).15.如图,P 是抛物线y 2=2x 上的动点,点B 、C 在y 轴上,圆(x −1)2+y 2=1内切于△P BC ,求△P BC 面积的最小值.解答如图,设P (2t 2,2t ),M (1,0),过P 的直线y −2t =k (x −2t 2)与圆M 相切,则有|k (1−2t 2)+2t |√1+k2=1⇒4t 2(t 2−1)k 2−4t (2t 2−1)k +4t 2−1=0设直线P B,P C 的斜率为k 1,k 2,于是y B =2t −2t 2k 1,y C =2t −2t 2k 2,S △P BC =12·2t 2|y B−y C |=2t 4|k 1−k 2|=2t 4·√16t 2(2t 2−1)2−16t 2(t 2−1)(4t 2−1)4t 2(t 2−1)=2t 2·|t |√(2t 2−1)2−(t 2−1)(4t 2−1)t 2−1=2t 4t 2−1=2(t 4−1+1t 2−1)=2(t 2+1+1t 2−1)=2(t 2−1+1t 2−1+2)⩾2(2+2)=8,等号成立时t 2=2⇒t =±√2.所以△P BC 面积的最小值是8.。
2008年全国高中数学联合竞赛一试试题及解答
2008年全国高中数学联合竞赛一试试题(A 卷)一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( ) A. 24181 B. 26681 C. 27481D. 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( ) A. 1 B. 2 C. 3 D. 46.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )A. (0,)+∞B.C.D. )+∞二、填空题(本题满分54分,每小题9分)题15图7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =L ,若7()128381f x x =+,则a b += .8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a = .9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =L ,则通项n a = .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为46的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 ..三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+.14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2008年全国高中数学联合竞赛一试参考答案及评分标准(A卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B )A.24181 B. 26681 C. 27481 D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但。
2008年全国高中数学联赛江苏赛区初赛试题参考答案及评分标准
2008年全国高中数学联赛江苏赛区初赛试题参考答案及评分标准一、选择题(本题满分30分,每小题6分)1. 如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx +ny 的最大值为答:[B]A. 2b a + B.ab C.222b a + D. 222b a + 解 由柯西不等式ab y x n m ny mx =++≤+))(()(22222;或三角换元即可得到ab ny mx ≤+,当2a n m ==,2b y x ==时,ab ny mx =+. 选B.2. 设)(x f y =为指数函数x a y =. 在P (1,1),Q (1,2),M (2,3),⎪⎭⎫⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是点 答:[D]A. PB. QC. MD. N 解 取161=a ,把坐标代入检验,4116121=⎪⎭⎫ ⎝⎛ ,而2116141=⎪⎭⎫⎝⎛,∴公共点只可能是 点N . 选D.3. 在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比 数列,那么zy x ++的值为答:[A]A. 1B. 2C. 3D. 41 2 0.5 1xyz解 第一、二行后两个数分别为2.5,3与1.25,1.5;第三、四、五列中的5.0=x ,165=y ,163=z ,则1=++z y x . 选A. 4. 如果111C B A ∆的三个内角的余弦值分别是222C B A ∆的三个内角的正弦值,那么答:[B]A. 111C B A ∆与222C B A ∆都是锐角三角形B. 111C B A ∆是锐角三角形,222C B A ∆是钝角三角形C. 111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D. 111C B A ∆与222C B A ∆都是钝角三角形解 两个三角形的内角不能有直角;111C B A ∆的内角余弦都大于零,所以是锐角三角形;若222C B A ∆是锐角三角形,则不妨设cos 1A =sin 2A =cos ⎪⎭⎫ ⎝⎛-12A π, cos 1B =sin 2B =cos ⎪⎭⎫⎝⎛-22A π,cos 1C =sin 2C =cos ⎪⎭⎫⎝⎛-12C π.则212A A -=π,212B B -=π,212C C -=π,即 )(23222111C B A C B A ++-=++π,矛盾. 选B. 5. 设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β答: [D]A. 不存在B. 有且只有一对C. 有且只有两对D. 有无数对解 任作a 的平面α,可以作无数个. 在b 上任取一点M ,过M 作α的垂线. b 与垂线确定的平面β垂直于α. 选D. 二、填空题(本题满分50分,每小题10分)6. 设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则{}3,1-=B A .解 ∵2<x ,[]x 的值可取1,0,1,2--.当[x ]=2-,则02=x 无解; 当[x ]=1-,则12=x ,∴x =1-; 当[x ]=0,则22=x 无解; 当[x ]=1,则32=x ,∴3=x . 所以31或-=x .7. 同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是21691=P (结果要求写成既约 分数).解 考虑对立事件,216916513=⎪⎭⎫⎝⎛-=P .8. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为5:1.解 由图,ABC ∆与OCB ∆的底边相同,高是5:1. 故面积比是5:1.9. 与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为)0(82>=x x y 或 )0(0<=x y .解 由圆锥曲线的定义,圆心可以是以(2,0)为焦点、2-=x 为准线的抛物线上的点;若切点是原点,则圆心在x 轴负半轴上.所以轨迹方程为)0(82>=x x y ,或)0(0<=x y .10. 在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222cb a += 3 . 解 切割化弦,已知等式即CB CB C A C A B A B A cos cos sin sin cos cos sin sin cos cos sin sin +=, 亦即C B A C B A cos )sin(sin sin sin +=,即C C B A 2sin cos sin sin =1,即1cos 2=cC ab . 所以,122222=-+c c b a ,故3222=+cb a .三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分) 11. 已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.解 由题 1)1(2)(2+--=x x f , ……5分1)(≤∴x f ,11≤∴m,即1≥m ,[]n m x f ,)(在∴上单调减, m m m f 11)1(2)(2=+--=∴且nn n f 11)1(2)(2=+--=. ……10分m ∴,n 是方程xx x f 11)1(2)(2=+--=的两个解,方程即 )122)(1(2---x x x =0,解方程,得解为1,231+,231-. n m <≤∴1,1=∴m ,231+=n . ……15分12. A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
2008年全国高中数学联合竞赛加试(A卷)
2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆;(Ⅱ)设E 是ABC ∆外接圆O 的 AB 上一点,满足:AE AB =,1BC EC =,12ECB ECA ∠=∠,又,DA DC 是O的切线,AC =,求()f P 的最小值. [解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅. 因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在 AC 上时,()()f P PB PD CA =+⋅. …10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分(Ⅱ)记ECB α∠=,则2E C Aα∠=,由正弦定理有sin 2sin 3AE AB αα==,从而s i n 32s i n 2αα=34sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-=, …30分解得cos αcos α=, 故30α= ,60ACE ∠= .答一图1由已知1BCEC ==()0sin 30sin EAC EAC∠-∠,有sin(30)1)sin EAC EAC ∠-=∠,即1cos 1)sin 2EAC EAC EAC ∠-∠=∠,整理得1cos 2EAC EAC ∠=∠,故tan 2EAC ∠==75EAC ∠=, …40分 从而45E ∠= ,45DAC DCA E ∠=∠=∠= ,ADC ∆为等腰直角三角形.因AC 1CD =.又ABC ∆也是等腰直角三角形,故BC =,212215BD =+-⋅=,BD =故min ()f P BD AC =⋅= …50分 [解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在BD 上). 过,,A C D 分别作000,,P A PC P D 的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC∆之三内角分别为x y z ,,,则0180APC y z x ∠=︒-=+,又因110B C P A⊥,110B A PC ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=, 所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=,则对平面上任意点M ,有 0000()()f P P A BC P D CA PC AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A PC A B =⋅+⋅+⋅ 1112A B C S ∆=111111MA BC MD C A MC A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤. 由M 点的任意性,知0P 点是使()f P 达最小值的点. 由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值 11102()A B C f P S λ∆=答一图22ABC S λ∆=,记ECB α∠=,则2ECA α∠=,由正弦定理有sin 2sin 3AE AB αα==2sin 2αα=,34sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-=, …30分解得cosαcos α=,故30α= ,60ACE ∠= .由已知1BCEC ==()sin 30sin EAC EAC∠-∠,有sin(30)1)sin EAC EAC ∠-=∠ ,即1cos 1)sin 2EAC EAC EAC ∠-∠=∠,整理得1cos 2EAC EAC ∠=∠,故tan 2EAC ∠==75EAC ∠=, …40分所以45E ∠=︒,ABC ∆为等腰直角三角形,AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BDC 为矩形,11B C BD ==故λ=min ()21f P == …50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有 1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 P A B C P C A B P A B C P C A B⋅+⋅≥⋅+⋅, 所以 ()()()()A P CBC P B A --+-- ()()()()A P C B C P B A ≥--+-- (1) P C A B C B P A=-⋅-⋅+⋅+⋅ ()()B P C A P B A C =--=⋅ ,从而 P A B C P C A B P D C A ⋅+⋅+⋅ PB AC PD AC ≥⋅+⋅()PB PD AC =+⋅BD AC ≥⋅. (2) …10分(1)式取等号的条件是复数 ()()A P C B --与()()C P B A -- 同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--,A PB AC P C Bλ--=--, 所以 a r g ()a r g ()A PB AC P C B--=--, 向量PC 旋转到PA 所成的角等于BC旋转到AB 所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在ABC ∆之外接圆上,,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>>(1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得nT m=且(,)1m n =,从而存在整数,a b ,使得1ma nb +=. 于是11ma nb a bT a b T m m+==+=⋅+⋅ 是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅ 是()f x 的周期. …20分(Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦, 则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分 最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n = ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n = .[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为 2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N ,其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++- . …10分 由(ⅱ)可设lim n n b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++- 20081122200820081()k k b a a x a x a x ==⋅-+++∑20081k k b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1k k k f s a s ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分下取数列{}n x 为01nkn k x s ==∑,1,2,n = ,则明显地{}n x 满足题设条件(ⅰ),且1000101n nkn k s s x s s +=-==-∑. 因001s <<,故10lim 0n n s+→∞=,因此100000lim lim 11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011kk k a s ==∑,从而200820082008101111()()nk n n k n n k k k n k n k k k k x x s a s s a sa x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。
2008年全国卷ⅠⅠ高考理科数学真题及答案
2008年全国卷ⅠⅠ高考理科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件互斥,那么 球的表面积公式 A B ,()()()P A B P A P B +=+24πS R =如果事件相互独立,那么 其中表示球的半径 A B ,R球的体积公式()()()P A B P A P B = 如果事件在一次试验中发生的概率是,那么 A p 34π3V R =次独立重复试验中事件恰好发生次的概率 其中表示球的半径n A k R()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.设集合,( ){|32}M m m =∈-<<Z {|13}N n n M N =∈-=Z 则,≤≤A . B . C .D . {}01,{}101-,,{}012,,{}1012-,,,2.设且,若复数是实数,则( ) a b ∈R ,0b ≠3()a bi +A . B .C .D .223b a =223a b =229b a =229a b =3.函数的图像关于( ) 1()f x x x=-A .轴对称B . 直线对称y x y -=C . 坐标原点对称 D . 直线对称x y =4.若,则( ) 13(1)ln 2ln ln x e a x b x c x -∈===,,,,A .<<B .<<C . <<D . <<a b c c a b b a c b c a 5.设变量满足约束条件:,则的最小值( )x y ,222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥y x z 3-=A . B . C . D .2-4-6-8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .B .C .D .9291029192920297.的展开式中的系数是( )64(1(1x A .B .C .3D .44-3-8.若动直线与函数和的图像分别交于两点,则x a =()sin f x x =()cos g x x =M N ,的最大值为( )MN A .1BCD .29.设,则双曲线的离心率的取值范围是( ) 1a >22221(1)x y a a -=+e A .B .C .D .(25),(210.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则S ABCD -E SB AE SD,所成的角的余弦值为( ) A .B CD .132311.等腰三角形两腰所在直线的方程分别为与,原点在等腰三20x y +-=740x y --=角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .D . 13-12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .C .D .223 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量,若向量与向量共线,则(12)(23)==,,,a b λ+a b (47)=--,c .=λ14.设曲线在点处的切线与直线垂直,则 . axy e =(01),210x y ++=a =15.已知是抛物线的焦点,过且斜率为1的直线交于两点.设F 24C y x =:F C A B ,,则与的比值等于 .FA FB >FA FB 16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在中,,. ABC △5cos 13B =-4cos 5C =(Ⅰ)求的值;sin A (Ⅱ)设的面积,求的长. ABC △332ABC S =△BC 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度a 内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为.41010.999-(Ⅰ)求一投保人在一年度内出险的概率;p (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 19.(本小题满分12分)如图,正四棱柱中,,点在上且.1111ABCD A B C D -124AA AB ==E 1CC EC E C 31=(Ⅰ)证明:平面;1A C ⊥BED A 1B 1C 1D 1(Ⅱ)求二面角的大小. 1A DE B -- 20.(本小题满分12分)设数列的前项和为.已知,,.{}n a n n S 1a a =13nn n a S +=+*n ∈N (Ⅰ)设,求数列的通项公式;3nn n b S =-{}n b (Ⅱ)若,,求的取值范围.1n n a a +≥*n ∈N a 21.(本小题满分12分)设椭圆中心在坐标原点,是它的两个顶点,直线与AB 相交(20)(01)A B ,,,)0(>=k kx y 于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若,求的值;6ED DF =k (Ⅱ)求四边形面积的最大值. AEBF 22.(本小题满分12分) 设函数.sin ()2cos xf x x=+(Ⅰ)求的单调区间;()f x (Ⅱ)如果对任何,都有,求的取值范围. 0x ≥()f x ax ≤a参考答案和评分参考评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由,得, 5cos 13B =-12sin 13B =由,得.4cos 5C =3sin 5C =所以. ∙∙∙∙∙∙∙∙∙∙∙∙5分 33sin sin()sin cos cos sin 65A B C B C B C =+=+=(Ⅱ)由得 332ABC S =△, 133sin 22AB AC A ⨯⨯⨯=由(Ⅰ)知,33sin 65A =故 , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分65AB AC ⨯=又 , sin 20sin 13AB B AC AB C ⨯==故 ,. 2206513AB =132AB =所以 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分sin 11sin 2AB A BC C ⨯==18.解:各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为p ,ξ则.4~(10)B p ξ,(Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅A A当, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分0ξ=()1()P A P A =-1(0)P ξ=-=,4101(1)p =--又,410()10.999P A =-故. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分 0.001p =(Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和. 10000a 支出 ,1000050000ξ+盈利 ,10000(1000050000)a ηξ=-+盈利的期望为 , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 100001000050000E a E ηξ=--由知,,43~(1010)B ξ-,31000010E ξ-=⨯4441010510E a E ηξ=--⨯.4443410101010510a -=-⨯⨯-⨯0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥(元). 15a ⇔≥故每位投保人应交纳的最低保费为15元. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分19.解法一:依题设知,.2AB =1CE =(Ⅰ)连结交于点,则.AC BD F BD AC ⊥由三垂线定理知,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 1BD A C ⊥在平面内,连结交于点,1A CA EF 1A C G 由于,1AA ACFC CE==故,,1Rt Rt A AC FCE △∽△1AA C CFE ∠=∠E A 1B 1C 1D 1H与互余.CFE ∠1FCA ∠于是.1A C EF ⊥与平面内两条相交直线都垂直,1A C BED BD EF ,所以平面. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 1A C ⊥BED (Ⅱ)作,垂足为,连结.由三垂线定理知,GH DE ⊥H 1A H 1A H DE ⊥故是二面角的平面角. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分1A HG ∠1A DE B --EF ==,CE CF CG EF ⨯==EG ==, 13EG EF=13EF FD GH DE ⨯=⨯=又,. 1A C ==11A G A C CG =-=.11tan A GA HG HG∠==所以二面角的大小为. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 1A DE B --arctan 解法二:以为坐标原点,射线为轴的正半轴, D DA x 建立如图所示直角坐标系.D xyz -依题设,. 1(220)(020)(021)(204)B CE A ,,,,,,,,,,,,(021)(220)DE DB == ,,,,,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 11(224)(204)A C DA =--= ,,,,,(Ⅰ)因为,,10A C DB = 10A C DE =故,. 1A C BD ⊥1A C DE ⊥又,DB DE D = 所以平面. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分1A C⊥DBE x(Ⅱ)设向量是平面的法向量,则()x y z =,,n 1DA E ,.DE ⊥ n 1DA ⊥ n 故,.20y z +=240x z +=令,则,,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分1y =2z =-4x =(412)=-,,n 等于二面角的平面角, 1A C ,n 1A DE B --.111cos A C A C A C==,n n n 所以二面角的大小为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 1A DE B --20.解:(Ⅰ)依题意,,即, 113nn n n n S S a S ++-==+123nn n S S +=+由此得. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分1132(3)n n n n S S ++-=-因此,所求通项公式为,.① ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分13(3)2n n n n b S a -=-=-*n ∈N (Ⅱ)由①知,,13(3)2nn n S a -=+-*n ∈N 于是,当时,2n ≥1n n n a S S -=- 1123(3)23(3)2n n n n a a ---=+-⨯---⨯,1223(3)2n n a --=⨯+-12143(3)2n n n n a a a --+-=⨯+-,22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦当时,2n ≥21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥.9a ⇔-≥又.2113a a a =+>综上,所求的的取值范围是. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 a [)9-+∞,21.(Ⅰ)解:依题设得椭圆的方程为,2214x y +=直线的方程分别为,. ∙∙∙∙∙∙∙∙∙∙∙∙2分 AB EF ,22x y +=(0)y kx k =>如图,设,其中, 001122()()()D x kx E x kx F x kx ,,,,,12x x <且满足方程, 12x x ,22(14)4k x +=故.①21x x =-=由知,得;6ED DF = 01206()x x x x -=-021215(6)77x x x x =+==由在上知,得. D AB 0022x kx +=0212x k=+所以, 212k =+化简得,2242560k k -+=解得或. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 23k =38k =(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为E F ,AB1h . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分2h 又,所以四边形的面积为AB ==AEBF 121()2S AB h h =+12===,≤当,即当时,上式取等号.所以的最大值为 ∙∙∙∙∙∙∙∙12分 21k =12k =S 解法二:由题设,,.1BO =2AO =设,,由①得,, 11y kx =22y kx =20x >210y y =->故四边形的面积为AEBFBEF AEF S S S =+△△ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分222x y =+===当时,上式取等号.所以的最大值为. ∙∙∙∙∙∙∙∙∙∙∙∙∙12分 222x y =S 22.解: (Ⅰ). ∙∙∙∙∙∙∙∙∙2分 22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++当()时,,即; 2π2π2π2π33k x k -<<+k ∈Z 1cos 2x >-()0f x '>当()时,,即. 2π4π2π2π33k x k +<<+k ∈Z 1cos 2x <-()0f x '<因此在每一个区间()是增函数, ()f x 2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,k ∈Z 在每一个区间()是减函数. ∙∙∙∙∙∙∙∙∙6分()f x 2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,k ∈Z (Ⅱ)令,则()()g x ax f x =-第 11 页 共 11 页22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a x x =-+++.211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭故当时,.13a ≥()0g x '≥又,所以当时,,即. ∙∙∙∙∙∙∙∙9分 (0)0g =0x ≥()(0)0g x g =≥()f x ax ≤当时,令,则.103a <<()sin 3h x x ax =-()cos 3h x x a '=-故当时,.[)0arccos3x a ∈,()0h x '>因此在上单调增加.()h x [)0arccos3a ,故当时,,(0arccos3)x a ∈,()(0)0h x h >=即.sin 3x ax >于是,当时,.(0arccos3)x a ∈,sin sin ()2cos 3xxf x ax x =>>+当时,有.0a ≤π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥因此,的取值范围是. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 a 13⎡⎫+∞⎪⎢⎣⎭,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a -且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181 B. 26681 C. 27481 D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩ 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A. (0,)+∞B.C.D. )+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++ s i n ()s i n ()s i ns i n ()s i n ()s i nA CB B b q BC A A a ππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得11,22q q q ⎧<<⎪⎪⎨⎪><⎪⎩从而1122q <<,因此所求的取值范围是.二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += 5 .[解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-, 故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =112(1)nn n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a nn . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知答12图1(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++ 10031413(0)41f +-=⋅+- 200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则2211PP PO OP =-==. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1PEF ,如答12图2.记正四面体答13图答12图2的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有11cos PM PP MPP =⋅==,故小三角形的边长12P E P AP M r=-=. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB PEF S S ∆∆-22())a a =--2=-. 又1r =,a =1PAB P EF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为 三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+.即 1210864353210x x x x x +++--<. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++-<,864242(241)(1)0x x x x x x +++++-<, …10分所以 4210x x +->,22(0x x <.…15分所以2x <,即x <故原不等式解集为(. …20分[解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++<+. …5分即6422232262133122(1)2(1)x x x x x x x x +>+++++=+++, 32322211()2()(1)2(1)x x x x+>+++, …10分 令3()2g t t t =+,则不等式为221()(1)g g x x>+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于题15图2211x x>+, …15分即222()10x x +-<,解得2x ,故原不等式解集为(. …20分15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥+=.当20(2)4x -=时,上式取等号,此时004,x y ==±因此PBC S ∆的最小值为8. …20分。