妙用基底巧解平面向量题

合集下载

微专题 妙用等和线解决平面向量系数和、差、商、平方问题(六大题型)(解析版)

微专题  妙用等和线解决平面向量系数和、差、商、平方问题(六大题型)(解析版)

妙用等和线解决平面向量系数和、差、商、平方问题【题型归纳目录】题型一:x +y 问题(系数为1)题型二:mx +ny 问题(系数不为1)题型三:mx -ny 问题题型四:m x +ny 问题题型五:yx 问题题型六:x 2+y 2问题【方法技巧与总结】(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然。

(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB (λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;【典型例题】题型一:x +y 问题(系数为1)1(2024·山东滨州·统考一模)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN=λAB +μAC (λ,μ∈R ),则λ+μ的取值范围是()A.0,13 B.13,12C.[0,1]D.[1,2]【答案】C【解析】由题意,设AN =tAM,0≤t ≤1 ,当t =0时,AN =0 ,所以λAB +μAC =0 ,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN =λAB +μAC(λ,μ∈R ),所以tAM =λAB +μAC ,即AM =λt AB +μt AC ,因为M 、B 、C 三点共线,所以λt +μt=1,即λ+μ=t ∈0,1 .综上,λ+μ的取值范围是[0,1].故选:C .2(2024·陕西西安·高一西北工业大学附属中学校考阶段练习)在ΔABC 中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足AN =13NM ,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的值为()A.14B.13C.1D.4【答案】A【解析】设BM =tBC ,将AN 用AB 、AC 表示出来,即可找到λ和μ的关系,从而求出λ+μ的值.设BM=tBC (0≤t ≤1),AN =13NM ,所以AN =14AM =14(AB +BM )=14AB +14tBC =14AB+14t (AC -AB )=14-14t AB+14tAC ,又AN =λAB +μAC ,所以λ+μ=14-14t +14t =14.故选:A .3(2024·重庆铜梁·高一统考期末)在△ABC 中,点D 是线段BC 上任意一点,点P 满足AD =3AP,若存在实数m 和n ,使得BP =mAB +nAC,则m +n =()A.23B.13C.-13D.-23【答案】D【解析】由题意,AD =λAB +1-λ AC ,且0<λ<1,而AD =3AP =3AB +BP ,所以3AB +3BP =λAB +1-λ AC ,即BP =λ-33AB +1-λ3AC ,由已知,m =λ-33,n =1-λ3,则m +n =-23,选项D 正确.故选:D题型二:mx +ny 问题(系数不为1)1(2024·山东潍坊·高一统考期末)已知O 是ΔABC 内一点,且OA +OB +OC =0,点M 在ΔOBC 内(不含边界),若AM =λAB +μAC,则λ+2μ的取值范围是()A.1,52B.1,2C.23,1D.12,1【答案】B【解析】根据OA +OB +OC =0 可知O 为ΔABC 的重心;根据点M 在ΔOBC 内,判断出当M 与O 重合时,λ+2μ最小;当M 与C 重合时,λ+2μ的值最大,因不含边界,所以取开区间即可.因为O 是ΔABC 内一点,且OA +OB +OC =0所以O 为ΔABC 的重心M 在ΔOBC 内(不含边界),且当M 与O 重合时,λ+2μ最小,此时AM =λAB +μAC =23×12AB +AC =13AB +13AC 所以λ=13,μ=13,即λ+2μ=1当M 与C 重合时,λ+2μ最大,此时AM =AC所以λ=0,μ=1,即λ+2μ=2因为M 在ΔOBC 内且不含边界所以取开区间,即λ+2μ∈1,2 所以选B2(2024·江苏南京·高一南京师大附中校考期末)在扇形OAB 中,∠AOB =60o,OA=1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]【答案】B【解析】以O 为原点,OB 所在直线为x 轴建立平面直角坐标系,令∠COB =θ,则θ∈0°,60° ,因为OA =1,则B 1,0 ,A 12,32,C cos θ,sin θ ,又OC =xOA +yOB ,则cos θ=x 2+y sin θ=32x ,则y =cos θ-13sin θx =23sin θ ,则x +3y =-233sin θ+4cos θ,又θ∈0°,60° ,易知f θ =-233sin θ+4cos θ为减函数,由单调性易得其值域为1,4 .故选:B .3(2024·辽宁沈阳·高三统考期末)如图,在扇形OAB 中,∠AOB =30°,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若μ=x +λy (λ>0)存在最大值,则λ的取值范围是()A.34,33B.33,32C.34,32D.32,233【答案】D 【解析】设射线OB 上存在为B ,使OB =1λOB,AB 交OC 于C ,由于OC =xOA +yOB =xOA +λy 1λOB=xOA +λyOB ,设OC =tOC ,OC =x OA+λy OB ,由A ,B ,C 三点共线可知x +λy =1,所以u =x +λy =tx +t ∙λy =1,则μ=OC OC存在最大值1,即在弧AB (不包括端点)上存在与AB平行的切线,所以λ∈32,233.故答案为32,233题型三:mx -ny 问题1(2024·上海徐汇·高二位育中学校考阶段练习)如图,OM ⎳AB ,点P 在由射线OM 、线段OB 及AB 的延长线组成的区域内(不含边界)运动,且OP =xOA +yOB ,当x =-12时,y 的取值范围是【答案】12,32【解析】如图,OM ⎳AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,由向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OB 和OA 的反向延长线为两邻边,∴x 的取值范围是(-∞,0);当x =-12时,要使P 点落在指定区域内,即P 点应落在DE 上,CD =12OB ,CE =32OB ,∴y 的取值范围是12,32 .故答案为:12,322(2024·河南平顶山·高一统考期末)如图所示,点P 在由线段AB ,AC 的延长线及线段BC 围成的阴影区域内(不含边界),则下列说法中正确的是.(填写所有正确说法的序号)①存在点P ,使得AP =12AB +2AC ;②存在点P ,使得AP =-12AB+2AC ;③存在点P ,使得AP =12AB -2AC;④存在点P ,使得AP =12AB +32AC.【答案】①④【解析】设AP =λAB +μAC,λ,μ∈R ,由图可知:λ>0,μ>0,且λ+μ>1,∴①④正确,故答案为:①④3(2024·高一课时练习)已知△ABC 中,CD =-35BC,EC =12AC ,AF =13AB ,若点P 为四边形AEDF 内一点(不含边界)且DP =-13DC+xDE ,则实数x 的取值范围为.【答案】12,43【解析】如图所示,在线段BD 上取一点G ,使得DG =-13DC,设DC =3a ,则DG =a ,BC =5a ,BG =a ;过点G 作GH ∥DE ,分别交DF 、AE 于K 、H ,连接FH ,则点K 、H 为临界点;GH ∥DE ,所以HE =13EC ,AH =23EC ,HG =43DE ,AH HC=12=AFFB ,所以FH ∥BC ;所以FH =13BC ,所以FH DG =KH KG,所以KG =35HK ,KG =38HG =12DE .所以实数x 的取值范围是12,43.故答案为:12,43 .题型四:m x +ny问题1(2024·江苏·高三专题练习)在△ABC 中,点O 是BC 的三等分点,OC =2OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF (m >0,n >0),若1m +t n 的最小值为83,则正数t的值为【答案】2【解析】因为点O 是BC 的三等分点,OC =2OB则AO =AB +BO =AB +13BC =AB +13AC -13AB=23AB +13AC =2m 3AE +n 3AF ,又由点E ,O ,F 三点共线,所以AO =AE +EO =AE +λEF =AE +λAF -AE =1-λ AE +λAF,所以2m3=1-λn3=λ,可得2m 3+n3=1,所以1m +t n =2m 3+n 3 1m +t n =23+t 3 +2mt 3n +n 3m ≥23+t3 +22mt 3n ×n 3m=23+t 3 +22t 9,当且仅当2tm 2=n 2时,等号成立,即1m +t n 的最小值为23+t 3 +22t 9,则有23+t 3 +22t 9=83,即t +22t -6=0,所以t +32 t -2 =0,因为t >0,所以t =2,故答案为:2.2(2024·江苏盐城·高一统考期末)在△ABC 中,点O 是BC 的三等分点,OC =2OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF (m >0,n >0),若1m +t 2nt >0 的最小值为3,则正数t 的值为.【答案】3-2【解析】∵在△ABC 中,点O 是BC 的三等分点,|OC |=2|OB |,∴AO =AB +BO =AB +13BC =AB +13(AC -AB )=23AB+13AC ,∵AB =mAE ,AC =nAF ,∴AO =23mAE +13nAF ,∵O ,E ,F 三点共线,∴23m +13n =1,∴1m +t 2n =1m +t 2n 23m +13n =23+n 3m +2mt 23n +t 23≥22t 29+t 23+23=t 23+232t +23,当且仅当n 3m =2mt 23n ,即2m 2t 2=n 2时取等号,∴1m +t 2n 的最小值为t 23+232t +23,即t 23+232t +23=3,∵t >0,∴t =3-2.故答案为:3-2.3(2024·山东菏泽·高一统考期末)在△ABC 中,点O 是线段BC 上的点,且满足OC =3OB,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB =mAE ,AC =nAF ,其中m >0且n >0,若1m +2n的最小值为.【答案】5+264【解析】依题意,作出图形如下,因为OC =3OB ,AB =mAE ,AC =nAF ,则BO =14BC ,所以AO =AB +BO =AB +14BC =AB +14AC -AB =34AB +14AC =3m 4AE +n 4AF ,因为E ,O ,F 三点共线,所以3m 4+n4=1,因为m >0,n >0,所以1m +2n =1m +2n 3m 4+n 4 =54+n 4m +6m 4n ≥54+2n 4m ⋅6m 4n =54+264,当且仅当n 4m =6m4n ,即n =6m =46-2 时取等号,所以1m +2n 的最小值为5+264.故答案为:5+264.题型五:yx问题1(2024·山西·高一统考期末)已知在△ABC 中,点D 满足BD =34BC,点E 在线段AD (不含端点A ,D )上移动,若AE =λAB +μAC ,则μλ=.【答案】3【解析】如图,由题意得存在实数m ,使得AE =mAD0<m <1 .又AD =AB +BD =AB +34BC =AB +34AC -AB =14AB+34AC ,所以AE =m 14AB +34AC =m 4AB +3m 4AC ,又∵AE =λAB +μAC ,且AB ,AC 不共线,故由平面向量的分解的唯一性得λ=m 4,μ=3m4.所以μλ=3.故答案为:3.2(2024·山东潍坊·高三开学考试)在△ABC 中,点D 满足BD =34BC,当点E 在射线AD (不含点A )上移动时,若AE =λAB +μAC ,则λ+1μ的最小值为.【答案】233/233【解析】由BD =34BC ,得AD -AB =34(AC -AB ),即AD =14AB +34AC,因为点E 在射线AD (不含点A )上移动,所以AE =tAD =t 4AB+3t 4AC ,又因为AE =λAB +μAC ,所以λ=t 4,μ=3t4(t >0),则λ+1μ=t 4+43t ≥213=233(当且仅当t 4=43t ,即t =433时取等号),所以λ+1μ的最小值为233.故答案为:233.3(2024·黑龙江哈尔滨·高三哈师大附中校考期末)在ΔABC 中,点D 满足BD =34BC,当E 点在线段AD (不包含端点)上移动时,若AE =λAB +μAC ,则λ+3μ的取值范围是A.233,+∞B.[2,+∞)C.174,+∞D.(2,+∞)【答案】C【解析】如图所示,△ABC 中,BD =34BC,∴AD =AB +BD =AB +34BC =AB +34(AC -AB )=14AB+34AC ,又点E 在线段AD (不含端点)上移动,设AE =kAD ,0<k <1,∴AE =k 4AB +3k 4AC ,又AE =λAB +μAC ,∴λ=k4μ=3k 4,∴λ+3μ=k 4+4k .∵k 4+4k在(0,1)上单调递减,∴λ+3μ的取值范围为174,+∞ ,故选C .题型六:x 2+y 2问题1(2024·江苏泰州·高一泰州中学阶段练习)在ΔABC 中,点D 满足BD =34BC,当点E 在射线AD (不含点A )上移动时,若AE =λAB +μAC,则(λ+1)2+μ2的取值范围为.【答案】(1,+∞)【解析】因为点E 在射线AD (不含点A )上,设AE =kAD , 0<k ,又BD =34BC ,所以AE =k (AB +AD )=k AB +34(AC -AB ) =k 4AB+3k 4AC ,所以λ=k4μ=3k4 ,t =(λ+1)2+μ2=k 4+12+916k 2=58k +252+910>1,故(λ+1)2+μ2的取值范围1,+∞ .2(2024·天津·高三校联考阶段练习)如图,在△ABC 中,BD =13BC,点E 在线段AD 上移动(不含端点),若AE =λAB +μAC ,则λμ=,λ2-μ的最小值为.【答案】 2-116【解析】因为在△ABC 中,BD =13BC,所以AD =AB +BD =AB +13BC =AB +13(AC -AB )=23AB+13AC ,即AD =23AB +13AC .因为点E 在线段AD 上移动(不含端点),所以设AE =xAD(0<x <1).所以AE =2x 3AB +x 3AC ,对比AE =λAB +μAC 可得λ=2x 3,μ=x 3.代入λ=2x 3,μ=x 3,得λμ=2x3x 3=2;代入λ=2x 3,μ=x 3可得λ2-μ=2x 3 2-x 3=4x 29-x 3(0<x <1),根据二次函数性质知当x =--132×49=38时,λ2-μ min =49×382-13×38=-116.故答案为:2;-1163(2024·全国·高三专题练习)在△ABC 中,点D 满足BD =DC ,当E 点在线段AD 上移动时,若AE=λAB +μAC ,则t =(λ-1)2+μ2的最小值为.【答案】12【解析】BD =DC;∴D 为边BC 的中点,如图,则:AD =12(AB +AC );∵E 在线段AD 上;∴设AE =kAD =k 2AB +k 2AC ,0≤k ≤1;又AE =λAB +μAC ;∴λ=k2μ=k2;即λ=μ,且0≤μ≤12;∴t =(μ-1)2+μ2=μ2-2μ+1+μ2=2μ-12 2+12;∴μ=12时,t 取最小值12.故答案为:12.4(2024·山东德州·高三统考期末)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN=λAB +μAC ,则λ2+μ2的最小值为.【答案】18/0.125【解析】由M 为边BC 上任意一点,则BM =γBC,0≤γ≤1 ,AN =12AM =12AB +BM =12AB +γBC =12AB+γ2AC -AB =1-γ2AB +γ2AC ,可得λ=1-γ2μ=γ2,则λ+μ=12,即λ=12-μ,由0≤γ≤1,可得0≤γ2≤12,则μ∈0,12 ,故λ2+μ2=12-μ2+μ2=2μ2-μ+14=2μ-14 2+18,当μ=14时,λ2+μ2取得最小值为18.故答案为:18.【过关测试】一、单选题1(2024·高三课时练习)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC,则λ+μ的值为()A.12B.13C.14D.1【答案】A【解析】由题可设BM =tBC ,则AM =AB +BM =AB +tBC =AB +t AC -AB =1-t AB +tAC ,∵N 为AM 中点,∴AN =12AM =121-t AB +12tAC,又AN =λAB +μAC ,∴λ=121-t ,μ=12t ,∴λ+μ=12.故选:A .2(2024·安徽六安·高一六安一中校考期末)如图所示,在△ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM =λAB +μAC,则λ+μ=()A.-1B.-12C.-2D.-32【答案】B【解析】如图所示,因为点D 在线段BC 上,所以存在t ∈R ,使得BD =tBC =t AC -AB,因为M 是线段AD 的中点,所以:BM =12BA +BD =12-AB +tAC -tAB =-12t +1 AB +12tAC ,又BM =λAB +μAC ,所以λ=-12t +1 ,μ=12t ,所以λ+μ=-12.故选:B .3(2024·重庆·高三重庆南开中学校考阶段练习)已知点O 为ΔABC 所在平面内一点,满足OA +OB+OC =0 ,M 为AB 中点,点P 在ΔAOC 内(不含边界),若BP =xBM +yBC ,则x +y 的取值范围是()A.1,2B.23,2C.12,1D.13,32【答案】A 【解析】如图:∵OA +OB +OC =0 ,∴点O 是ΔABC 的重心,点N 是BC 的中点,BO =BC +CO =BC +23CM =BC +23BM -BC =13BC+23BM ,BN =12BC ,BA =2BM当点P 在ΔAOC 内(不含边界),BP =BO +OP =BO +λOQ =BO +λOA +AQ ,0<λ<1=BO +λ23NA +μAC =BO +λ23BA -BN +μBC -BA ,0<μ<1=BO +λ232BM -12BC +μBC -2BM =13BC+23BM +43λBM -13λBC +λμBC -2λμBM =13-13λ+λμ BC +23+43λ-2λμ BM∴x +y =13-13λ+λμ+23+43λ-2λμ=1+λ-λμ=1+λ1-μ ,∵0<λ<1,0<μ<1,∴0<1-μ<1,0<λ1-μ <1,∴1<1+λ1-μ <2.故选:A4(2024·广东惠州·高一校联考阶段练习)在△ABC 中,点O 是线段BC 上的点,且满足|OC |=3|OB|,过点O 的直线分别交直线AB 、AC 于点E 、F ,且AB =mAE ,AC =nAF ,其中m >0且n >0,若1m+tn的最小值为3,则正数t 的值为()A.2B.3C.83D.113【答案】B【解析】AO =AB +BO =AB +14BC =AB +14AC -AB =34AB+14AC =3m 4AE +n 4AF ,∵E 、O 、F 三点共线,∴3m 4+n4=1,∵m >0,n >0,t >0,∴1m +t n =1m +t n 3m 4+n 4 =34+n 4m +3mt 4n +t 4≥3+t 4+2n 4m ⋅3mt 4n =3+t 4+23t 4,当且仅当n 4m =3mt4n时取等号,∴3+t 4+23t 4=3⇒t +33 t -3 =0⇒t =3⇒t =3.故选:B .5(2024·江西南昌·高三阶段练习)在△ABC 中,点O 是BC 的三等分点(靠近点B ),过点O 的直线分别交直线AB ,AC 于不同两点M ,N ,若AB =mAM ,AC =nAN ,m ,n 均为正数,则1m +1n的最小值为()A.2 B.1+23C.1+223D.1+233【答案】C【解析】由题意知AO =AB +13BC =AB +13AC -AB =23AB+13AC =2m 3AM +n 3AN ,由于M 、O 、N 三点共线,可知2m 3+n3=1,由于m ,n 均为正数,所以1m +1n =1m +1n 2m 3+n 3 =1+n 3m +2m 3n ≥1+229=1+223,当且仅当n 3m =2m3n ,即m =3(2-2)2,n =3(2-1)时取得等号,故选:C 二、多选题6(2024·江苏南京·高一南京市宁海中学校联考期末)在△ABC 中,点D 是线段BC 上任意一点,点M 是线段AD 的中点,若存在λ,μ∈R 使BM =λAB +μAC,则λ,μ的取值可能是()A.λ=-35,μ=110B.λ=1,μ=-32C.λ=-910,μ=25D.λ=-710,μ=35【答案】AC【解析】令BD =mBC 且m ∈[0,1],而BM =12(BA +BD )=12(BA+mBC ),又BC =BA +AC ,则BM =12[BA +m (BA +AC )]=-1+m 2AB+m 2AC ,所以λ=-1+m2μ=m2,则λ∈-1,-12,μ∈0,12 且λ+μ=-12,故A 、C 满足,B 、D 不满足.故选:AC7(2024·浙江宁波·高一宁波市北仑中学校考期末)已知O 是△ABC 内一点,且OA +OB +OC =0,点M 在△OBC 内(不含边界),若AM =λAB +μAC,则λ+2μ的值可能为()A.97B.117C.137D.157【答案】ABC【解析】因为O 是△ABC 内一点,且OA +OB +OC =0 所以O 为△ABC 的重心M 在△OBC 内(不含边界),且当M 与O 重合时,λ+2μ最小,此时AM =λAB +μAC =23×12AB +AC =13AB +13AC 所以λ=13,μ=13,即λ+2μ=1当M 与C 重合时,λ+2μ最大,此时AM =AC所以λ=0,μ=1,即λ+2μ=2因为M 在△OBC 内且不含边界所以取开区间,即λ+2μ∈1,2 ,结合选项可知ABC 符合,D 不符合故选:ABC8(2024·重庆·高一校联考阶段练习)在ΔABC 中,点D 满足BD =DC,当点E 在线段AD 上(不含A 点)移动时,记AE =λAB +μAC,则()A.λ=2μB.λ=μC.14λ+μ的最小值为1D.4λ+μ的最小值为4【答案】BC【解析】∵BD =DC ,∴D 是BC 中点,则AD =12AB +AC,又点E 在线段AD 上,即A ,E ,D 三点共线,设AE =mAD 0<m ≤1 ,故AE =mAD =12m AB +AC ,λ=μ=12m .故B 对A 错.14λ+μ=14λ+λ≥214λ⋅λ=1,当且仅当14λ=λ时,即λ=12,故C 对.4λ+μ=4λ+λ在λ∈0,12上单调递减,当λ=12取最小值172,故D 错.故答案为:BC9(2024·湖北武汉·高三校联考期末)在△ABC 中,点D 满足BD =DC,当点E 在线段AD 上移动时,记AE =λAB +μAC ,则()A.λ=2μB.λ=μC.λ-2 2+μ2的最小值为2D.λ-2 2+μ2的最小值为52【答案】BD 【解析】由BD =DC 得AD =12AB +AC ,又点E 在线段AD 上移动,AE =kAD =12k AB +AC =12kAB+12kAC ,0≤k ≤1,∴λ=12k ,μ=12k ,故A 错误,B 正确;λ-2 2+μ2=12k -2 2+12k 2=12k 2-2k +4=12k -2 2+2,当k =1时,有最小值52,故C 错误,D 正确.故选:BD .三、填空题10(2024·全国·高三专题练习)如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC ,则2x +2y 的最大值为【答案】83【解析】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F ,设AP =λAE +μAF ,则λ+μ=1,等边三角形边长为2,则外接圆半径为233,当点P 为切点时, AE =AF =83,∵BC ⎳EF ,∴设AE AB =AF AC =k ,则k ∈0,43 ,当点P 为切点时, k 有最大值43,AE =kAB ,AF =kAC ,AP =λAE +μAF =λkAB +μkAC∴x =λk ,y =μk ,∴2x +2y =2λ+μ k =2k ≤83.即2x +2y 的最大值为83.故答案为:8311(2024·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC=xOA +yOB,则x +4y 的取值范围是.【答案】1,4【解析】如图所示,以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则根据题意可知B (1,0),A 12,32,设C (cos θ,sin θ),0°≤θ≤60°.由OC =xOA +yOB ,得cos θ=y +12x sin θ=32x ,∴x =23sin θy =cos θ-sin θ3,∴x +4y =4cos θ-233sin θ,点C 在弧AB 上由B →A 运动,θ在0,π3 上逐渐变大,cos θ变小,sin θ逐渐变大,∴当θ=0°时x +4y 取得最大值4,当θ=60°时x +4y 取得最小值1.∴x +4y 的取值范围是[1,4].故答案为:1,4 .12(2024·四川绵阳·高一统考期末)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB ,则3x +y 的取值范围是.【答案】1,3【解析】以O 为原点,OA ,OB 分别为x ,y 轴正方向建立平面直角坐标系.则OA =1,0 ,OB =12,32 .不妨设OC =cos θ,sin θ ,0≤θ≤π3.因为OC =xOA +yOB,所以cos θ=x +12y sin θ=32y ,解得:x =cos θ-33sin θy =233sin θ,所以3x +y =3cos θ-33sin θ.因为y =cos θ在θ∈0,π3 上单调递减,y =-sin θ在θ∈0,π3上单调递减,所以3x +y =3cos θ-33sin θ在θ∈0,π3 上单调递减.所以当θ=0时3x +y =3最大;当θ=π3时3x +y =3cos π3-33sin π3=32-33⋅32=1最小.所以3x +y 的取值范围是1,3 .故答案为:1,3 .13(2024·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.【答案】[1,3]【解析】如图所示,建立平面直角坐标系以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A(1,0),B 12,32,设∠AOC =θ,则C (cos θ,sin θ)0≤θ≤π3 ,由OC =xOA +yOB 得cos θ=x +12y ,sin θ=32y , 从而x =cos θ-13sin θ,y =23sin θ, 则x +3y =cos θ+533sin θ=283sin (θ+φ),易知0<φ<π6,故y =f (θ)=cos θ+533sin θ=283sin (θ+φ)在0,π3上单调递增,∴y min =f (0)=1,y max =f π3 =cos π3+533sin π3=12+52=3.故x +3y ∈[1,3].故答案为:[1,3]14(2024·全国·高三专题练习)扇形OAB 中,∠AOB =120°,C 为AB 上的一个动点,且OC =xOA+yOB ,其中x ,y ∈R .(1)x +y 的取值范围为;(2)2x +y 的取值范围为.【答案】1,21,2213【解析】(1)解法一:(等和线)设OC 与AB 相交于点D ,OD =λOC =λxOA +λyOB,λx +λy =1,x +y =1λ=OC OD ∈[1,2].解法二:(坐标法)C (cos α,sin α),α∈0,2π3,cos α=x -12y ,sin α=32y ,x =cos α+33sin α,y =233sin α,x +y =cos α+3sin α=2sin α+π6∈[1,2].解法三:设∠AOC =α∈0,2π3,OC ⋅OA =xOA ⋅OA +yOB ⋅OA ,OC ⋅OB =xOA ⋅OB +yOB ⋅OB , ,即cos α=x -12y cos (1200-α)=-12x +y∴x +y =2[cos α+cos (1200-α)]=cos α+3sin α=2sin α+π6∈[1,2].(2)解法一:(等和线)解法二:2x +y =2cos α+433sin α=2213sin (α+θ)∈1,2213,其中sin (α+θ)先增后减.15(2024·吉林·高一阶段练习)如图,在ΔABC 中,D ,E ,F 分别为BC ,CA ,AB 上的点,且CD =35BC ,EC =12AC ,AF =13AB .设P 为四边形AEDF 内一点(P 点不在边界上),若DP =-13DC+λDE ,则实数λ的取值范围为【答案】12,43【解析】取BD 中点M ,过M 作MH ⎳DE 交DF ,AC 分别为G ,H ,如图:则由DP =-13DC+λDE =DM +λDE 可知,P 点在线段GH 上运动(不包括端点)当P 与G 重合时,根据DP =tDF =-89tDC +43tDE =-13DC +λDE ,可知λ=12,当P 与H 重合时,由P ,C ,E 共线可知-13+λ=1,即λ=43,结合图形可知λ∈12,43.16(2024·重庆万州·高一万州外国语学校天子湖校区校考期末)如图,在△ABC 中,BD =13BC,点E 在线段AD 上移动(不含端点),若AE =λAB +μAC ,则λ2+1μ的取值范围是.【答案】103,+∞【解析】由题可知,BD =13BC ,设AE =mAD0<m <1 ,则AE =m AB +13BC =m AB +13BA +AC,所以AE =23mAB +13mAC ,而AE =λAB +μAC ,可得:λ=23m ,μ=13m ,所以λ2+1μ=m 3+3m0<m <1 ,设f m =m 3+3m0<m <1 ,由双钩函数性质可知,f x 在0,1 上单调递减,则f x >f 1 =13+3=103,所以λ2+1μ的取值范围是103,+∞ .故答案为:103,+∞ .四、解答题17(2024·高一课时练习)在学习向量三点共线定理时,我们知道当P 、A 、B 三点共线,O 为直线外一点,且OP =xOA +yOB 时,x +y =1(如图1),小明同学提出了如下两个问题,请同学们帮助小明解答.(1)当x +y >1或x +y <1时,O 、P 两点的位置与AB 所在直线之间存在什么关系?写出你的结论,并说明理由;(2)如图2,射线OM ⎳AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,求实数x 的取值范围,并求当x =12时,实数y 的取值范围.【解析】(1)若x +y >1,则O ,P 在直线AB 异侧;若x +y <1,则O ,P 在直线AB 同侧.理由如下:设x +y =t ,则由OP =xOA +yOB ,得:OP =xOA +(t -x )OB =xOA +1-x OB +t -1 OB ,则在直线AB 上有一点Q ,使得OQ =xOA +1-x OB ,如下图所示:则OP =OQ +t -1 OB ,即QP =t -1 OB ,∴当t >1时,则OB =t -1 OB 与OB 同向,且QP =OB ,由平面共线定理可得,O ,P 在直线AB 异侧;当t <1时,OB =t -1 OB 与OB 反向,如下图所示,且QP =OB ,由平面共线定理可得,O ,P 在直线AB 同侧.(2)射线OM ⎳AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动如图所示,阴影部分为点P 的运动区域(不含边界),由(1)可知,O ,P 在直线AB 同侧,由于OP =xOA +yOB ,则x +y <1.过点P 作PE ⎳OB 交射线OA 于E ,过点P 作PF ⎳OB 交射线BO 的延长线OB 于F ,由平行四边形法则可得OP =OE +OF ,又OE 与OA 方向相同,则OE =mOA ,且m >0,OF 与OB 方向相反,则OF =nOB ,且n <0,则OP =mOA +nOB =xOA +yOB ,故x =m >0,y =n <0,即实数x 的取值范围是(0,+∞),当x =12时,此时E 为OA 中点,过E 作直线平行与OB 交AB 于M ,交射线OM 于M ,则点P 运动轨迹为线段EM (不含端点E ,M ),如下图:当点P 运动到E 时,OP =OE =12OA +0⋅OB ,此时y =0;当点P 运动到M 时,OP =OE +EM =12OA +M E =12OA +12BO =12OA -12OB ,此时y =-12;且由平面向量加法的平行四边形法则得y ∈-12,0 .18(2024·高一课时练习)如图,OM ⎳AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .(1)求x 的取值范围;(2)当x =-12时,求y 的取值范围.【解析】(1)如图,作PE ⎳BA 交OB 于E ,则OP =OE +EP =mOB +nAB =-nOA +(m +n )OB .由P 点的位置容易知道0<m <1,n >0.因此,x =-n <0,即x 的取值范围是(-∞,0).(2)当x =-12时,y =m +n =m +12,所以此时y 的取值范围是12,32.19(2024·上海浦东新·高二华师大二附中校考阶段练习)小郭是一位热爱临睡前探究数学问题的同学,在学习向量三点共线定理时,我们知道当P 、A 、B 三点共线,O 为直线外一点,且OP =xOA +yOB 时,x +y =1(如图1)第二天,小郭提出了如下三个问题,请同学帮助小郭解答.(1)当x +y >1或x +y <1时,O 、P 两点的位置与AB 所在直线之间存在什么关系?写出你的结论,并说明理由(2)如图2,射线OM ∥AB ,点P 在由射线OM 、线段OA 及BA 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB ,求实数x 的取值范围,并求当x =12时,实数y 的取值范围.(3)过O 作AB 的平行线,延长AO 、BO ,将平面分成如图3所示的六个区域,且OP =xOA +yOB ,请分别写出点P 在每个区域内运动(不含边界)时,实数x ,y 应满足的条件.(不必证明)【解析】(1)若x +y >1,则O 、P 异侧,若x +y <1,则O 、P 同侧;理由如下:设x +y =t ,则由OP =xOA +yOB 得,OP =xOA +t -x OB =xOA -xOB +tOB =xBA +tOB ,当t >1时,tOB 与OB 同向,由平面向量加法的平行四边形法则可知,O 、P 异侧;当t <1时,tOB 与OB 反向,由平面向量加法的平行四边形法则可知,O 、P 同侧;(2)由图及平面向量基本定理可知,x >0,即实数x 的取值范围是0,+∞ ,当x =12时,由平面向量加法的平行四边形法则可知,y ∈-12,0 ;(3)Ⅰ:y <0x +y >0 ;Ⅱ:x >0y >0 ;Ⅲ:x <0x +y >0 ;Ⅳ:y >0x +y <0 ;Ⅴ:x <0y <0 ;Ⅵ:x >0x +y <0 .。

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量,,则()A.B.C.D.【答案】B【解析】由题意得,故选B.【考点】本题考查平面向量的坐标运算,属于容易题.2.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足=2,则·(+)=________.【答案】【解析】由=2知,P为△ABC的重心,所以+=2,则·(+)=2·=2||||cos 0°=2×××1=.3.连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是()A.B.C.D.【答案】C【解析】由题意知本题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=(m,n)与=(1,﹣1)不可能同向.∴夹角θ≠0.∵θ∈(0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.故选C.4.已知向量,,若与垂直,则实数 ( )A.B.C.D.【答案】A【解析】由题意,因为与垂直,则,解得.【考点】平面向量垂直的充要条件.5.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为______.【答案】5【解析】建立如图所示的直角坐标系,设DC=m,P(0,t),t∈[0,m],由题意可知,A(2,0),B(1,m),=(2,-t),=(1,m-t),+3=(5,3m-4t),|+3|=≥5,当且仅当t=m时取等号,即|+3|的最小值是5.6.如图,在△ABC中,O为BC的中点,若AB=1,AC=3,〈,〉=60°,则||=________.【答案】【解析】因为〈,〉=60°,所以·=||||·cos 60°=3×=,又=(+),所以=(+)2=,即2= (1+3+9)=,所以||=.7.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】,故选B.【考点】向量的加减法,加法运算要首尾相接,减法运算要同起点.8.已知A、B、C是直线l上的三点,向量满足,则函数的表达式为.【答案】【解析】这题涉及到向量的一个性质(课本上有一个习题有类似的结论),不在直线上,,则三点共线.利用这个结论本题就有,两边对求导数得:,因此,从而,所以.【考点】三点共线的性质,导数.9.已知向量.(1)若,求;(2)求的最大值.【答案】(1)(2)【解析】(1)由向量垂直的充要条件:,这样就可得到关于的函数 ,化简得的值,结合题中所给的范围,不难确定出的的值; (2)由已知的坐标,可求出的坐标,在根据向量求模的公式由出题中的模的表达式,由三角函数的图象和性质,分析得由的范围求出的范围,进而得出的范围,即可求出的最大值.试题解析:解(1)若,则 3分即而,所以 6分(2) 12分当时,的最大值为 14分【考点】1.向量的运算;2.三角函数的图象和性质10.已知向量,的夹角为,且,则向量在向量方向上的投影是________.【解析】依题意,设,,如图,则,,由于,是直角三角形,且,故向量在向量方向上的投影是0.【考点】平面向量的夹角、模,一个向量在另一个向量上的投影.11.如图,已知圆:,为圆的内接正三角形,为边的中点,当正绕圆心转动,同时点在边上运动时,的最大值是。

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

巧妙确定平面向量基本定理中基底系数间的关系

巧妙确定平面向量基本定理中基底系数间的关系

巧妙确定平面向量基本定理中基底系数间的关系濮阳市华龙区高中 张杰平面向量作为高中数学的解题工具之一,选择恰当基底,确定基底系数的关系,进而用基底表示相关向量往往是能否顺利解决问题的关键,而如何确定平面向量基本定理中基底系数的关系对学生而言通常很难形成有效解决办法,下面通过实例给出一个巧妙确定平面向量基本定理中基底系数间的关系的办法。

问题:点P 是平行四边形ABCD 对角线BD 上一点,若AD y AB x AP +=,则系数x,y 满足何种关系是什么?若点P 是ABD ∆内部一点呢?确定办法:将基底转化为正交单位基底,在正交单位基底下x,y 的关系即为所求。

如图在正交基底下BD 对应直线1=+y x ,所以1=+y x 即为所求。

若点P 在ABD ∆内部,则有⎪⎩⎪⎨⎧<+<<<<<101010y x y x考题链接:已知点P 是ABC ∆内一点,且满足()R y x AC y AB x AP ∈+=,,则x y 2-的取值范围是( )A.()1,2-B.()2,1-C.()2,1D.[]1,2--解析:因为点P 是ABC ∆内一点,且满足()R y x AC y AB x AP ∈+=,,∴⎪⎩⎪⎨⎧<+<<<<<101010y x y x由线性规划问题的解法可知()1,22-∈-x y ,所以选A.考题链接:如图,已知四边形OABC 是边长为1的正方形, 3=OD ,点P 为BCD ∆内(含边界)的动点,设 (,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于___.解析:如图,将基底转化为正交单位基底,则点D C B ,,的坐标分别为:⎪⎭⎫ ⎝⎛1,31,()1,0,()0,1,所以系数βα,满足⎪⎩⎪⎨⎧≤-+≥-+≤0332011βαβαα由线性规划问题的解法可知βα+的最大值为34。

考题链接:如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且OP xOA =+(,)yOB x y R ∈。

基底法求平面向量的数量积,简单易学习,收藏慢慢吸收

基底法求平面向量的数量积,简单易学习,收藏慢慢吸收

基底法求平面向量的数量积,简单易学习,收藏慢慢吸收
在平面几何中可以表示任意向量a的两个非零向量e1、e2称为平面向量基底(Plane vector basis),表示为a=xe1+ye2,用基底e1、e2表示向量a时,实数x、y的取值是唯一的。

但是,能表示向量a的基底不是唯一的,基底的前提是不共线。

本题考虑将条件中涉及的向量AP、向量BP用基底向量AB、向量AD表示,然后利用向量的线性运算,加减数乘等来实施计算。

平行四边形和三角形都是向量的基本图形,拿到题就应该能联想到曾经学过的见过的同类型题目,难度不大,需要耐心计算。

又是一个特殊的四边形,这里需要想到的是菱形中对角线互相垂直,这点肯定是不容忽视的,虽然还没清楚要计算的是什么,这里能联想到的知识点就应该出现在大脑中,至于能用到什么,还要根据题目所给条件与所求知识的一个完美结合。

巧用平面向量基底大法解题,方法不在多而在巧和用,再好的方法都要用,会用,才能把题解出来,解题能力不是一朝一夕能培养的,持之以恒,像老师每天发题一样,坚持下去,总有收获!。

平面向量基底法解题

平面向量基底法解题

平面向量基底法解题
平面向量基底法是一种数学方法,用于解决空间的线性方程组,也是向量空间理论、线性代数的重要内容,其解法的思想是将空间向量分别投影到两个独立的平面(基底),并求解这两个平面上的向量投影,然后将这两个解重新组合起来,即可得到原问题的解。

2、应用
(1)求解空间点的位置:用平面向量基底法可以求解空间点的位置,并且可以在计算机系统中实现。

(2)求解几何图形及其变换:给定一个几何图形,可以用矢量的形式表示,矩阵变换又可以用矩阵形式表示,可以根据以上两种形式用平面向量基底法求解几何图形及其变换的方法。

(3)求解非线性方程:可以将非线性方程转化为一组线性方程,然后用平面向量基底法求解。

(4)建立一条最短路径:用平面向量基底法可以求解一条最短路径。

(5)解决空间机构运动学问题:空间机构是由连接组件构成的系统,最常见的机构是机械机构,它可以实现各个位置的运动。

用平面向量基底法可以解决空间机构的运动学问题。

- 1 -。

求解平面向量问题的两个办法

解题宝典平面向量是高考数学中的必考内容,同学们必须熟悉并熟练掌握一些有关平面向量的常见题型及其解法.本文以一道平面向量问题为例,着重探讨了解答平面向量问题的两种思路.一、利用基底向量法求解基底向量法是指根据解题需求选择两个向量作为基底,然后运用平面向量基本定理将各个向量用基底表示出来,进而解答问题的方法.运用该方法解题,需首先根据题意绘制出相应的几何图形,选取两个不共线的基底向量,然后将各个向量用基底表示出来,利用平面向量的运算法则进行运算,便可使问题获解.例题:在平行四边形ABCD中,AD=1,∠BAD=60°,点E是CD上的中点,若AC∙BE=1,则AB的大小为______.图1解:如图1,设AD、AB分别为基底向量e1,e2,∵ AC∙ BE=1,∴AC∙BE=()AB+BC∙()BC+CE=() e1+ e2∙æèöø e1-12 e2=1,∴e12+12 e1∙ e2-12 e22=1,∵AD=1,∠BAD=60°,四边形ABCD为平行四边形ABCD,∴1+12|| e1∙cos60°-12|| e12=1,∴|| e1=12,即| AB|=12.解答本题主要运用了基底向量法,以平行四边形ABCD的两条边AD、AB为基底,运用平面向量基本定理将各个向量用基底表示出来,再结合平面向量的数乘运算求得AB的大小.这样把所求未知向量看作基底向量进行求解,将问题转化为解方程问题,能使解题过程变得更加简单.二、利用坐标法求解坐标法是指通过建立平面直角坐标系,给各个向量赋予坐标,利用向量坐标运算法则来解答问题的方法.在运用该方法解题时,需首先根据题意和图形建立合适的平面直角坐标系,求出各点和向量的坐标,再根据平面向量加法、减法、数乘的坐标运算法则及向量的模的公式来解答.运用坐标法解题的关键在于,建立合适的平面直角坐标系,将问题转化为平面坐标运算问题.仍以上述例题为例.图2解:如图2所示,以点A为坐标原点建立直角坐标系,设点B()a,0,由题意可得Dæèçø12,Cæèçø12+a,Eæèçø1+a2,∴AC=æèçø12+a,BE=æèçø1-a2,,∵ AC∙ BE=1,∴æèçø12+a∙æèçø1-a2,=1,解得a=12,即AB=12.在建立直角坐标系后,我们就会发现AB的大小为a,求得B点的坐标,便可求得AB的大小.而通过向量坐标运算,便可快速求得a的值.可见,运用坐标法解答平面向量问题,可以使求解过程变得更加直观,也降低了解答平面向量问题的难度.总之,运用基底向量法解题需结合图形寻找合适的基底;运用坐标法解题需要结合图形建立合适的平面直角坐标系,然后进行向量或者向量坐标运算.这两种方法都是解答平面向量问题的基本方法,同学们可结合上述实例仔细研究,熟练掌握这两种方法.(作者单位:甘肃省天水市第二中学)42Copyright©博看网 . All Rights Reserved.。

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量解析版【一】向量的概念1.例题【例1】给出下列结论:①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等; ②对于任何一个实数,数轴上存在一个确定的点与之对应;③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数;④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0. 其中正确结论的个数是( ) A.1 B.2C.3D.4【答案】D【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确;②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确;③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确. 【例2】下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足b a >且a 与b 同向,则a b >; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a b b c ∥,∥,则a c ∥. A .0个 B .1个C .2个D .3个【答案】A【解析】对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误; 对于⑤,0b =时,a b b c ∥,∥,,则a 与c 不一定平行. 综上,以上正确的命题个数是0. 2.巩固提升综合练习 【练习1】给出下列命题: ①若c b b a ==,则c a=;②若A ,B ,C ,D 是不共线的四点,则DC AB =是四边形ABCD 为平行四边形的充要条件;③b a==且b a //;④若c b b a //,//,则c a //; 其中正确命题的序号是 . 【答案】①②【解析】①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵DC AB ==且DC AB //, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,=且DC AB //,,因此,DC AB =.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②.【二】平面向量的线性表示1.例题【例1】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A.AC AB 4143- B. AC AB 4341- C. AC AB 4143+ D. AC AB 4341+ 【解析】根据向量的运算法则,可得,所以,故选A.【例2】在梯形ABCD 中,AB →=3DC →,则BC →等于( )A .-13AB →+23AD → B .-23AB →+43AD → C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形, 则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【例3】已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角为__________. 【解析】由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.巩固提升综合练习【练习1】在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12-B .12C .1-D .1【答案】B【解析】由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=-+=-+, 11,1,22λμλμ∴=-=∴+=.故选:B【练习2】已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++OC OB OA 22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】如图所示:设AB 的中点是E ,△O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,△2EO →=OC →, △OP →=13()4EO →+OE →=EO →,△P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【练习3】如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116B.32C.2516D.3【答案】A【解析】连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD 为等边三角形,BD =.设(01)DE tDC t =≤≤AE BE ⋅223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+(01)t ≤≤ 所以当14t =时,上式取最小值2116,选A.【三】向量共线的应用1.例题【例1】设两个非零向量a 与b不共线.(1)若b a AB +=,b a BC 82+=,)(3b a CD-=,求证:D B A ,,三点共线;(2)试确定实数k ,使b a k +和b k a+共线.【答案】(1)见解析;(2)k =±1.【解析】(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0. 消去λ,得k 2-1=0,∴k =±1.【例2】已知点()3,1A ,()1,4B -,则与向量AB 的方向相反的单位向量是( ) A.43,55⎛⎫-⎪⎝⎭ B.43,55⎛⎫-⎪⎝⎭ C.34,55⎛⎫-⎪⎝⎭D.34,55⎛⎫- ⎪⎝⎭1.共线向量定理:向量a (0≠a )与b 共线,当且仅当有唯一一个实数λ,使得a b λ=2.平面向量共线定理的三个应用:3.求解向量共线问题的注意事项:(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用;(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线;(3)直线的向量式参数方程:B P A ,,三点共线OB t OA t OP +-=⇔)1((O 为平面内任一点,R t ∈).【解析】(4,3)AB =-,∴向量AB 的方向相反的单位向量为4343(,)(,)5555||AB AB --=-=-,2.巩固提升综合练习【练习1】设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【练习2】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.【四】平面向量基本定理及应用 1.例题【例1】如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈,则λμ+等于( ).A .12-B .12C .1D .1-【答案】A【解析】由平面向量基本定理,化简()11DE DA AE DA AC AD AB AD 44=+=+=-++ 13AB AD 44=-,所以13λ,μ44==-,即1λμ2+=-,【例2】在中,点满足,当点在射线(不含点)上移动时,若,则 的 取值范围为__________.【答案】【解析】因为点在射线(不含点)上,设,又,所以, 所以 , , 故的取值范围.2.巩固提升综合练习【练习1】如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n △R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB →+13AD →,又AC→=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12△m +n =32. 故应填答案32.ABC ∆D 34BD BC =E AD A AE AB AC λμ=+()221λμ++()1,+∞E AD A ,0AE k AD k =<34BD BC=()()33444kk AE k AB AD k AB AC AB AB AC ⎡⎤=+=+-=+⎢⎥⎣⎦4{34kk λμ==()2222295291114168510k t k k λμ⎛⎫⎛⎫=++=++=++> ⎪ ⎪⎝⎭⎝⎭()221λμ++()1,+∞【练习2】如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,EA BE 2=,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【五】平面向量的坐标运算1.例题【例1】已知向量)3,2(=a,)2,3(=b ,则=-b a ( )A .2B .2C .52D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b故选A【例2】在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3 D.6+2+1 【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3), △|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点, 求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【例3】在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又△OA →+OB →+OD →=(x -1,y +3), △|OA →+OB →+OD →|=(x -1)2+(y +3)2.△|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解.如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),△OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, △OA →+OB →+OD →=OD →-ON →=ND →,△|OA →+OB →+OD →|=|ND →|,△|ND →|max =|NC →|+1=7+1,|ND →|min =7-1.2.巩固提升综合练习【练习1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C. 5D .2【解析】如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z=0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z的最大值是3,即λ+μ的最大值是3.【练习2】如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65 D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1, AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).△AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫ ⎝⎛+-μλμλ2,2,△⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,△M ,N 分别为BC ,CD 的中点, △AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【例1】已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A.C.D.0【答案】C 【解析】.【例2】若()3,4a =-,则与a 同方向的单位向量0a =____________【答案】34,55⎛⎫- ⎪⎝⎭【解析】与a 同方向的单位向量0134(3,4)(,)555aa a ==-=-2.巩固提升综合练习【练习1】如图,在平面四边形ABCD 中,90CBA CAD ∠=∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若AC AD AE λμ=+(,R λμ∈),则λμ的值为_______.【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2, 则有A (0,0),B (2,0),C (2,2),E (2,1),AC =, AD =,过D 作DF⊥x 轴于F ,∠DAF=180°-90°-45°=45°, DF=32=D(), AC =(2,2),AD=(3-),AE =(2,1),因为AC AD AE λμ=+,所以,(2,2)=λ(3-,3)+μ(2,1),所以,2223μλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:43λμ⎧=⎪⎪⎨⎪=⎪⎩λμ【练习2】已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )△b ,则向量a 与向量c 的夹角的余弦值是( )A.55 B.15 C .-55 D .-15【解析】 △a =(3,1),b =(1,3),c =(k ,-2),△a -c =(3-k,3),△(a -c )△b , △(3-k )·3=3×1,△k =2,△a ·c =3×2+1×(-2)=4,△|a |=10,|c |=22, △cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A.【一】平面向量数量积的概念 1.例题【例1】在如图的平面图形中,已知0120,2,1=∠==MON ON OM ,NA CN MA BM 2,2==则OM BC •的值为( )1.两个向量的夹角:(1)定义:已知两个非零向量a 和b ,作a =,b =,则θ=∠AOB 叫做向量a 与b 的夹角.(2)范围:向量夹角θ的范围是πθ≤≤0;a 与b 同向时,夹角θ=0°;a 与b反向时,夹角θ=180°.(3)向量垂直:如果向量a 与b 的夹角是90°,则a 与b垂直,记作b a ⊥.2.平面向量的数量积的概念:(1)已知两个非零向量a 与b ,则数量θcos b a ⋅叫做a 与b的数量积,记作b a •,即:b a •=θcos b a ⋅,其中θ是a 与b的夹角.规定:00=•a ;(2)b a •的几何意义:数量积b a•等于a 的长度a与b在a的方向上的投影θcos b的乘积. 3.数量积的运算律:(1)交换律:a b b a•=•;(2)分配律:()c b c a c b a •+•=•+;(3)对R ∈λ,()())(b a b a b aλλλ•=•=•.4.计算向量数量积的三种常用方法:(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即b a •=θcos b a⋅,其中θ是a 与b的夹角.(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.OA OBA .B .C .D .0【答案】C【解析】如图所示,连结MN , 由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C 选项.【例2】已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2 D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .2.巩固提升综合练习【练习1】如图,AB 是半圆O 的直径,C 、D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若6OA =,则MD NC ⋅的值是( )A.12B.C.26D.36【答案】C 【解析】连接,OC OD ,由C 、D 是弧AB 的三等分点,得∠AOD =∠BOC =60°,()()MD NC OD OM OC ON ⋅=-⋅-OD OC OD ON OM OC OM ON =⋅-⋅-⋅+⋅66cos6062cos12026cos12022=⨯⨯-⨯⨯-⨯⨯-⨯18664=++-26=.【练习2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【练习3】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【解析】∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t .∴t =2.1.例题【例1】已知平面向量,a b不共线,且1a=,1a b⋅=,记b与2a b+的夹角是θ,则θ最大时,a b-=()A.1B C D.2【答案】C【解析】设|b|=x,则()22·22?2b a b a b b x+=+=+,22|2+|=44?8a b a a b b++=+所以()2·22cos 28b a bb a bx θ++==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x xx θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值, 此时22||=2?12a b a a b b --+=-=故选C.【例2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【例3】设向量a =(1,0),b =(−1,m ),若()a mab ⊥-,则m =_________. 【解析】(1,0),(1,)a b m ==-,(,0)(1,)(1,)ma b m m m m ∴-=--=+-,由()a ma b ⊥-得:()0a ma b ⋅-=,()10a ma b m ∴⋅-=+=,即1m =-.2.巩固提升综合练习【练习1】若两个非零向量a ,b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是( ) A.6πB.2π C.23π D.56π 【解析】将2a b a b a +=-=平方得:22222224a a b b a a b b a +⋅+=-⋅+=,解得:2203a b b a⎧⋅=⎪⎨=⎪⎩ . 222()()1cos ,42||||a b a b a b a b a b a a b a b +⋅--<+->===-+-.所以向量a b +与a b -的夹角是23π.【练习2】已知非零向量a与b满足b a2=,且b b a⊥-)(,则a与b的夹角为( ) A .π6B .π3C .2π3D .5π6【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【练习3】已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 【解析】由|2a -b |=10,得4 a 2-4 a ·b +b 2=10,得4-4×|b |×cos45°+|b |2=10,即-6-22|b |+|b |2=0,解得|b |=32或|b |=-2(舍去).1.例题【例1】已知e b a ,,是平面向量,e 是单位向量.若非零向量a 与e的夹角为3π,向量b 满足0342=+•-b e b ,则b a-的最小值是( )A .1-3B .13+C .2D .3-2 【答案】A 【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.【例2】在ABC △,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC △的形状为( ) A.直角三角形 B.等腰三角形C.等边三角形D.无法判断【答案】C【解析】由题意可得:()cos cos AB BC B AC BC C AB AC BC AB AC AB AC ⎛⎫⨯⨯-⨯⨯ ⎪+⋅=+ ⎪⎝⎭()cos cos BC C B =⨯-,故()cos cos 0BC C B ⨯-=,cos cos ,B C B C ∴==,且:cos 1cos 2AB AC A AB AC A ABACAB AC⨯⨯⋅===⨯,则3A π=, 结合,3B C A π==可知△ABC 为等边三角形.【例3】如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b △R ),则ab 的值为( )A.14 B .1 C.12 D.18【解析】由题意易知E 1(2,1),E 2(2,-1),△e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,△(2a +2b )24-(a -b )2=1,整理可得4ab =1,△ab =14.【答案】 A2.巩固提升综合练习【练习1】在平面四边形ABCD 中,o90=∠BAD ,1,2==AD AB ,若CB CA BC BA AC AB •=•+•34, 则CD CB 21+的最小值为____.【答案】【解析】如图,以的中点为坐标原点,以方向为轴正向,建立如下平面直角坐标系.则,,设,则,,因为所以,即:整理得:,所以点在以原点为圆心,半径为的圆上. 在轴上取,连接可得,所以,所以由图可得:当三点共线时,即点在图中的位置时,最小.此时最小为.【练习2】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为23-.【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为,所以ππ7π[,]666x +∈, 从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-.1.已知O,A,B 是平面上的三个点,直线AB 上有一点C ,且20AC CB +=,则OC =( ) A.2OA OB - B.2OA OB -+C.2133OA OB - D.1233OA OB -+【答案】A【解析】因为20AC CB +=,所以2()()0OC OA OB OC -+-=, 所以OC =2OA OB -, 故选:A.2.已知G 是ABC ∆的重心,D 是AB 的中点 则GA GB GC +-=____________ 【答案】4GD【解析】因为D 是AB 的中点,G 是ABC ∆的重心,则2CG GD =,即2GC GD =- 又1()2GD GA GB =+,所以2GA GB GD +=, 所以2(2)4GA GB GC GD GD GD +-=--=, 故答案为:4GD .3.在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.4.在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________. 【答案】1-.【解析】建立如图所示的直角坐标系,则B ,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE y x =-,直线AE的斜率为-y x =.由(3y x y ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.5.已知数列{}n a 为等差数列,且满足12107OA a OB a OC =+,若AB AC λ=(R λ∈),点O 为直线BC 外一点,则1009a =( )A . 3B . 2C . 1D .12【答案】D6.设向量a,b 满足|+|=a b ||-=a b ,则a ·b =( ).A .1B .2C .3D .5 【解析】∵|+|=a b (a +b )2=10,即a 2+b 2+2a ·b =10.①∵||-=a b ,∴(a -b )2=6,即a 2+b 2-2a ·b =6.②由①②可得a ·b =1.故选A.7.已知a =(3,2),b =(2,-1),若λa +b 与a +λb 平行,则λ=________.【解析】 △a =(3,2),b =(2,-1),△λa +b =(3λ+2,2λ-1),a +λb =(3+2λ,2-λ),△λa +b △a +λb ,△(3λ+2)(2-λ)=(2λ-1)(3+2λ), 解得λ=±18.在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2 D .211 【解析】如图,取AE 的中点G ,连接BG △AE →=23AD →,BF →=13BC →,△AG →=12AE →=13AD →=13BC →=BF →,△EF →=GB →,△|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,△|EF →|=|GB →|=25,故选B.9.已知锐角△ABC 的外接圆的半径为1,△B =π6,则BA →·BC →的取值范围为__________.【解析】如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,△B =π6.由正弦定理得a sin A =c sin C =2,△a=2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,△BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A=32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. △π3<A <π2,△π3<2A -π3<2π3,△32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,△3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32. △BA →·BC →的取值范围为⎥⎦⎤ ⎝⎛+233,3.10.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心 【解析】因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心. 【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a △b =(a 1,a 2)△(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m △OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( ) A .4 B .2 C .2 2 D .23【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m △OP →+n △(x ,y )=⎪⎭⎫ ⎝⎛4,21△(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π△(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π△⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π△y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x △⎥⎦⎤⎢⎣⎡3,6ππ时,由π6≤x ≤π3△π3≤2x ≤2π3△0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1△2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 12.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( ) A .-2 B .-32 C .-43 D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标, 则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以 P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y )所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.13.已知O 是正△ABC 的中心.若CO AB ACλμ→→→=+,其中λ, R μ∈,则λμ的值为( ) A . 14-B . 13-C . 12- D . 2 【解析】由题O 是正△ABC 的中心,延长CO 交AB 与.D 则()()221112,332333CO CD CA CB AC AB AC AB AC ⎡⎤==+=-+-=-⎢⎥⎣⎦ 即121,,.332λλμμ==-=- 故选C.。

巧用基底法和坐标法解决平面向量数量积问题

下来 ,进行 比较,哪些是对 的? 活动3:各小组代表将本组画的平面图形画在黑板上 ,
每组轮流进行 ,要求不重复。 经过充分地交流与合作 ,最后可以达成正方体的平面
展开图共有11种的共识。
问题二 :请将这 11种平 面图形进行分类 ,你发现其 中 蕴含 的规 律 了吗 ?
学生在实验操作 中有分工 、有合作 ,人人参与活动,并 且通过 自己的思考 、实践以及与他人 的讨论 ,寻求合理 的 答案 ,使他们获得了数学活动的经验 ,体会到合作 的乐趣 , 提高了学生的参与机会。
五 、利用有 效 的评 价 。促 进学 生持 续 参与 有效的评价在学生学习过程 中能起到激励、调控和导 向的作用。应该在评价中关注以下四个方面 : 第一 ,学生参与活动的态度。包括对问题情景关注和 参 与 活动 积极 主 动 。 第二 ,学生参与活动的广度。注意考虑学生参与学习 活动的人数、活动的方式多样、活动的时间充分等。 第三 ,学生参与活动的深度。重点考虑学生能否提出 有意义的问题或能发表个人见解 、能否按要求正确操作 以 及能否倾听 、协作 、分享等因素。 第四,学生参与与他人的合作。从以下两点来进行评 价 :(1)学生参与小组学习时间、次数 ;(2)小组学 习和讨论 是实质性的交流 。. 附:有效参与的学生评价指标(0~5分 )
丁x/-Y ),接下 来 缺
向量并不具备上述条件 ,比如 :
M点坐标 了.
【学法指导 】
巧用基底法和坐标法解 决平 面向量数量积 问题
顾俊华
(江苏省吴县中学 ,江苏 吴县 215151)
摘要 :本文主要介绍 了在求平 面向量数量积时的两种 常用的方法 :基底法和坐标法 ,对这 两种方法的使用条件做 了
适 当的 阐述 ,并通过对比对这两种方法之间的差异和联 系进行 了适 当的分析.

板块三 高考提能 平面向量问题doc

平面向量咨询 题一、“基底法〞与“坐标法〞解决平面向量咨询 题,首先要表示向量.解题中通常有“基底法〞与“坐标法〞两种方法表示向量.1.已经知道正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,那么P A →·PB →的取值范围是________. 答案 [-2,6]解析 如图建立平面直角坐标系,令C (-2,0),A (1,3),B (1,-3),设P (2cos θ,2sin θ),θ∈[0,2π),那么P A →·PB →=(2cos θ-1)2+4sin 2θ-3=2-4cos θ,∴P A →·PB →的取值范围是[-2,6].2.如图,在等腰梯形ABCD 中,已经知道AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分不在线段BC 和DC 上.假设BE →=λBC →,DF →=19λDC →,那么AE →·AF →的最小值为________.答案2918解析 方法一 基底法 因为DF →=19λDC →,DC →=12AB →,因此 CF →=DF →-DC →=19λDC →-DC →=1-9λ9λDC →=1-9λ18λAB →,AE →=AB →+BE →=AB →+λBC →.又AF →=AB →+BC →+CF →=AB →+BC →+1-9λ18λAB →=1+9λ18λAB →+BC →. 因此 AE →·AF →=(AB →+λBC →)·⎝ ⎛⎭⎪⎫1+9λ18λAB →+BC →=1+9λ18λAB →2+λBC →2+⎝⎛⎭⎪⎫1+λ·1+9λ18λAB →·BC → =1+9λ18λ×4+λ+19+9λ18×2×1×cos 120° =29λ+12λ+1718≥229λ·12λ+1718=2918. 当且仅当29λ=12λ,即λ=23(舍负)时取等号,故AE →·AF →的最小值为2918.方法二 坐标法以线段AB 的中点O 为坐标原点,AB 所在的直线为x 轴,建立如下图的平面直角坐标系xOy ,那么A (-1,0),B (1,0),C ⎝⎛⎭⎫12,32,D ⎝⎛⎭⎫-12,32.因此 AE →=AB →+BE →=AB →+λBC →=⎝⎛⎭⎫2-12λ,32λ.AF →=AD →+DF →=AD →+19λDC →=⎝⎛⎭⎫12+19λ,32,因此 AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+32×32λ =1718+λ2+29λ≥1718+2λ2·29λ=2918. 当且仅当29λ=12λ,即λ=23(舍负)时取等号,故AE →·AF →的最小值为2918.3.在△ABC 中,已经知道AB =10,AC =15,∠BAC =π3,点M 是边AB 的中点,点N 在直线AC 上,且AC →=3AN →,直线CM 与BN 相交于点P ,那么线段AP 的长为________.答案 37解析 方法一 设BP →=λBN →,CP →=μCM →,λ∈(0,1),μ∈(0,1),如图(1), AP →=AB →+BP →=AB →+λBN →=AB →+λ(BA →+AN →) =AB →+λ⎝⎛⎭⎫-AB →+13AC →=(1-λ)AB →+λ3AC →. AP →=AC →+CP →=AC →+μCM →=AC →+μ(CA →+AM →) =AC →+μ⎝⎛⎭⎫-AC →+12AB →=(1-μ)AC →+μ2AB →. 因此⎩⎨⎧1-λ=μ2,λ3=1-μ,解得⎩⎨⎧λ=35,μ=45.即AP →=25AB →+15AC →.因此 |AP →|2=125(4×|AB →|2+2×2AB →·AC →+|AC →|2)=125⎝⎛⎭⎫4×100+2×2×10×15×12+225 =37,故|AP →|=37.方法二 因为B ,P ,N 三点共线, 有AP →=xAB →+(1-x )AN →=xAB →+1-x 3AC →.同理,因为C ,P ,M 三点共线, 有AP →=yAM →+(1-y )AC →=y 2AB →+(1-y )AC →,依照向量相等的充要条件,有⎩⎪⎨⎪⎧x =y2,1-x3=1-y .解得⎩⎨⎧x =25,y =45,因此AP →=25AB →+15AC →.(下同方法一)方法三 以A 为坐标原点,AC 所在直线为x 轴,建立如图(2)所示的平面直角坐标系,由已经知道可得C (15,0),N (5,0),B (5,53),M ⎝⎛⎭⎫52,532,因此BN 所在直线方程为x =5.CM 所在直线方程为y =-35(x -15). 联立方程组⎩⎪⎨⎪⎧x =5,y =-35(x -15),解得⎩⎪⎨⎪⎧x =5,y =23,故P (5,23), 故AP =52+(23)2=37.4.假设a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,那么|a +b -c |的最大值为________. 答案 1解析 方法一 基底法取向量a ,b 作为平面向量的一组基底, 设c =m a +n b .由|c |=1,得|m a +n b |=1, 可得(m a )2+(n b )2+2mn a ·b =1, 由题意,知|a |=|b |=1,a ·b =0. 整理得m 2+n 2=1.而a -c =(1-m )a -n b ,b -c =-m a +(1-n )b . 故由(a -c )·(b -c )≤0.得[(1-m )a -n b ]·[-m a +(1-n )b ]≤0, 展开,得m (m -1)a 2+n (n -1)b 2≤0, 即m 2-m +n 2-n ≤0. 又m 2+n 2=1,故m +n ≥1.而a+b-c=(1-m)a+(1-n)b.故|a+b-c|2=[(1-m)a+(1-n)b]2=(1-m)2a2+2(1-m)(1-n)a·b+(1-n)2b2=(1-m)2+(1-n)2=m2+n2-2(m+n)+2=3-2(m+n).又m+n≥1,因此3-2(m+n)≤1.故|a+b-c|2≤1,即|a+b-c|≤1.故|a+b-c|的最大值为1.方法二坐标法因为|a|=|b|=1,a·b=0,因此a⊥b.令OA→=a,OB→=b,OC→=c,因为a⊥b.因此OA⊥OB.分不以OA,OB所在的直线为x轴、y轴建立如下图的平面直角坐标系.那么a=(1,0),b=(0,1),那么A(1,0),B(0,1).设C(x,y),那么c=(x,y),且x2+y2=1.那么a-c=(1-x,-y),b-c=(-x,1-y).故由(a-c)·(b-c)≤0,得(1-x)×(-x)+(-y)×(1-y)≤0.整理,得1-x-y≤0,即x+y≥1.而a+b-c=(1-x,1-y).那么|a+b-c|=(1-x)2+(1-y)2=3-2(x+y).因为x+y≥1,因此3-2(x+y)≤1.即|a+b-c|≤1.因此 |a +b -c |的最大值为1. 二、向量共线的充要条件向量共线的充要条件:O 为平面上一点,那么A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).5.如图,已经知道点G 是△ABC 的重心,假设PQ →过△ABC 的重心,记CA →=a ,CB →=b ,CP →=m a ,CQ →=n b ,那么1m +1n=________.答案 3解析 CG →=23CM →=13a +13b =13m CP →+13n CQ →,∵P ,G ,Q 三点共线,∴13m +13n =1,∴1m +1n=3.6.如图,在Rt △ABC 中,P 是歪 边BC 上一点,且满足BP →=12PC →,点M ,N 在过点P 的直线上,假设AM →=λAB →,AN →=μAC →,λ,μ>0,那么λ+2μ的最小值为________.答案 83解析 由题意知AP →=23AB →+13AC →=23λAM →+13μAN →,因为M ,N ,P 三点共线,因此 23λ+13μ=1.因此λ+2μ=(λ+2μ)·⎝⎛⎭⎫23λ+13μ=43+4μ3λ+λ3μ≥43+24μ3λ×λ3μ=83. 当且仅当4μ3λ=λ3μ,即λ=43,μ=23时取等号.故λ+2μ的最小值为83.7.如图,A ,B ,C 是圆O 上三点,线段CO 的延长线与线段BA 的延长线交于圆O 外的点D .假设OC →=mOA →+nOB →,那么m +n 的取值范围是________.答案 (-1,0)解析 由题意可设OD →=xOC →(x <-1), ∴OD →=xm ·OA →+nx ·OB →, ∵A ,B ,D 三点共线, ∴mx +nx =1, ∴m +n =1x ,又x <-1,∴-1<m +n <0,故m +n 的取值范围是(-1,0).8.在△ABC 中,已经知道AB →·AC →=9,sin B =cos A ·sin C ,S △ABC =6,P 为线段AB 上的点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,那么xy 的最大值为________.答案 3解析 由已经知道得sin B =sin(A +C ) =sin A cos C +cos A sin C =cos A ·sin C , ∴sin A cos C =0,又∵sin A ≠0,∴cos C =0, 又0<C <180°,∴C =90°, ∴AB →·AC →=|AC →|2=9,∴|AC →|=3, 又S △ABC =12|CB →||AC →|=6,∴|CB →|=4,∴CP →=x ·CA →|CA →|+y ·CB →|CB →|=x 3CA →+y 4CB →,又P 在线段AB 上,∴x 3+y4=1, ∴1≥2x 3·y4,即xy ≤3, 当且仅当x 3=y4,即x =32,y =2时取等号,故(xy )max =3.三、极化恒等式遇到共点向量的数量积咨询 题,考虑极化恒等式: a ·b =14[(a +b )2-(a -b )2].9.已经知道△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,那么P A →·(PB →+PC →)的最小值是________. 答案 -32解析 设BC 的中点为O ,OA 的中点为M ,连结OP ,PM ,∴P A →·(PB →+PC →)=2PO →·P A →=2|PM →|2-12|AO →|2=2|PM →|2-32≥-32,当且仅当M 与P 重合时取等号.10.在△ABC 中,已经知道∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分不是BC ,AC 上的动点,且EF =1,那么DE →·DF →的最小值为________. 答案154解析 设EF 的中点为M ,连结CM ,DM ,那么CM =12,即点M 在如下图的圆弧上,那么DE →·DF →=|DM →|2-|EM →|2=|DM →|2-14≥⎪⎪⎪⎪CD -122-14=154.11.已经知道MN 是边长为26的等边△ABC 的外接圆的一条动弦,MN =4,P 为△ABC 的边上的动点,那么MP →·PN →的最大值为________. 答案 4解析 取MN 的中点D ,那么MP →·PN →=-PM →·PN →=-⎝⎛⎭⎫PD →2-14MN →2=4-PD →2≤4,当且仅当点P 与点D 重合时取到最大值4. 12.已经知道a ,b ,c 是同一平面内的三个单位向量,且a ⊥b ,那么(c -a )·(c -b )的最大值是________. 答案 1+2解析 如图,设OA →=a ,OB →=b ,OC →=c ,M 为线段AB 的中点,那么有OA ⊥OB , (c -a )·(c -b )=AC →·BC →=CA →·CB →=CM →2-MB →2 =CM →2-⎝⎛⎭⎫222≤⎝⎛⎭⎫1+222-12=1+ 2.四、向量与三角形的“四心〞 三角形的“四心〞:外心(外接圆圆心):三边垂直平分线的交点; 内心(内接圆圆心):三条角平分线的交点; 重心:三条中线的交点; 垂心:三条高线的交点.以下填空题,在“外心〞“内心〞“重心〞“垂心〞中选填.13.已经知道O 是△ABC 所在平面上的一点,假设(OA →+OB →)·AB →=(OB →+OC →)·BC →=(OC →+OA →)·CA →=0,那么O 点是△ABC 的________. 答案 外心解析 由已经知道得(OA →+OB →)·(OB →-OA →)=(OB →+OC →)·(OC →-OB →)=(OC →+OA →)·(OA →-OC →)=0⇔OB →2-OA →2=OC →2-OB →2=OA →2-OC →2=0 ⇔|OA →|=|OB →|=|OC →|.因此 O 点是△ABC 的外心.14.已经知道O 是△ABC 所在平面上的一点,假设OA →+OB →+OC →=0,那么O 点是△ABC 的________. 答案 重心解析 如下图,假设OA →+OB →+OC →=0,那么OA →+OB →=-OC →,以OA →,OB →为邻边作平行四边形OAC 1B ,设OC 1与AB 交于点D ,那么D 为AB 的中点,有OA →+OB →=OC 1→,得OC 1→=-OC →,即C ,O ,D ,C 1四点共线,即CD 为△ABC 的中线,同理AE ,BF 亦为△ABC 的中线,因此 O 是△ABC 的重心.15.已经知道O 是△ABC 所在平面上的一点,假设OA →·OB →=OB →·OC →=OC →·OA →,那么O 点是△ABC 的________. 答案 垂心解析 由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,即OB →·(OA →-OC →)=0,得OB →·CA →=0,因此 OB →⊥CA →,同理可证OC →⊥AB →,OA →⊥BC →. ∴O 是△ABC 的垂心.16.已经知道O 是△ABC 所在平面上的一点,a ,b ,c 为角A ,B ,C 的对边,假设aOA →+bOB →+cOC →=0,那么O 点是△ABC 的________. 答案 内心解析 因为OB →=OA →+AB →,OC →=OA →+AC →, 那么(a +b +c )OA →+bAB →+cAC →=0, 得AO →=bc a +b +c ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|.因为AB →|AB →|与AC →|AC →|分不为AB →和AC →方向上的单位向量,设AP →=AB →|AB →|+AC →|AC →|,那么AP 平分∠BAC .又AO →,AP →共线,知AO 平分∠BAC ,同理可证BO 平分∠ABC ,CO 平分∠ACB ,因此 O 点是△ABC 的内心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 c 、 2




积 等于该 直角三 角形 面积 的一半. 下面再来看一般三角形 的情形. 如 图 4所 示 , 在 三 角 形 AB C的 内 部 作 一 个 矩 形 DE F G, 其中 E F在边 B C上 , 点 D、 G分别 在边 A B、 AC
上, 设B C =a 、 AC=6 、 AB=c 、 E F =x , 矩形 D E F G 的 面
结论 : 当三 角形 内接矩形的 一边长等 于它所 对的该 三 角形的边 长 的一半 时, 内接 矩 形 的 面 积 最 大 , 最大 面 积等 于该三 角形 面积的一半.
积为 Y, 当2 2 取何值 时 , Y的值最大 ?最大值是多少?
解: 过点 A作 A M_ l _ B C , 垂 足为 M , 交 D G于点 N,

解: 。 . 。 = + 一蕊 + 商 一 +, / g ( 赢
) 一( 卜 ).
・ . .


解: 由A A - - P —

和 .
.(
一 . 商 可得(

).
: = : 一
一A
) .

- A - B—r ( 卜 ) +
的 向量都可 以作为平面向量 的一组基 底 , 平 面内 的任一 向量都可 以由这组基底 唯一表示. 在解 决与平 面 向量有 关 问题 时 , 抓住 基底 , 恰 当选 择基底 可使很 多 问题迎 刃
而解.
【 例2 1 如图,  ̄AA B C中, A D A _ A B, 百 一 商 ,
● ●
] .
一( 卜
不妨设 I l 一1 , 则有 。 一2 x +1 =o
解 得 一1 一
) - A / ) . +
一 .
在解 决与平 面向量有关 的计算 问题 时 , 结 合 已知 条
铷 + .
Y . N为点 P在线段 A B上, 所以 0 < <1 . 因此 的 值为 卜 2.
位线时 , 矩形布料的面积 最大 , 即E H=÷ B C=6 0 F i l m

则有 一_『_ h -F G

时, 矩形布料的最大面积为 2 4 0 mm .
( 责任编辑 金 铃)
即 FG一 旦 ( 口 ~z )

3 2
中学教学参考 2 0 1 3 年1 月 总第 1 4 6 期
设 AM =h,
综合上述情 况可得 : 三角形 内接 矩形 的一边长 等于 它所对的该三角形的边长的一半 时 , 内接矩 形的 面积最 大, 最大面积等于该 三角形面积的一半. 由此可知 , 只要矩形布料的一边 E H 是△A8 C的中

由题 可 知 △AD ( / ) △A B C,

) 。



Hale Waihona Puke ‰一 ‘
当 一 h

2× ( 一 )
一 号
B E M F C
结论 : 当直角三角形 内接矩 形的一 边长等 于该直 角
三角形斜 边 长的一半 时 , 内接 矩 形 的 面 积 最 大 , 最大 面
时,
a h
一 一 一
图 4
件将题 目中的向量巧妙地用一组适 当的基底 来表示 , 可 使问题很快得到解决.
( 责任编辑 金 铃)
ab

・ ・
当 z 一 一

一 号时 ,
a O 一 4 1 上 一 — 2 5
鲁( a - x ) , 即 一 一 鲁 z 。 +






中学教学 参考
解 题方 法与技 巧
妙 用 基 底 巧 解 平 面 向量 题
河北 沧 州市第一 中学( 0 6 1 0 0 0 ) 张 丽霞
由平面 向量基本定 理可知 , 平 面内任意两 个不共线
注: 通 常选择 与 已知条件 相 关的 , 且 已知模 长和 夹
角 的 两 向 量作 为基 底 .
- A bI 一1 , 则 . 一
分析 : 解 该 题 的关 键 是 如
【 例1 】 在 等边 AAB C中, 点 P在线 段 AB 上 , 满
足 一
, 若C - - P・
一 ・ 菇 , 则实数 的值是 何充分结合 图形 与 已知 条件将 用 、 蕊 表示 , 不 能 忽 视
- A - b・ 一0 这个 隐含条件 的应 用.
分析 : 若直接利 用数 量积 的定 义求 解相 对 较繁琐 ,
而通过分析发 现 , 在 等边 AAB C中, A百和A 的长度 相
等, 夹角为 6 O 。 , 因此选择 以A百、 A 作 为基底 , 将 已知条 件转化得 出 的方程求解 可使思路清 晰 , 计算简单.
相关文档
最新文档