平面向量单元测试题(含答案)

合集下载

重点中学平面向量单元测试题(含答案)

重点中学平面向量单元测试题(含答案)

平面向量单元测试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.向量a =(1,-2),向量a 与b 共线,且|b |=4|a |.则b =( )A .(-4,8)B .(-4,8)或(4,-8)C .(4,-8)D .(8,4)或(4,8)2.已知a=(2,1),b =(x ,1),且a +b 与2a -b 平行,则x 等于( )A .10B .-10C .2D .-23.已知向量a 和b 满足|a |=1,|b |=2,a ⊥(a -b ).则a 与b 的夹角为( ) A .30º B .45º C .75º D .135º4.设e 1、e 2是两个不共线向量,若向量 a =3e 1+5e 2与向量b =m e 1-3e 2共线,则m 的值等于( )A .- 53B .- 95C .- 35D .- 595.设□ABCD 的对角线交于点O ,AD → =(3,7),AB → =(-2,1),OB → =( )A .( -52 ,-3)B .(52 ,3)C .(1,8)D .(12 ,4) 6.设a 、b 为两个非零向量,且a ·b =0,那么下列四个等式①|a |=|b |;②|a +b |=|a -b |; ③a ·(b +a )=0;④(a +b )2=a 2+b 2.其中正确等式个数为( )A .0B .1C .2D .37.下列命题正确的是( )A .若→a ∥→b ,且→b ∥→c ,则→a ∥→c B .两个有共同起点且相等的向量,其终点可能不同 C .向量AB 的长度与向量BA 的长度相等D .若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线8.a =),(21-,b =),(1-1,c =),(2-3用a 、b 作基底可将c 表示为c =p a +q b ,则实数p 、q 的值为( )A .p =4 q =1B . p =1 q =4C . p =0 q =4D . p =1 q =09.设平面上四个互异的点A 、B 、C 、D ,已知(DB → +DC → -2DA → )·(AB→ -AC → )=0.则ΔABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.设()()2211,,,y x b y x a ==定义一种向量积()()().,,,21212211y y x x y x y x b a =⊗=⊗已知,0,3,21,2⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=πn m 点()y x P ,在x y sin =的图象上运动,点Q 在()x f y =的图象上运动,且满足(),为坐标原点其中O n OP m OQ +⊗=则()x f y =的最大值A 及最小正周期T 分别为( ) A .π,2 B .,2π4 C .,21π4 D .π,21二、填空题:每小题5分,共25分.11.已知()2,1,10==b a ,且b a //,则a 的坐标为_______ 12.已知向量a 、b 满足a=b =1,b a 23-=3,则 b a +3 =13.已知向量a =( 2 ,- 2 ),b =( 3 ,1)那么(a +b )·(a -b )的值是 . 14.若a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为 .15.若对n 个向量 a 1,a 2,a 3,…,a n ,存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1 a 1+k 2a 2+…+k n a n =0成立,则称a 1,a 2,…,a n 为“线性相关”.依此规定,能使a 1=(1,0),a 2=(1,-1),a 3=(2,2)“线性相关”的实数k 1,k 2,k 3 依次可以取 . 三、解答题16.(本题满分13分)已知向量a =(sin 2x ,cos 2x),b =(sin 2x ,1), )(x f )=8a ·b .(1)求)(x f 的最小正周期、最大值和最小值.(2)函数y=)(x f 的图象能否经过平移后,得到函数y=sin4x 的图象,若能,求出平移向量m ;若不能,则说明理由.17.(本题满分12分)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c .已知222a c b -=,且sin 4cos sin B A C =,求b .18.(本题满分13分)如图,在矩形ABCD 中,,,22==BC AB 点E 为BC 的中点,点F 在边CD 上,若,2=⋅AF AB 求BF AE ⋅的值.19. (本题满分12分)已知向量OA→ =3i -4j ,OB → =6i -3j ,OC → =(5-m )i -(4+m )j ,其中i 、j 分别是直角坐标系内x 轴与y 轴正方向上的单位向量.(1)若A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ΔABC 为直角三角形,且∠A 为直角,求实数m 的值.20.(本题满分12分)已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ; (2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈,若0=⋅a n ,试求||b n +的取值范围.21. (本题满分13分)已知向量a 、b 、c 、d ,及实数x 、y ,且|a |=1,|b |=1,c =a +(x 2-3)b ,d =-y a +x b ,如果a ⊥b ,c ⊥d ,且|c |≤10 .(1)求x 、y 的函数关系式y =f (x )及定义域;(2)判断f (x )的单调性,指出单调区间,并求出函数的最大值、最小值.ECA BDF答案一、选择题1.B2.C3.B4.B5.A6.C7.C8.B9. B 10. D 二、填空题11.),),((22-2-22,2 12.23 13.0 14.- 65515.-4,2,1 . 16.解:(1)f(x)=8a ·b =8(sin 2x ,cos 2x)·(sin 2x ,1) = 8(sin 4x +cos 2x)= 2(1-cos2x)2+4(1+cos2x) =2(1-2cos2x +cos 22x)+4+4cos2x =6+2cos 22x=7+cos4x .∴f(x)的最小正周期为最大值为8,最小值为6.(2)假设它的图象可以按向量m =(h,k)平移后得到y=sin4x 的图象.故按向量平移后便得到y=sin4x 的图象.17.3818.略19. (1)AB → =(3,1) ,AC → =(2-m ,-m ),AB → 与AC →不平行则m ≠1 .(2)AB → · AC → =0 m =2320.解:(1)令⎩⎨⎧-==⎩⎨⎧=-=⇒⎪⎩⎪⎨⎧-=+⋅-=+=1001143cos 21),(22y x y x y x y x y x n 或则π )1,0()0,1(-=-=∴n n 或 3分(2))1,0(0),0,1(-=∴=⋅=n a n a 4分)1sin ,,(cos -=+x x b n 6分b n +=222)1(sin cos -+x x =x sin 22-=)sin 1(2x -; 8分∵ ―1≤sinx ≤1, ∴ 0≤b n +≤2, 10分21. 提示:(1) 由 |c |≤10 ,及a ·b = 0得 -6≤ x ≤6 又由c ⊥d 得 y =x 3-3x(2)单调增区间为[-6,-1]、[1,6],单调减区间为[-1,1] 最大值为f (6)=36,最小值为f (-6)=-36 .。

平面向量单元测试题及答案

平面向量单元测试题及答案

平面向量单元测试题(一)2一,选择题:1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC ,则A 、B 、C 、D 四点构成平行四边形C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。

B 、两个有共同起点且相等的向量,其终点可能不同。

C 、向量AB 的长度与向量BA 的长度相等,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。

4,已知向量(),1m =a ,若,a=2,则m =( )A .3 C. 1± D.3±5,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,7,在ABC ∆中,若=+,则ABC ∆一定是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B 060C 030D 90o二,填空题:(5分×4=20分)9。

已知向量a 、b 满足==1,a 3-=3,则a +3=10,已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =11,.已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =12,.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像, 则平移向量a 是(用坐标表示)三,解答题:(10分×6 = 60分)13,设),6,2(),3,4(21--P P 且P 在21P P =,,则求点P的坐标14,已知两向量),1,1(,),31,,31(--=-+=b a 求a 与b 所成角的大小,15,已知向量a =(6,2),b =(-3,k ),当k 为何值时,有(1),a ∥b ?(2),a ⊥b ?(3),a 与b 所成角θ是钝角?16,设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数);(1),当点P 在x 轴上时,求实数t 的值;(2),四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由, 17,已知向量OA =(3, -4), OB =(6, -3),OC =(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.18,已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅a n ,试求||b n +的取值范围.平面向量单元测试题2答案:一,选择题:A D C D B C C A二,填空题: 9,23; 10,6; 11,13132 12,)3,2(- 三,解答题:13,解法一:设分点P (x,y ),∵P P1=―22PP ,λ=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15,∴ P(―8,15)解法二:设分点P (x,y ),∵P P1=―22PP , λ=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15)解法三:设分点P (x,y ),∵212PP P P =,∴―2=24x+, x=―8,6=23y+-, y=15, ∴ P(―8,15)14,解:a=22, b =2 , cos <a ,b >=―21, ∴<a ,b >=1200, 15,解:(1),k=-1; (2), k=9; (3), k <9,k ≠-116,解:(1),设点P (x ,0),AB =(3,2),∵OP =OA +AB t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即(2),设点P (x,y ),假设四边形OABP 是平行四边形,则有OA ∥BP , ⇒ y=x ―1,OP ∥AB ⇒ 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由OP =OA +AB t ,⇒(x,y)=(2,2)+ t(3,2),得 ∴⎩⎨⎧+=+=t y t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t ,矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。

完整版)平面向量单元测试卷及答案

完整版)平面向量单元测试卷及答案

完整版)平面向量单元测试卷及答案平面向量单元测试卷一、选择题:(本题共10小题,每小题4分,共40分)1.下列命题中的假命题是()A、AB与BA的长度相等;B、零向量与任何向量都共线;C、只有零向量的模等于零;D、共线的单位向量都相等。

2.若a是任一非零向量,b是单位向量;①|a|。

|b|;②a∥b;③|a|。

|b|;④|b|= ±1;⑤a=|a|b,其中正确的有()A、①④⑤B、③C、①②③⑤D、②③⑤3.设a,b,c是任意三个平面向量,命题甲:a+b+c=0;命题乙:把a,b,c首尾相接能围成一个三角形。

则命题甲是命题乙的()A、充分不必要条件B、必要不充分条件C、充要条件D、非充分也非必要条件4.下列四式中不能化简为AD的是(A、(AB+CD)+BCB、(AM+MB)+(BC+CD)C、(AC+AB)+(AD-CB)D、OC-OA+CD5.设a=(-2,4),b=(1,-2),则(A、a与b共线且方向相反B、a与b共线且方向相同C、a与b不平行D、a与b是相反向量6.如图1,△ABC中,D、E、F分别是边BC、CA和AB 的中点,G是△ABC中的重心,则下列各等式中不成立的是()A、BG=2BE/3B、DG=AG/2C、CG=-2FGD、DA+FC=BC7.设a=(-2,1-cosθ),b=(1+cosθ,-4),且a∥b,则锐角θ=( )A、π/4B、π/6C、π/3D、5π/6 或7π/68.若C分AB所成比为-3,则A分CB所成的比是(A、-3/2B、3/2C、-2/3D、-29.XXX<0,则a与b的夹角θ的范围是()A、[π/2,π)B、[0,π/2)C、(π/2,π)D、(0,π/2]10.设a与b都是非零向量,若a在b方向的投影为3,b 在a方向的投影为4,则a的模与b的模之比值为()A、3/4B、4/3C、3/7D、4/7cos(-)a·b=cos(-)=1/2sin(-)=±√3/2又∵∈(,),=,且sin(-)>0sin(-)=√3/2π/3sin cos-cos sin=1/2sin(+)=√3/22π/3sin=√3/217.(1)|a+b|=|e1+e2|=√2a+b|2=2a|2+|b|2+2a·b=2a·b=-1/2又kab·(a-3b)=0ka·a-3kb·b=0k=9/52)ka·b+3kb·b=0k=-3/5四、19.(1)设所求向量为c,则c·a=0,c·b=0 c·(a+b)=0又∵a+b=(1,1,1),∴c·(1,1,1)=0c与(1,1,1)垂直又∵c·(a-b)=0c·(1,-1,0)=0c与(1,-1,0)垂直c∥(0,0,1)c=k(0,0,1)又∵c·a=0k=-1/3所求向量为(0,0,1/3)2)设所求向量为c,则c∥a×b又∵a×b=(1,1,1)c∥(1,1,1)c=k(1,1,1)又∵c·a=0k=-1/3所求向量为(-1/3,-1/3,-1/3)165∴cos(α-β)=cosαcosβ+sinαsinβcosαcosβ+sinαsinβcos(α-β)∵α∈(-π/2,π/2)sin(α-β)=-sinα=-(-cos(α-β)sinβ/cosβ)=cos(α-β)sinβ/cosβ5/4*sinβ+3/5*cosβ17.解:1) |a+b|²=|-2e₁+4e₂|²=4e₁²+16e₂²-8e₁e₂又e₁⊥e₂,e₁·e₂=0,e₁²+e₂²=1a+b|²=20a+b|=√20=2√5又|e₁|=|e₂|=1a|=|b|=√22) (ka+b)·(a-3b)=k|a|²-2k(a·b)+b·a-3|b|²又|a|=|b|=√2ka+b)·(a-3b)=2k-6+2=2k-4又(a+b)·(a-3b)=-4k=1918.解:1)a·b=cosx·cosx-sinx·sinx=cos2xa+→b|=√(4cos²x+4)=2√(cos²x+1)2)f(x)=a·b-2λ|a+b|=cos2x-4λcosx2cos²x-1-4λcosx2(cosx-λ)²-2λ²-1当λ<0时,f(x)无最小值当0≤λ≤1时,f(x)在cosx=λ时取得最小值-2λ²-1当λ>1时,f(x)在cosx=1时取得最小值1-4λ要使f(x)取得最小值-3,需解方程-2λ²-1=-3,解得λ=√2/2。

《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

即(2te1+7e2)·(e1+te2)<0.整理得:2te21+(2t2+7)e1·e2+7te2<0.(*)
∵|e1|=2,|e2|=1,〈e1,e2〉=60°.∴e1·e2=2×1×cos 60°=1 1
∴(*)式化简得:2t2+15t+7<0.解得:-7<t<- . 2
当向量 2te1+7e2 与 e1+te2 夹角为 180°时,设 2te1+7e2=λ(e1+te2) (λ<0).
5
3 由 5c=-3a-4b 两边平方得 a·b=0,∴a·(b+c)=a·b+a·c=- .故选 B.
5
【第 12 题解析】若 a=(m,n)与 b=(p,q)共线,则 mq-np=0,依运算“⊙”知 a⊙b=0,故 A 正确.由
于 a⊙b=mq-np,又 b⊙a=np-mq,因此 a⊙b=-b⊙a,故 B 不正确.对于 C,由于 λa=(λm,λn),
k+t2 y=-ka+tb,且 x⊥y,试求 的最小值.
t



20.(本小题满分 12 分)设OA=(2,5),OB=(3,1),OC=(6,3).在线段 OC 上是否存在点 M,使 MA⊥MB?
若存在,求出点 M 的坐标;若不存在,请说明理由.
21.(本小题满分 12 分)设两个向量 e1、e2 满足|e1|=2,|e2|=1,e1、e2 的夹角为 60°,若向量 2te1+7e2 与 e1+te2 的夹角为钝角,求实数 t 的取值范围.
14.a,b 的夹角为 120°,|a|=1,|b|=3,则|5a-b|=________.
1 15.已知向量 a=(6,2),b=(-4, ),直线 l 过点 A(3,-1),且与向量 a+2b 垂直,则直线 l 的方程为

平面向量单元测试卷及答案

平面向量单元测试卷及答案

《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。

2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。

则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CG D 、→-→-→-=+BC 21FC 32DA 317.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA B C D EFG ͼ1A 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。

平面向量单元测试(含答案)

平面向量单元测试(含答案)

《平面向量》单元测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21--C .BA BC 21-D .BA BC 21+2.与向量a ==⎪⎭⎫ ⎝⎛b ,21,27⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是( )A .⎪⎭⎫- ⎝⎛53,54B .⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 C .⎪⎭⎫- ⎝⎛31,322 D .⎪⎭⎫-⎝⎛31,322或⎪⎭⎫⎝⎛-31,322 3.设a r 与b r 是两个不共线向量,且向量a b λ+r r 与()2b a --r r共线,则λ=( )A .0B .-1C .-2D .0.54.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( )A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)5.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量 的数量积中最大的是( )A .3121P P P P ⋅B .4121P P P P ⋅C .5121P P P P ⋅D .6121P P P P ⋅ 6.在OAB ∆中,OA a =u u u r ,OB b =u u u r ,OD 是AB 边上的高,若AD AB λ=u u u r u u u r,则实数λ等 于 ( )A .2()a b a a b⋅-- B .2()a a b a b⋅--C .()a b a a b⋅--D .()a a b a b⋅--7.设1(1,)2OM =u u u u r ,(0,1)ON =u u u r ,则满足条件01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r 的动点P 的 变化范围(图中阴影部分含边界)是( )A .B .C .D . 8.将函数f (x )=tan(2x +3π)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =( )A .(,16π-)B .(,16π-)C .(,112π)D .(,112π--)9.已知向量a r 、b r 、c r 且0a b c ++=r r r r ,||3a =r ,||4b =r ,||5c =r .设a r 与b r 的夹角为1θ,b r与c r 的夹角为2θ,a r 与c r的夹角为3θ,则它们的大小关系是( )A .123θθθ<<B .132θθθ<<C .231θθθ<<D .321θθθ<<10.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2λ<⋅b a 恒成立时实数λ的取值范围是( )A .2>λ或2-<λB .2>λ或2-<λC .22<<-λD .22<<-λ11.已知1OA =u u u r,OB =u u u r ,0OA OB ⋅=u u u r u u u r ,点C 在AOB ∠内,且30oAOC ∠=,设OC mOA nOB =+u u u r u u u r u u u r (,)m n R ∈,则mn等于( )A .13B .3 C.3D12.对于直角坐标平面内的任意两点11(,)A x y ,22(,)B x y ,定义它们之间的一种“距离”:2121.AB x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=③在ABC ∆中,.AC CB AB +> 其中真命题的个数为( )A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r,M 为BC 的中点,则MN =u u u u r _______.(用a b r r 、表示)14.已知()()2,1,1,1,A B O --为坐标原点,动点M 满足OM mOA nOB =+u u u u r u u u r u u u r,其中,m n R ∈且2222m n -=,则M 的轨迹方程为 .15.在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .16.已知向量)3,5(),3,6(),4,3(m m ---=-=-=,若点A 、B 、C 能构成三角形,则实数m 满足的条件是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量)sin 1,sin 1(x x -=,)2cos ,2(x =.(1)若]2,0(π∈x ,试判断与能否平行?(2)若]3,0(π∈x ,求函数x f ⋅=)(的最小值.18.(本小题满分12分)(2006年湖北卷)设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=,()R x x x c ∈-=,sin ,cos .(1)求函数()x f 的最大值和最小正周期;(2)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .19.(本小题满分12分)(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a⊥b,求θ;(2)求|a+b|的最大值.20.(本小题满分12分)在ABC △中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r. (1)求22AB AC +u u u r u u u r 的值;(2)当ABC △的面积最大时,求A ∠的大小.21.(本小题满分12分)(2006陕西卷)如图,三定点A (2,1),B (0,-1),C (-2,1); 三动点D ,E ,M 满足]1,0[,,,∈===t t t t (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.22.(本小题满分14分)已知点P 是圆221x y +=上的一个动点,过点P 作PQ x ⊥轴于点Q ,设OM OP OQ =+u u u u r u u u r u u u r .(1)求点M 的轨迹方程;(2)求向量OP uuu r 和OM u u u u r夹角的最大值,并求此时P 点的坐标参考答案1.21+-=+=,故选A . 2.B 设所求向量e r=(cos θ,sin θ),则由于该向量与,a b r r 的夹角都相等,故e b e a e b e a ⋅=⋅⇔=⋅||||||||7117cos sin cos sin 2222θθθθ⇔+=-⇔3cos θ=-4sin θ,为减少计算量,可将选项代入验证,可知B 选项成立,故选B .3.D 依题意知向量a b λ+r r 与-2共线,设a b λ+r rk =(-2),则有)()21(=++-k k λ,所以⎩⎨⎧=+=-0021λk k ,解得5.0=k ,选D . 4.解选B .设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩ 5.解析:利用向量数量积121(1,2,3,4,5,6)i PP PP i =u u u u r u u u rg 的几何意义:数量积121i PP PP u u u u r u u u rg 等于12P P u u u u r的长度12PP u u u u r 与1i PP u u u r 在12P P u u u u r 的方向上的投影1121cos ,i iPP PP PP <>u u u r u u u u r u u u r的乘积.显然由图可知13P P u u u u r 在12P P u u u u r 方向上的投影最大.所以应选(A).6.B (),,AD AB OD OA OB OA λλ=∴-=-u u u r u u u r u u u r u u u r Q 即得()()11,OD OA OB a b λλλλ=-+=-+u u u r u u u r u u u r又OD Q 是AB 边上的高,0OD AB ∴⋅=u u u r u u u r即()()()0,10OD OB OA a b b a λλ⋅-=∴-+⋅-=⎡⎤⎣⎦u u u r u u u r u u u r ,整理可得()2(),b a a a b λ-=⋅-即得()2a ab a bλ⋅-=-,故选B . 7.A 设P 点坐标为),(y x ,则),(y x =.由01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r得⎩⎨⎧≤≤≤+≤10220y y x ,在平面直角坐标系中画出该二元一次不等式组表示的平面区域即可,选A .8.A 要经过平移得到奇函数g(x),应将函数f(x)=tan(2x+3π)+1的图象向下平移1个单位,再向右平移)(62Z k k ∈+-ππ个单位.即应按照向量))(1,62(Z k k a ∈-+-=ππ进行平移.要使|a|最小,应取a=(,16π-),故选A .9.B 由0a b c ++=r r r r得)(+-=,两边平方得1222cos ||||2||||||θ++=,将||3a =r ,||4b =r ,||5c =r 代入得0cos 1=θ,所以0190=θ;同理,由0a b c ++=r r r r得)(b c a +-=,可得54cos 2-=θ,53cos 3-=θ,所以132θθθ<<.10. B 由已知得1||=b ,所以4||22=+=n m a ,因此)sin(sin cos 22ϕθθθ++=+=⋅n m n m b a 4)sin(4≤+=ϕθ,由于2λ<⋅恒成立,所以42>λ,解得2>λ或2-<λ.11.答案B ∵ 1OA =u u u r,OB =u u u r,0OA OB ⋅=u u u r u u u r∴△ABC 为直角三角形,其中1142AC AB ==∴11()44OC OA AC OA AB OA OB OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴31,44m n == 即3m n= 故本题的答案为B . 12.答案B 取特殊值、数形结合A BC在ABC ∆中, 90oC ∠=,不妨取A (0,1), C (0,0),B (0,1),则 ∵2121AB x x y y =-+- ∴ 1AC = 、1BC =、|10||01|2AB =-+-= 此时222AC CB +=、24AB = 、222AC CB AB +≠;AC CB AB +=即命题②、③是错误的.设如图所示共线三点11(,)A x y ,22(,)B x y ,33(,)C x y ,则1313||||||||||||AC x x y y AC CC ''-+-=+==||||||||AB B C C C C C ''''''''+++ =||||||||AB B B BC C C ''''''+++1212||||||||||||AB x x y y AB BB ''=-+-=+ 2323||||||||||||BC x x y y BC C C ''''=-+-=+∴ AC CB AB += 即命题①是正确的. 综上所述,真命题的个数1个,故本题的答案为B .13.解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12AM a b =+u u u u r r r,所以3111()()4244MN a b a b a b =+-+=-+u u u u r r r r r r r .14.2222=-y x 设),(y x M ,则),(y x =,又)1,1(),1,2(-=-=,所以由OM mOA nOB =+u u u u r u u u r u u u r 得),(),2(),(n n m m y x -+-=,于是⎩⎨⎧+-=-=nm y n m x 2,由2222m n -=消去m, n 得M 的轨迹方程为:2222=-y x . 15.2- 如图,设x AO =,则x OM -=2,所以)(+⋅OM OA OM OA ⋅⋅-=⋅=222)1(242)2(222--=-=--x x x x x ,故当1=x 时,OM mOA nOB =+u u u u r u u u r u u u r取最小值-2.AC 'CBB 'C ''16.21≠m 因为)3,5(),3,6(),4,3(m m ---=-=-=,所以),1(),1,3(m m ---==.由于点A 、B 、C 能构成三角形,所以与不共线,而当AB 与BC 共线时,有m m -=--113,解得21=m ,故当点A 、B 、C 能构成三角形时实数m 满足的条件是21≠m .17.解析:(1)若与平行,则有2sin 12cos sin 1⋅-=⋅x x x ,因为]2,0(π∈x ,0sin ≠x ,所以得22cos -=x ,这与1|2cos |≤x 相矛盾,故a 与b 不能平行.(2)由于x f ⋅=)(xx x x x x x x x sin 1sin 2sin sin 21sin 2cos 2sin 2cos sin 22+=+=-=-+=,又因为]3,0(π∈x ,所以]23,0(sin ∈x , 于是22sin 1sin 22sin 1sin 2=⋅≥+x x x x ,当xx sin 1sin 2=,即22sin =x 时取等号.故函数)(x f 的最小值等于22.18.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2,最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 19.解析:解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.20.解:(Ⅰ)由已知得:222,2 4.AB AC AB AB AC AC ⎧⋅=⎪⎨-⋅+=⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r 因此,228AB AC +=u u u r u u u r . (Ⅱ)2cos AB AC A AB AC AB AC⋅==⋅⋅u u u r u u u ru u u r u u u r u u u r u u ur , 1sin 2ABC S AB AC A =⋅u u ur u u u r △12AB =⋅u u ur u u=≤=.(当且仅当2AB AC ==u u u r u u u r 时,取等号),当ABC △1cos 2AB AC A AB AC⋅==⋅u u u r u u u ru u u r u u u r,所以3π=∠A . 解:(I )由条件知: 0a b =≠r r 且2222(2)444a b a b a b b +=++=r r r r r r r g42-=⋅, 设a b r r 和夹角为θ,则41||||cos -==b a θ, ∴1cos 4arc θπ=-,故a b r r 和的夹角为1cos 4arc π-,(Ⅱ)令)a a b -r r r和(的夹角为βQ a b a -===r r r, ∴41021cos 222=+===β∴ )a a b -r r r和(的夹角为21.解析:如图,(Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x ,y).由AD →=tAB →, BE → = t BC →,知(x D -2,y D -1)=t(-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2ty E =2t -1.∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)-2t -(-2t+2)= 1-2t. ∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) 如图, OD →=OA →+AD → = OA →+ tAB →= OA →+ t(OB →-OA →) = (1-t) OA →+tOB →,OE →=OB →+BE → = OB →+tBC → = OB →+t(OC →-OB →) =(1-t) OB →+tOC →,OM → = OD →+DM →= OD →+ tDE →= OD →+t(OE →-OD →)=(1-t) OD →+ tOE →= (1-t 2) OA → + 2(1-t)tOB →+t 2OC →.设M 点的坐标为(x ,y),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得 ⎩⎨⎧x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]22.解析:(1)设(,)P x y o o ,(,)M x y ,则(,)OP x y =o o u u u r ,(,0)OQ x =o u u u r,(2,)OM OP OQ x y =+=o o u u u u r u u u r u u u r222212,1,124x x x x x x y y y y y y⎧==⎧⎪∴⇒+=∴+=⎨⎨=⎩⎪=⎩o o o o o o Q .(2)设向量OP uuu r 与OM u u u u r的夹角为α,则22cos ||||OP OMOP OM α⋅===⋅u u u r u u u u r u u u r u u u u r 令231t x =+o,则cos α==≥当且仅当2t =时,即P点坐标为(时,等号成立.第21题解法图OP u u u r 与OM u u u u r夹角的最大值是.。

平面向量单元测试题与答案

平面向量单元测试题与答案

平面向量单元测试姓名: 班级: 学号一、选择题: 本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,3,2,==⊥b a b a且b a 23+与b a -λ垂直,则实数λ的值为---------A . ;23-B . ;23C . ;23±D . ;1 2.已知A 、B 、C 三点共线,O 是这条直线外一点,设,a OA =,b OB =,c OC =且存在实数m ,使30ma b c -+=成立,则点A 分BC 的比为 ------A . 31-B . 21-C . 31D . 213.已知向量(2,2),(4,1)OA OB ==,在x 轴上有一点P ,使AP BP 有最小值,则点P 的坐标为 (3,0)A - B .2,0 C . 3,0 D .4,0 4.已知向量(6,4),(0,2),,a b OC a b λ===+若点C 在函数sin 12y x π=的图象上,则实数λ的值为 A52 B 32 C 52- D 32- 5.在△ABC 中,若a 、b 、c 分别是角A 、B 、C 的对边,且cos 2B +cosB +cosA -C =1,则 A 、a 、b 、c 等比 B 、a 、b 、c 等差 C 、a 、c 、b 等比 D 、a 、c 、b 等差 6.已知函数y =-3cos 2x +错误!+4按向量错误!平移后所得图象表示的函数y =fx 是奇函数,则向量错误!可以是 A 、-错误!,-4 B 、-错误!,-4 C 、错误!,4 D 、-错误!,47.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ccb A 22cos 2+=,则ABC 的形状为 A .正三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 8.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若a +c =2b ,则cot 错误!= A 、-2 B 、-3 C 、2 D 、39.O 是ABC ∆所在平面内一点,且满足()()20OB OC OB OC OA -⋅+-=,则ABC ∆的形状是 A 正三角形 B 等腰三角形 C 直角三角形 D 斜三角形 10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则A a ⊥eB a ⊥a -eC e ⊥a -eD a +e ⊥a -e11.在OAB ∆中,a OA =,b OB =,M 为OB 的中点,N 为AB 的中点,P点,则=APA .b a 3132-B .b a 3132+-C .b a 3231-D .b a 3231+-12.在同一个平面上有ABC ∆及一点O满足关系式:222222OA BC OB CA OC AB +=+=+,则O为ABC ∆的13、已知),3(λ=a,)3,4(-=b ,若a 与b 的夹角为锐角,则λ的取值范围为________ 14.在ABC ∆中,c b a ,,分别是角C B A ,,所对的得边长,若B aC B A c b a sin 3)sin sin )(sin (=-+++,则=C .A15.在△ABC 中,tanB=1,tanC=2,b=100,则a =______.16.在△ABC 中,BC 边上的中线长为m a ,用三边a 、b 、c 表示m a ,其公式是__________. 17.若 a 、b 、c 为△ABC 的三边,其面积S △ABC =123,bc =48,b -c =2,则a=_________. 三.解答题共32分18.10分已知△ABC 的面积S 满足3≤S ≤3, 且BC AB BC AB 与,6=⋅的夹角为θ.Ⅰ求θ的取值范围;Ⅱ求函数θθθθθ22cos 3cos sin 2sin )(++=f 的最值及相应的θ的值.19.10分 某市现有自市中心O 通往正东方向和北偏西30°方向的两条主要公路,为了解决该市交通拥挤问题,市政府决定修建一条环城公路,分别在正东方向和北偏西30°方向的两条主要公路上选取A 、B 两点,使环城公路在A 、B 间为直线段,要求AB 路段与市中心O 的距离为10km ,且使A 、B 间距离|AB |最小,请你确定A 、B 两点的最佳位置.20.12分已知向量错误!=cos 错误!x ,sin 错误!x ,错误!=cos 错误!,-sin 错误!,其中x ∈0,错误!1求错误!·错误!及|错误!+错误!|;2若fx =错误!·错误!-2λ|错误!+错误!|的最小值为-错误!,求λ的值选择题答案见题目.参考答案13、4λ<且94λ≠-14.60ο15.605 16.222)(221a c b -+17.a =213或237.18.解:Ⅰ,6cos ||||=⋅=⋅θBC AB BC AB ① ,sin ||||21θBC AB S ⋅=② ②÷①得:,tan 3,tan 216θθ==S S 由3≤S ≤3,得,3tan 33≤≤θ-----2分 A B 30°,1tan 33≤≤θ ∴ ]4,6[ππθ∈.--------------------------------------5分 Ⅱθθθθθ22cos 3cos sin 2sin )(++=f =2θθ2cos 2sin ++=)42sin(22πθ++.]43,127[42πππθ∈+.--------------------------------8分当6,12742πθππθ==+时,2325)(max +=θf ; 当4,4342πθππθ==+时,3)(min =θf .------------------------------------------10分19.作OC ⊥AB 于C ,并设∠AOC =α,于是|AB |=|AC |+|BC |=10tan α+10tan 120°-α =10错误!=错误! =错误! =错误!当cos 2α-120°=1,即2α-120°=0°,也即α=60°时, |AB |最小,可求得,此时|OA |=|OB |=20km 满足条件. 20、1错误!·错误!=cos 错误!xcos 错误!-sin 错误!xsin 错误!=cos 2x ,|错误!+错误!|=错误!=2cosx2fx =错误!·错误!-2λ|错误!+错误!|=cos 2x -4λcosx =2cos2x -1-4λcosx =2cosx -λ2-2λ2-1注意到x ∈0,错误!,故cosx ∈0,1,若λ<0,当cosx =0时fx 取最小值-1.不合条件,舍去.若0≤λ≤1,当cosx =λ时,fx 取最小值-2λ2-1,令-2λ2-1=-错误!且0≤λ≤1,解得λ=错误!, 若λ>1,当cosx =1时,fx 取最小值1-4λ, 令1-4λ=-错误!且λ>1,无解综上:λ=错误!为所求.A OB 30° Cα。

(完整版)平面向量单元测试卷含答案

(完整版)平面向量单元测试卷含答案

平面向量单元达标试卷一、选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.化简BC AC AB --等于( ) A .0B .2BCC .BC 2-D .AC 22.已知四边形ABCD 是菱形,有下列四个等式:①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||||BC AB BC AB -=+,其中正确等式的个数是( )A .4B .3C .2D .13.如图,D 是△ABC 的边AB 的中点,则向量CD =( )A .BA BC 21+- B .BA BC 21-- C .BA BC 21-D .BA BC 21+4.已知向量a 、b ,且b a 2+=MN ,b a 65+-=NQ ,b a 27-=QR ,则一定共线的三点是( )A .M 、N 、QB .M 、N 、RC .N 、Q 、RD .M 、Q 、R5.下列各题中,向量a 与b 共线的是( )A .a =e 1+e 2,b =e 1-e 2B .2121e e a +=,2121e e b += C .a =e 1,b =-e 2D .2110131e e a -=,215132e e b +-=二、填空题6.一飞机从甲地按南偏东15°的方向飞行了2000千米到达乙地,再从乙地按北偏西75°的方向飞行2000千米到达丙地,则丙地相对于甲地的位置是________.7.化简=⎥⎦⎤⎢⎣⎡--+-)76(4131)34(32b a b b a ________. 8.已知数轴上三点A 、B 、C ,其中A 、B 的坐标分别为-3、6,且|CB |=2,则|AB |=________,数轴上点C 的坐标为________.9.已知2a +b =3c ,3a -b =2c ,则a 与b 的关系是________.三、解答题10.已知向量a、b,求作a+b,a-b.(1)(2)(3)(4)11.如图所示,D、E是△ABC中AB、AC边的中点,M、N分别是DE、BC的中点,已知BC=a ,BD=b.试用a、b表示DE、CE和MN.12.已知梯形ABCD中,AB∥DC,设E和F分别为对角线AC和BD的中点,求证EF 平行于梯形的底边.单元达标1.C 2.C 3.A 4.B 5.D6.丙地在甲地南偏西45°方向上,且距甲地2000千米. 7.b a 181135- 8.9,4或8 9.a =b10.图略11.由三角形中位线定理,知a 2121==BC DE ,b a +-=++=DE BD CB CE b a a +-=+2121.b a a -+-=++=++=21412121BC DB ED BN DB MD MN 即b a -=41MN .12.证:a =AB ,b =BC ,c =CD ,d =DA ,则a +b +c +d =0,∵DC AB // 故可设c =m a (m 为实数且m ≠-1),又BF AB EA EF ++=,但2121==CA EA )(21)(d c +=+DA CD ,)(21)(2121c b +=+==CD BC BD BF 故++=)(21d c EF a +21(b +c )=21(a +b +c +d )+21(a +c )=21(a +c )=21(m +1)a ,所以AB EF //,又因为EF 与AB 没有公共点,所以EF ∥AB .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量单元检测题学校学号成绩一、选择题(每小题5分,共60分)1.若ABCD是正方形,E是CD的中点,且AB a=,AD b=,则BE =()A.12b a+B.12b a-C.12a b+D.12a b-2.下列命题中,假命题为()A.若0a b-=,则a b=B.若0a b⋅=,则0a =或0b =C.若k∈R,k0a =,则0k=或0a =D.若a,b都是单位向量,则a b⋅≤1恒成立3.设i,j是互相垂直的单位向量,向量13()a m i j=+-,1()b i m j=+-,()()a b a b+⊥-,则实数m为()A.2-B.2 C.12-D.不存在4.已知非零向量a b⊥,则下列各式正确的是()A.a b a b+=-B.a b a b+=+... . .... . .C .a b a b -=-D .a b +=a b -5. 在边长为1的等边三角形ABC 中,设BC a =,CA b =,AB c =,则a b b c c a ⋅+⋅+⋅的值为 ()A .32B .32-C .0D .36. 在△OAB中,OA =(2cos α,2sin α),OB =(5cos β,5sin β),若5OAOB ⋅=-,则S △OAB()A B .2C .5D .527. 在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,则四边形ABCD 的形状是 ()A .长方形B .平行四边形C .菱形D .梯形8. 把函数23cos y x =+的图象沿向量a 平移后得到函数的图象,则向量 是 ( )A .(33,π-) B .(36,π) C .(312,π-) D .(312,π-)9. 若点1F 、2F 为椭圆 的两个焦点,P 为椭圆上的点,当△12F PF 的面积为1时, 的值为( ) A .0 B .1 C .3 D .62sin()y x π=-6a 2214x y +=12PF PF ⋅... . .10. 向量a =(-1,1),且a 与a +2b 方向相同,则a b ⋅的围是 ( )A .(1,+∞)B .(-1,1)C .(-1,+∞)D .(-∞,1)11. O 是平面上一点,A ,B ,C 是该平面上不共线的三个点,一动点P 满足OP OA =+()AB AC λ+,λ∈(0,+∞),则直线AP 一定通过△ABC 的( )A .心B .外心C .重心D .垂心12. 已知D 是△ABC 中AC 边上一点,且 22+,∠C =45°,∠ADB =60︒,则 = ( ) A .2 B .0 D.1二、 填空题(每小题4分,共16分)13. △ABC 中,已知4a =,6b =,sinB = ,则∠A = 。

14. 已知M (3,4),N (12,7),点Q 在直线MN 上,且13||:||:QM MN =,则点Q 的坐标为 。

15. 已知|a |=8,|b |=15,|a +b |=17,则a 与b 的夹角θ为 。

16. 给出下列四个命题:①若||||||a b a b ⋅=⋅,则a ∥b ; ②()()b c a c a b ⋅-⋅与c 不垂直;③在△ABC 中,三边长BC 5=,AC 8=,AB 7=,则20BC CA ⋅=;④设A(4,a ),B(b ,8),C(a ,b ),若OABC 为平行四边形(O 为坐标原点),则AB DB ⋅A DDC=34... . .∠AOC = . 其中真命题的序号是 (请将你正确的序号都填上)。

三、 解答题(74分)17. (本小题满分12分)设向量OA =(3,1),OB =(1-,2),向量OC OB ⊥,BC ∥OA ,又OD +OA =OC ,求OD 。

18. (本小题满分12分)已知A(2,0),B(0,2),C(cos α,sin α),(0<α<π)。

(1)若7||OA OC +=O 为坐标原点),求OB 与OC 的夹角; (2)若AC BC ⊥,求tan α的值。

4π19.(本小题满分12分)如图,O,A,B三点不共线,2=,OB b=。

=,设OA a=,3OC OAOD OB(1)试用,a b表示向量OE;(2)设线段AB,OE,CD的中点分别为L,M,N,试证明L,M,N三点共线。

20.(本小题满分12分)在直角坐标系中,A (1,t),C(-2t,2),OB OA OC=+(O是坐标原点),其中t∈(0,+∞)。

⑴求四边形OABC在第一象限部分的面积S(t);⑵确定函数S(t)的单调区间,并求S(t)的最小值。

... . .... . .21. (本小题满分12分)如图,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,其中 .在距离港口O为3(a 为正常数)海里北偏东β角的A 处有一个供给科学考察船物资的小岛,其中cos β 。

现指挥部紧急征调沿海岸线港口O 正向m 海里的B 处的补给船,速往小岛A 装运物资供给科学考察船,该船沿BA 方向不变全速追赶科学考察船,并在C 处相遇。

经测算,当两船运行的航线OZ 与海岸线OB 围成的三角形OBC 面积S 最小时,补给最合适。

(1)求S 关于m 的函数关系式S(m); (2)当m 为何值时,补给最合适?2=13tan α=... . .22. (本小题满分14分)已知在直角坐标平面上,向量a =(-3,2λ),b =(-3λ,2),定点A (3,0),其中0<λ<1。

一自点A 发出的光线以a 为方向向量射到y 轴的B 点处,并被y 轴反射,其反射光线与自点A 以b 为方向向量的光线相交于点P 。

(1)求点P 的轨迹方程;(2)问A 、B 、P 、O 四点能否共圆(O 为坐标原点),并说明理由。

平面向量答案一、选择题:本大题共12小题,每小题5分,共60分。

1. B ;2.B ;3.A ;4.D ;5.B ;6.D ;7.D ;8.A ;9.A ;10.C ;11.C ;12.B10.C .解析:注意与+2同向,可设+2=λ(λ>0),则=a 21-λ,从而01212>-=-=⋅λλ。

11.C .解析:OA OP =+)(AC AB +λ,即)(AC AB AP +=λ,即AP 与AC AB +同向。

12.B .解析:解三角形可得∠ABD=90°。

二、填空题:本大题共4小题,每小题4分,共16分。

13.30° 14.(6,5) 或(0,3) 15.2π16.①④三、解答题:本大题共6小题,共74分。

17.(本小题满分12分)解: 设OC =(x ,y ),∵⊥,∴0=⋅,∴2y – x =0,①又∵BC ∥OA ,BC =(x +1,y-2),∴3( y-2) – (x +1)=0,即:3y – x-7=0,② 由①、②解得,x =14,y=7,∴=(14,7),则=-=(11,6)。

18.(本小题满分12分)... . .解:⑴∵)sin ,cos 2(αα+=+OC OA ,7||=+OC OA , ∴7sin )cos 2(22=++αα,∴21cos =α. 又),0(πα∈,∴3πα=,即3π=∠AOC ,又2π=∠AOB ,∴与的夹角为6π.⑵)sin ,2(cos αα-=AC ,)2sin ,(cos -=ααBC , 由⊥,∴0=⋅, 可得21sin cos =+αα, ① ∴41)sin (cos 2=+αα,∴43cos sin 2-=αα, ∵),0(πα∈,∴),2(ππα∈, 又由47cos sin 21)sin (cos 2=-=-αααα,ααsin cos -<0, ∴ααsin cos -=-27,②由①、②得471cos -=α,471sin +=α,从而374tan +-=α. 19.(本小题满分12分)解:(1)∵B ,E ,C 三点共线,∴=x +(1-x )=2 x a+(1-x ),① 同理,∵A ,E ,D 三点共线,可得,OE =y a+3(1-y)b ,②比较①,②得,⎩⎨⎧-=-=)1(31,2y x y x 解得x=52, y=54,∴OE =b a5354+。

... . .(2)∵2+=,103421OM +==,232)(21+=+=, 10126OM ON MN +=-=,102OM OL ML +=-=, ∴6=,∴L ,M ,N 三点共线。

20.(本小题满分12分)解:(1)∵+=,∴OABC 为平行四边形, 又∵0=⋅OC OA ,∴OA ⊥OC ,∴四边形OABC 为矩形。

∵+==(1-2t ,2+t),① 当1-2t>0,即0<t<21时,A 在第一象限, B 在第一象限,C 在第二象限,(如图1) 此时BC 的方程为:y-2=t(x +2t),令x =0,得BC 交y 轴于K(0,2t 2+2), ∴S(t)=S OABC -S △OKC =2(1-t+t 2-t 3).② 当1-2t ≤0,即t ≥21时,A 在第一象限,B 在y 轴上或在第二象限,C 在第二象限,(如图2)此时AB 的方程为:y-t=t 1- (x -1),令x =0,得AB 交轴于M(0,t+t1),∴S(t)= S △OAM =)1(21tt +.∴S(t)=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-).21(),1(21),210(),1(232t t t t t t t(2)当0<t<21时,S(t) =2(1-t+t 2-t 3),S ′(t) =2(-1+2t-3t 2)<0,∴S(t)在(0,21)上是减函数。

... . .当t ≥21时,S(t) =)1(21t t +,S ′(t) =)11(212t-,∴S(t)在[21,1]上是减函数,在(1,+∞)上是增函数。

∴当t=1时,S(t)有最小值为1。

21.(本小题满分12分)解:(1)以O 为原点,正北方向为轴建立直角坐标系。

直线OZ 的方程为y=3x ,①设A(x 0,y 0),则x 0=3a 13sin β=9a ,y 0=3a 13cos β=6a ,∴A(9a ,6a )。

又B(m ,0),则直线AB 的方程为y=ma a-96(x -m) ② 由①、②解得,C(am ama m am 76,72--), ∴S(m)=S △OBC =21|OB||y c |= a m am 732- ,(a m 7>)。

(2)S(m)=3a [(m-7a )+a a m a 147492+-]≥84a 2。

当且仅当m-7a =am a 7492-,即m=14a >7a 时,等号成立,故当m=14a 为海里时,补给最合适。

相关文档
最新文档