微乳的制备与应用
微乳的制备及其在中药制剂中的应用

综 述微乳的制备及其在中药制剂中的应用张蕾,周庆华,吕鑫(黑龙江中医药大学,黑龙江哈尔滨150040)摘 要:微乳是一种制备简单、热力学及动力学稳定的、液滴粒径小于100nm 的特殊乳状液,作为药物载体,能够提高药物贮存稳定性和生物利用度,并且增加疗效。
本文综述了微乳的制备方法及在中药制剂中的应用。
关键词:微乳;中药;表面活性剂中图分类号:R978.2 文献标识码:A 文章编号:1002-2392(2007)06-0037-03收稿日期:2007-09-06 修回日期:2007-10-25作者简介:张蕾(1977-),女,硕士,助教,研究方向:药用物理化学。
微乳(micromulsion )是由H oar 和Schulan 在上世纪四十年代提出的[1],目前公认的最好定义是由Danie 2less on 等人[2]提出的,即“微乳是一个由水、油和双亲性物质组成的、光学上各相同性、热力学上稳定的溶液体系”。
通常微乳为澄清、透明或半透明的分散体系、液滴粒径一般为10~100nm ,而乳状液一般大于100nm 。
与普通的乳状液相比,微乳在多方面具有优势:是热力学稳定的分散体系,质点很小且大小均匀;具有很高的稳定性,放置长时间不分层、不破乳,即使放在100个重力加速度的超速离心机中旋转数分钟也不会分层,而宏观的乳状液则会分层;油Π水界面张力可降至超低10-3~10-4mN.m -1,甚至不可测量,而普通的油Π水界面张力在加入表面活性剂后仅可从70mN.m -1降至20mN.m -1。
按照微乳结构中油、水比例的不同将微乳分为三种:水包油型(O ΠW )、油包水型(W ΠO )和油水双连续型(bicontinue )。
1 微乳的形成机理关于微乳形成机理的理论有多种,目前较为成熟的有以下三种。
界面张力理论[3]认为在微乳的形成过程中界面张力起着重要作用,由于乳化剂和助乳化剂的加入使油水界面张力降低很多甚至达到负值,从而使油水界面自动扩大而形成微乳。
微乳液的原理及应用

微乳液的原理及应用1. 微乳液的定义和特点微乳液是一种由水和油相组成的胶体系统,其中水相被包裹在油相微粒中,粒径一般在10-200纳米范围内。
微乳液具有以下特点:•稳定性:微乳液由于其小颗粒尺寸和特殊的制备工艺,可以在常温下保持长时间的稳定性。
•渗透性:微乳液的微粒尺寸与皮肤细胞相当,能够更好地渗透到皮肤中,使药物更有效地吸收。
•透明度:微乳液具有良好的透明度,使其在化妆品行业中得到广泛应用。
2. 微乳液的形成原理微乳液的形成是由于胶体系统中表面活性剂的存在,表面活性剂可将水相和油相结合形成微粒。
微乳液的形成过程可通过以下几个步骤来说明:1.胶团生长阶段:在水和油相混合的过程中,表面活性剂分子在两相界面上聚集并形成胶团。
2.胶团束聚合:胶团在界面上自发地形成束,这些束能进一步纳米化为微乳液的胶束。
3.胶束的稳定:由于胶束表面的增加,胶束会带有亲水头和疏水尾部,从而形成稳定的微乳液系统。
3. 微乳液的应用3.1 药物传递微乳液在药物传递领域具有广泛的应用。
由于微乳液的小颗粒尺寸和高渗透性,它可以作为药物的载体,提高药物在体内的吸收和作用效果。
微乳液在口服、皮肤贴敷和注射等药物传递途径中都有应用。
3.2 食品工业微乳液在食品工业中的应用主要体现在食品添加剂、调味品和乳化剂等方面。
微乳液可以提供更好的均匀分散性和稳定性,改善食品质感和口感。
3.3 化妆品由于微乳液具有良好的透明度和渗透性,因此在化妆品中被广泛使用。
微乳液可以作为护肤品、乳液、防晒霜等产品的基础配方,提高化妆品的渗透性和活性成分的吸收效果。
3.4 农业领域微乳液在农业领域的应用主要体现在农药、肥料和植物生长调节剂等方面。
微乳液可以提高农药的渗透性和作用效果,减少农药的使用量,从而减少对环境的污染。
4. 微乳液的制备方法制备微乳液的方法有多种,常见的包括溶剂法、高能搅拌法和研磨法等。
•溶剂法:将油相和水相溶于适当的溶剂中,通过慢速加入高效搅拌器进行搅拌和乳化,最后去除残余的溶剂。
微乳技术的操作方法

微乳技术的操作方法微乳技术是一种先进的纳米颗粒制备方法,可以实现粒径小、分散性好的微乳体系。
它广泛应用于油田、化工、医药、食品等领域中。
微乳技术的操作方法主要包括以下几个步骤:1. 选择合适的表面活性剂和油相:微乳体系主要由水相、油相和表面活性剂组成。
在选择表面活性剂时,需要考虑其亲水性、疏水性和稳定性等因素,同时还需要选择适合的油相。
通常情况下,选择具有相互溶解性的表面活性剂和油相可以提高微乳体系的稳定性。
2. 配制微乳体系:将所选的表面活性剂和油相按照一定比例混合,并加入适量的水相,使用搅拌器进行搅拌。
在搅拌的过程中,要注意搅拌速度和时间的控制,以保证微乳体系的均匀性和稳定性。
3. 调整微乳体系的性质:在制备微乳体系的过程中,可以根据具体的应用需求进行一些调整。
例如,可以通过改变表面活性剂的浓度、pH值和温度等因素来改变微乳体系的颜色、流变性质和稳定性等。
4. 精细调控微乳体系的粒径:微乳体系的稳定性和应用效果直接受到粒径的影响。
因此,在制备微乳体系时,可以采用一些精细调控的方法来控制微乳颗粒的粒径。
常用的方法包括超声波处理、高压均质和离心浓缩等。
这些方法可以有效地降低微乳体系的粒径,并提高微乳体系的稳定性。
5. 评价微乳体系的性能:制备好微乳体系后,需要对其进行一系列的性能评价。
例如,可以对微乳颗粒的粒径分布、体积分数和稳定性进行测试,以确定微乳体系是否符合预期的要求。
综上所述,微乳技术的操作方法包括选择合适的表面活性剂和油相、配制微乳体系、调整微乳体系的性质、精细调控微乳体系的粒径和评价微乳体系的性能等步骤。
通过合理操作可以制备出粒径小、分散性好的微乳体系,为各个领域中的应用提供技术支持。
微乳液在化妆品及洗涤剂中的应用

微乳液在化妆品及洗涤剂中的应用——轻纺网企业新闻2008-4-7 0:00:00来源:中国国际美容网微乳液最早由Schulman和Hoar在1943年提出,它的理论和应用发展极为迅速,已经被广泛地应用于三次采油、洗涤去污、催化、化学反应介质和药物传递等领域中。
微乳液通常是由水、油与表面活性剂和中等链长醇混合,能自发地形成透明和半透明的分散体系,也可利用极性非离子表面活性剂在不加醇的条件下得到。
微乳液与普通乳状液相比,具有特殊的性质:界面张力小,通常为10~-5N/m—10~-9N/m胶束粒子很小,直径约为10nm—100nm 热力学更稳定,能够自发形成,不需要外界提供能量,经高速离心分离不发生分层现象外观透明或近乎透明。
1.微乳液的形成机理关于微乳液的自发形成,历史上提出了许多理论:如Schulman和Prince等的负界面张力理沦、Schulman与Bowcoff的双层膜理论、Bobbins等提出的几何排列理论及Winsor等发展的R比理论,在这些理论中以Winsor的R 比埋论更为完善。
R比理论从分子间相互作用出发,认为表面活性剂、助表面活性剂、水和油之间存在着相互作用,并定义为R=(Aco—Aoo—Aii)/(Acw—Aww—Ahh)。
式中Aco 和Acw分别为油、水与表面活性剂之间的内聚能,Aoo和Aww分别为油分子之间和水分子之间的内聚能,Aii为表面活性剂亲油基之间的内聚能,Aww为表面活性剂亲水基之间的内聚能。
微乳液体系中可以分为4个类型WinsorI、WinsorII、WinsorIII和WinsorⅣ。
WilsorI,R<1,是水包油型微乳液WinsorII,R>1,是油包水型微乳液WinsorⅢ是I和II的中间相,R=1,为中相微乳液,是双连续相结构。
其中WinsorI.WinsorⅡ、WinsorⅢ为三相体系,在加入合适表面活性剂时可以形成WirierⅣ,为单相体系,是WirierⅢ的特殊形式。
胶束及微乳液的合成及应用研究

胶束及微乳液的合成及应用研究在日常生活中,我们经常使用到各种清洁洗涤剂、染发剂、化妆品等等,这些产品中常常涉及到一种叫做“胶束”的物质。
胶束是由一种特殊的分子组成的微观复合体,它能在水中形成一个稳定的动态体系,化学上也称为表面活性剂。
胶束的形成是由于水中分子之间的作用力使其形成了一个分层结构,分子在水中被包络住,从而形成了双层结构。
在此基础之上,表面活性剂分子又能够通过亲水头部和疏水尾部的作用,使这些分子在水溶液中强制聚集起来。
这种聚集形态就是胶束。
由于表面活性剂分子的疏水性质,胶束在溶液中可以将油性物质纳入其中,从而实现清洗、乳化、去污等作用。
微乳液是一种进一步的胶束形态,在加入了较大量的表面活性剂之后,在油、水、表面活性剂三相之中形成一种稳定的混合体系。
微乳液是具有均匀、细小的粒子尺寸、高度透明、高稳定性、成本低廉和易于制备的液晶体系,广泛应用于化工、石油、医药、环境保护等诸多领域。
胶束及微乳液在乳化剂、分散剂和清洁剂等领域有着重要的应用价值。
胶束还可以用于生物学和医学领域中。
胶束分子的外层呈极性,内层为非极性,非常适合将生物体中的非极性分子分离出来,从而可以在分子水平上研究生物体的结构和功能。
采用微乳液对水溶性的药物进行包封,不仅能提高药效,而且可减少其副作用。
胶束及微乳液的合成方法有多种,如溶剂交换法、自发形成法、混合溶液法、反相法等。
其中最为简单、高效的方法是混合溶液法。
具体操作方法是:以油为核心,在其中加入适量的表面活性剂溶液,加入适量的水,且将溶液加热搅拌,让胶束分子形成并稳定下来。
总而言之,胶束及微乳液是一种新型的体系,在各个领域的应用是不断拓展和深入的。
相关研究需要我们多方面吸收专业知识,努力深挖探究,以推动其应用范围的拓展。
《微乳化技术及应用》课件

提高石油的采收率
01
微乳化技术可以将表面活性剂 和其他化学剂以微小的液滴形 式分散在石油中,降低油水界 面张力,提高石油的流动性。
02
微乳化技术可以改善油藏的润 湿性,提高油藏的渗透性,从 而提高石油的采收率。
03
微乳化技术可以降低石油中的 杂质含量,提高石油的质量和 纯度。
降低燃料的毒性
微乳化燃料能够降低燃料中的有害物质含量,如硫、氮等,从而减少燃烧 产生的有害气体和颗粒物。
随着环保意识的提高,绿色、环保的微乳化产品将越来越受到市 场的青睐。Βιβλιοθήκη 感谢观看THANKS
农药和医药行业
在农药和医药行业中,微乳化技术主 要用于制备高效、低毒、环保的农药 和药物制剂,提高药物的生物利用度 和药效。
在医药领域,微乳化技术还可用于制 备靶向药物、纳米药物等新型药物制 剂,提高药物的疗效和降低副作用。
通过微乳化技术,可以将农药或药物 包裹在微小的液滴中,从而提高药物 的靶向性和稳定性,减少药物对非目 标生物的毒性。
燃料和石油工业
01
在燃料和石油工业中,微乳化技术主要用于提高燃料的燃 烧效率、降低污染物排放和提高石油采收率。
02
通过微乳化技术,可以将燃料或石油与水进行混合,形成稳定 的微乳液,从而提高燃料的燃烧效率和降低废气排放。
03
在石油开采中,微乳化技术可以用于提高采收率,通过将采出的 石油与表面活性剂和水混合形成微乳液,提高石油的流动性,从
提高药物的稳定性
01
02
03
微乳化技术能够将药物 溶解或分散在微小的液 滴中,形成稳定的药物 体系,防止药物的水解 和氧化等降解反应。
微乳化药物具有较高的 表面能,能够增加药物 的分散度和溶解度,从 而提高药物的稳定性和
微乳液的制备

微乳液的制备
微乳液是一种介于胶体和溶液之间的分散体系,由于其优异的物理化学性质,在化妆品、药物、食品等领域得到了广泛应用。
本文将介绍微乳液的制备方法。
1. 溶媒法
溶媒法是一种将油相溶解在表面活性剂水溶液中,形成微乳液的方法。
首先将表面活性剂和水混合均匀,加入所需的油相,搅拌混合,直到形成均匀的微乳液。
2. 高压均质法
高压均质法是将油相和表面活性剂水溶液通过高压均质机进行
剪切混合,形成微乳液的方法。
在高压均质过程中,由于剪切力的作用,油相和水相之间形成小颗粒,最终形成均匀的微乳液。
3. 过渡态法
过渡态法是将油相和表面活性剂水溶液通过添加过渡态剂,使其形成微乳液的方法。
过渡态剂是一种能够促进油相和水相之间相互作用的物质,通过加入过渡态剂,可以提高微乳液的稳定性和均匀性。
以上是微乳液的三种制备方法,具体方法应根据具体情况进行选择。
制备过程中需要注意控制温度和搅拌速度,以保证微乳液的稳定性和均一性。
- 1 -。
微乳液的制备及应用

工程师园地文章编号:1002-1124(2004)02-0061-02 微乳液的制备及应用王正平,马晓晶,陈兴娟(哈尔滨工程大学,黑龙江哈尔滨150001) 摘 要:本文翔实的介绍了微乳液的结构、性质、制备以及应用。
关键词:微乳液;性质;制备;应用中图分类号:T Q423192 文献标识码:APrep aration and application of microemulsion M A X iao -jing ,W ANG Zheng -ping ,CHE N X ing -juan(Harbin Engineering University ,Harbin 150001,China ) Abstract :In this article ,the conception ,structure ,properties ,preparation and application of micromeulsion havebeen summarized.K ey w ords :microemulsion ;property ;preparation ;application收稿日期:2003-12-16作者简介:王正平(1958-),男,教授,1982年毕业于浙江大学,硕士生导师,主要从事精细化学品的研究开发工作。
1 前言微乳液最初是1943年由H oar 和Schulman [1]提出的,目前,公认的最好的定义是由Danielss on 和Lindman [2]提出的,即“微乳液是一个由水、油和两亲性物质(分子)组成的、光学上各向同性、热力学上稳定的溶液体系”。
微乳液能够自发的形成,液滴被表面活性剂和助表面活性剂组成的混合界面膜所稳定,直径一般在10~100nm 范围内。
微乳液的结构有三种:水包油型(O/W )、油包水型(W/O )和油水双连续型。
O/W 型微乳液由油连续相、水核及界面膜三相组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色法 : 取相同体积的微乳液 2 , 份 同时分别加入苏丹红 成的自由能及其相转变的条件而支持热力学理论。 染料 和亚 甲基蓝染料溶液各 2 , 观察 , 滴 静置 如蓝色的扩散速 这些理论 因其各 自 限性都不 能完整地解释微乳 的形 成 局
度大于红色 , 则为 WI O型微乳 ; 反之则形 成 OW 型微乳 ; I 二者 速度相同 , 则为双连续型微乳液 。 2制备方法 电导法 : / 型微乳应带 电荷 , O型微乳应不带电荷。 OW W/ 21HL . B法 按文献【 定方法恒温 2 。测定 。 慨 0c 表面活性剂 的 H B值对微乳 的形成至关重要 , L 一般认 为 折光率 : 粒径 : 采用粒度分布仪测定微乳粒径。 表 面活性剂的 H B在 47 L ~ 时可形成 W/ O型微乳 , 1 ̄0 在 42 时
北方药学 2 1 年第 8 01 卷第 8 期
4 1
乳处方 , 考察 5种吸收促进 剂对 吲哚美辛原药及微乳 的促渗作 参 考 文 献 用。 结果表明, 微乳 中 Ce rh r H6 rmop o 0与 L bao 的比例为 1 『] or ,c uma Tasaetw tri— idses n: R a rsl : 1 aT P S hl n JH.rnprn ae—n o i ro s H l p i 2时 , / 微乳 区最大。 OW 月桂氮酮是 吲哚美辛微乳的最佳透皮促 teoepti hdo mi l [ .a r,9 312 12 . h loa c yr— e l JN t e 14 5 (0 ) h ee ] u 进剂 , 用量为 5 %时渗透 速率 为(3 22 0w ・ -h 4 累 [ D ne snI Ln ma . h e nt no com l o J 7. +. )ga 2 -2h 2 ail o , ld nB T edf io f r us n[ . 5 3 m .1 ] s i i mi e i 】 C l is n uf e ,9 13 3 1 o o dS r cs 18 :(9 ) ld a a 积渗透量 可达 10  ̄ / 70 g m。 c 朱 晓亮等[ 1 7 1 绘制伪 三元相 图考察 不 同( 面活性 剂, [] 通过 表 3吴顺 琴 , 李三鸣 , 国斌 . 及其在 药剂 学中的应 用阴. 赵 微乳 沈 助表 面活性剂 ) 值对利多 卡因微 乳 区形成 的影 响 , 根据微乳 区 阳药科 大学学报 ,0 3 2 ( )3 1 3 5 2 0 ,0 5 :8 — 8 . 面积大小选择 制备利多卡 因微乳 的最 佳 K m值 ,测定 利多卡 [ 陈华兵 , 4 ] 翁婷 , 杨祥 良. 乳在现代 药剂 学 中的研 究进展 田. 微 2 0 ,5 8 :0 — 0 . 因微乳 的粒径 大小及粒径分布范 围 ,测定利多 卡因微乳 的理 中国医药工业杂志,0 4 3 ( )5 2 5 6 化特性 , 对利多卡因微乳 的形态 及体系类型进行电镜观察。 【] 5寇欣. 乳给 药 系统的研 究进 展 [. 微 J 天津 药学 ,0 5 1 ( ) ] 2 0 ,7 6 : 张建春等【选用油酸正丁酯租 肉豆蔻酸异丙酯作 为油相 , 49. l 8 1 聚山梨醇 酯作 为表 面活性剂 ,正 丁醇和正戊醇作 为助表面活 [ 陈宗淇 , 闽光. 体化 学[】 6 】 戴 胶 M. : 北京 高等教育 出版社 ,95 18: 2 4. 性剂 , 在制备三元相 图的基 础上 , 考察 微乳 的组分对微 乳形成 34 —3 5 的影 响 , H L 用 P c法测定微乳 中环磷酰胺 的含量 。 [ 顾惕人. 面化 学[ . 7 ] 表 M] 北京: 学 出版社 ,9 98 — 2 科 19: 9 . 8 张琰等【 用 V l 5为表面活 性剂 , 醇类作 助表 面 [ 张正 全 , o2 p 短链 8 ] 陆彬 . 乳给 药 系统研 究概 况【 . 国医药工业 杂 微 J中 】 活性 剂与不同的油相 , 用伪 三元相 图法筛 选微乳处方 , 采 研究 志 ,0 13 ( ) 3— 4 . 2 0 ,2 3 : 9 12 1 表 面活性 剂、助表面活性剂及油 相等因素对微乳 区形成大小 【】 才 武 , 丽 霞 . 乳 液 的 微 观 结 构 、 备 和 性 质 【 . 西 民 9蒋 张 微 制 J广 ] 的影 响, 考察 了甘 草酸二铵微乳 的稳 定性。 族 学院学报 ,9 8 4 4 :0 3 . 1 9 ,( ) — 3 3 陈菡等【通过溶解度实验 、 嘲 处方 配伍 实验和伪三元相 图的 【O崔正 刚. 乳化技 术及 应 用【 .匕 : 国轻 工业 出版社 , l] 微 M] 京 中 j 9 绘制, 以乳化时 间、 色泽为指标 , 筛选 油相 、 表面 活性剂 、 助表 1 99. 面活性 剂的最佳搭配和处方 配比 ,结果发现葛根 素在微乳 中 [1李干佐 , 1] 郭荣 , 秀文. 乳液的形成 和相 态【. 王 微 J 日用化学工 ] 业 ,9 9 5 :0 4 . 18( ) — 5 4 的溶解度最高可达 7 .1 / 。 71mg mL 5微乳制剂的缺 点 [2 ̄ - , 1] 平 马晓晶 , 陈兴娟 . 微乳液 的制备及 应用【. 学工程 J化 ] 尽管在提高生物利用度方面有其独到之处 , 但其存在 的问 师 ,0 ,0 ( ) 1 6 . 20 1 12 : — 2 4 6 题不容忽视。首先 , 微乳 中使用高浓度 的表 面活性 剂和助表 面 [3杨锦 宗, 1] 兰云军. 乳状 液制备技 术及其发 展状 况【 . 细 微 J精 ] 活性 剂 , 它们大多对 胃肠道 黏膜有刺激性 , 对全身有 慢性毒性 化 工,9 5 1 ( ) 一 1 1 9 ,2 4 : l . 7 作用 。 因而一方面应努力寻找高效低毒 的表面活性剂和助表面 [ 】 , . 1 张琰 刘梅 甘草酸二铵微乳制备 工艺研 究[解放军药学学 4 J 】 活性剂 , 另一方面可采用改 良的三角相 图法研究微乳形成 的条 报 ,0 8 2 ( ) 4 — 5 . 2 0 ,4 2 : 8 10 1 件 。通过优化微乳 的工艺条件 , 寻找用最少 的表面活性剂和助 [5I 1]  ̄家药典委 员会. 中华人 民共和 国药典【】 京: s 匕 化学工业出 20. 4 表面活性剂制备微乳 的方法 。另外 , 通过外力 如高压乳匀机促 版 社 。0 5附 录 4 . 使微乳形成 减少表面活性剂和助表 面活性剂 的用量也 是一个 [6廉 云飞 , 1] 李娟 , 平其能 , 严菲. 美辛微乳的制备及 经皮吸 吲哚 有效的办法 。 其次 , 微乳稀释往往会 由于各相 比例改变 , 使微乳 收研 究[ . J 中国医药工业杂志 ,0 5 3 ( ) 4— 5 . ] 2 0 ,6 3 : 8 1 1 1 破坏 。因此 , 口服或注射后 , 乳被大量的血液和 胃液稀释 后 , 『7朱 晓亮, 微 1] 陈志 良, 国锋 , 李 曾杭 . 多卡 因微 乳的制备及 电镜 利 如何保持微乳性质和粒径的稳定也是一个要解决的问题阁 o 观察[ . 医科 大学学报 ,0 62 ( ) 1 - 1. J 南方 ] 2 0 ,6 4 : 5 5 7 5 6总 结 [8张建春 , 1] 李培 勋 , 王原 , 陈鼎继 , 徐凤玲 , 黄旭 刚. 酰胺微 环磷 微乳 作为一种 新 的药 物载体 , 定 、 稳 吸收迅 速完 全 , 能增 乳制剂 的研制[ 中国 医院药学杂志 ,0 3 2 ( ) — 1 J ] 2 0 ,3 1 : 1. 9 强疗效 , 降低毒副作用 。其 口服、 注射 、 鼻腔 给药 、 给药均 [ 】 透皮 1 陈菡, 9 钟延强 , 鲁莹. 素微乳 的制备[. 葛根 J药剂学 ,082 ] 20 ,6 有很大潜力 。随着研 究的不 断深入 , 微乳在药剂学领域将有更 ( ) 0 . 3: 0 2 广 阔的发展前景并将得 到广泛应用 ,必将 成为一种重 要的药 [0应娜 , 高通 . 2 ] 林 微乳的研 究进展及应 用叨海峡 药学 ,0 8 2 2 0 ,0 () 2— 2. 9 : 6 18 1 物传递系统 。
水二相界 面扩大而形成微乳。界 面膜最初为平板状 , 由于膜两 入量 , 只需最低 限度加热 。 侧压力不 同, 而向膜压高 的一侧弯 曲形成油包水( o) w/ 型或水 3鉴 定 与 质量 评 价 方 法 【 4 1 性状 : 透明或略带乳光的溶液 , 偏光显微镜下无双折射现象。 包油( / 型微乳: ow) 两侧膜压相等 时形成 层状 液晶。另一种胶 离 心法 : 用 3 0 f i 心 lm n后 , 采 0 O/ n离 a r Oi 观察离心 后是否 束增溶理论则认为 ,微乳是油相和水相增溶 于胶 束或反胶束 透明 。如仍维持澄清 、 明则可判定 透 中, 溶胀到一定 粒径 范围内形成的 , 增溶 作用是微乳 自发形成 分层及是否仍维持澄清 、 的原因之一。M ke e 等人呗0 uh ̄ e 利用热力学方法求算微乳形 为微乳。
定性和生物利用度, 增加 疗效 。本 文从微乳的制备方法和在 药剂学 中的应 用情况进行综述。 并且
关键 词 : 乳 伪 三 元相 图 制 备 微
中图分类号 : 5 R9 1
文献标识码 : B
文章编号 :6 2 8 5 ( 0 )8 0 4 — 2 17 — 3 12 1 0— 0 0 0 1
机理。
可形成 OW 型微 乳 ,在 7 1 时根 据工艺条件可 形成可转相 4应 用 实 例 / ~4 廉 云飞等 以油酸 、rm rh r H 0 Lbao 和水组 成 Ce op o R 6 、a r l s 的微乳。通常离子型表面活性剂的 H B值很高, L 需要加入中 等链长 的醇作 为助表 面活性 剂或加入 H B低的非离 子表面 微乳系统 ,通过伪三元相图确定 0 微乳 区并筛选 出最佳微 L
微¥, ime l o ) 由 H a 和 S h l 1m c mus n 是 ( i or cua n在上 世纪 四十 活性剂进行复配 , 经过试验得到各种成分间的最佳 比例[ 9 1 。非 B值对温度很敏感 ( 在低温时亲 年代提出的『 目 l 前公认的最好定义是 由 D n - s n 1 , ai l s 等人喂 离子表面活性剂 可根据其 HL e eo 出的 , 微乳是一个 由水 、 和双亲性 物质组成的、 即“ 油 光学上各 水性强 , 在高温下亲油性强 ) 的特点进行确定 。 随着温度升高 , 相同性 、 热力学上稳定 的溶液体系” 。 含非离子表面活性剂 的体 系会 出现各种类 型的微乳 。当温度 通常微乳为澄清 、 明或半透 明的分散体 系 , 透 液滴粒径一 恒定 时可通过调节非离子表 面活性剂 的亲水基 和亲油基 的比 般为 1~ O n 而乳状液一般大 于 10 m。与普通的乳状液 例达到所要求 的 H B值n。 0 lO m, 0n L 0 1 相 比, 微乳在多方面具有优 势: 力学稳定 的分散体 系 , 是热 质点 2 . 度 扫描 法 2盐 很小且 大小均匀 ; 具有很 高的稳定 性 , 放置长 时间不分层 、 不 当体 系中油的成分、 水体积 比( 油一 通常为 1 、 )表面活性剂 破乳 ,即使放在 10 重力加速度 的超速离 心机中旋转数分 与助表面活性 剂的 比例和浓度确定后 ,如果体系中盐度 由低 0个 钟也不会分层 , 而宏观的乳状液则会分层 ; 水界面张力可降 至高增加 , 油/ 往往会得到 三种状态 即 wisr0 型微乳液和剩 no( ; no W/ 至超低 1- 1 ̄ N・ ~ 甚至不可测量 , 03 0 m m , — 而普通 的油, 面张 余油达到平衡状态 )WisrⅡ ( O型微乳液和剩余水达到 水界 力在加入表面活性剂后仅可从 7 mN・l 0 n 降至 2 r i~ 0 N・ 。 a n 平衡状态 )Wi o ( ; n rm 双连续型与剩余油和剩余水 达到平衡 s 『。 l 1 水溶液 中的表面活性 按照微乳结构 中油 、 比例的不 同将微 乳分为三 种: 水 水包 状态 )1这是 因为 当体系 中的盐量增加 , 油型( , 、 0 Ⅳ)油包水型 ( O) W/ 和油水双连续型 (i niu ) b ot e 。 c n 剂和油受到“ 盐析 ” 作用而析离 , 同时盐压缩微乳的双电层 , 斥 液滴容易接近 , 含盐量增 加 , OW 型微乳进一步增 使 / 微乳是 由油相 、 相、 水 乳化剂及 助乳化 剂在适 当比例 自 发 力下 降, 形成 的一种热力学稳定的油水混合 系统 。微乳作为药物载体可 溶油 的量 ,导致微乳液 中油滴 密度下 降而上浮 ,从而形成新 若改变组成 中其他成分 , 如改变油或醇 的含 用于 口 服液体制剂 、 经皮给药制剂 、 眼用制剂和注射剂 中, 主要 相 。对于扫描法 , 具有以下几个优点 : ①呈各 向同性 的透 明液体 , 热力学稳定 , 且 碳数也能造成 三种结构类 型微乳液之间的相互转换㈦。 可以过滤 , 易于制备和保存。②可同时增溶不 同脂溶性 的 药物。 23利用乳化设备制微乳 . ③药物分散性好 , 利于吸收 , 可提高药物 的生物利用度。 ④可延 微乳 的制备是一个 自发乳化 过程 , 所需设备少 、 能耗小 。 长水溶性药物的释放时间。⑤ 对于易水解 的药物 , 采用油包水 但 自发制备微 乳同时也 具有诸如微乳配方确定 困难及使 用的 型微乳可起到保护作用 。⑥低 黏度 , 注射时不会引起疼痛 。 大量表面活性 剂 、助表面活性剂对产品性能具有许多不利影 响等缺点。随着近年来 乳化装置性能 的不断改进和新的乳化 1形成机理 微乳形成机理的理论有多种 , 目前较 为成 熟的有 以下三 设备 的问世 , 使得依靠乳化设 备制备乳 化剂含量少 、 性能更佳 的微乳成为可能。 目前 比较有效 的乳化设备是高压均化器和 种。 界 面张力理论『 曰 认为 在微乳 的形 成过程 中界 面张力起着 微射流乳化器。 日 本有人[ 1 3 1  ̄高压均化器调制微乳 , 发现使用 重要作用 ,由于乳化剂 和助乳化 剂的加入使油水界面张力 降 其他乳化装置不能调制 的微乳液 ,通过使用 高压均化器则成 并且 由于高压均化器 的使用 , 面活性剂 的用量 大幅 表 低很多 ,甚至 达到 负值 ,从 而使 油水界面 自动扩大而形成微 为可能; , 乳。S hl a cum n和 Picr r e ̄为 : n  ̄ 油相和水相间存水 、 油膜 两个界 减少 。微射流乳化器是利用微射 流乳 化技 术 ,采用 连续式混 分散 、 乳化 的办法 , 制得相体稳 定、 粒子细微 均一的精 细微 面( 又称作双层膜 )加入 的助乳化剂 能在油水 二相间进行分 合 、 , 配, 促进 了乳化剂在油水界 面之 间形成 稳定的界面膜 , 并使 油 乳。同常规乳 化技术相 比 , 以大大 降低乳化剂 、 可 分散剂的投