理论力学1-7章答案
1-8章习题答案 理论力学

第一章 静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A ,B 两处约束力的方向如图所示。
4.5F ,方向与5F 方向相反。
5.60°。
6. 铅直向上。
第二章 平面力系一、选择题与填空题1.B ;D 。
2.B 。
3. 2F ;向上。
4.B 。
5.L M 334;方向与水平线成︒60角,指向右下。
6.10kN ;10kN ;5kN ;5kN 。
7. 100kN ;水平向右。
二.计算题1. 70-=B F KN 70=Ax F KN ,120=Ay F KN ,30A M KN m =-⋅2. qa F Ax -= qa F F Bx += F qa F Ay += F qa F By -=3. kN 5-=Dx F kN 33.4=Dy F kN 33.4=E F kN 41.24=C F kN 08.17-=By F kN 5-='=Bx Ax F F kN 08.14-=Ay F m kN 66.14⋅-=A M4.5.N 10=Ax F N 20=Ay F m N 15⋅=A M N 1.14=CD F6. kN 5.2=Ax F kN16.2-=Ay F m kN 8⋅-=A M kN 33.20=C F 7. kN 40=B F kN 10-=Ax F kN 20-=Ay F m kN 50⋅-=A M kN 40=Cx F0=Cy F8. N 100-=Ax F N 300-=Ay F N 300-=Ex F N 100=Ey F N 200=Dy FN 300=Hx F N 100=Hy F第三章 空间力系一、选择题与填空题1.B 。
2.B 。
3. 0)(=F M x ρ;2)(Fa F M y -=ρ;46)(Fa F M z =ρ。
4. F x =240-N ;F y =302N ;M z =2402m N ⋅。
5. sin z F F ϕ=;cos cos y F F ϕβ=;()(cos cos sin )x M F F c b ϕβϕ=+r 。
1-8章的习题答案理论力学.doc

第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。
2. B。
3. F;向上。
4. B。
5. 4^M;方向与水平线成60角,指向 23L右下。
6. 10kN; 10kN ; 5kN; 5kN。
7. 100kN;水平向右。
二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。
2.B。
3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。
5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。
理论力学习题答案

第三章 空间力系
一、是非题判断题
3.1.1对一空间任意力系,若其力多边形自行封闭,则该力系的主矢为零。 (∨)
平面力系中,若其力多边形自行闭合,则力系平衡。(×)
3.1.2只要是空间力系就可以列出6 个独立的平衡方程。 (×)
2.3.4悬臂式吊车的结构简图如图所示,由DE、AC二杆组成,A、B、C为铰链连接。已知P1=5kN,P2=1kN,不计杆重,试求杆AC杆所受的力和B点的支反力。
(答案:FBx=3.33kN,FBy=0.25kN,FAC=6.65kN)
2.3.5由AC和CD构成的组合粱通过铰链C连接,它的支承和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN.m,不计梁重,求支座A、B、D的约束反力和铰链C处所受的力。
3.1.3若由三个力偶组成的空间力偶系平衡,则三个力偶矩矢首尾相连必构成自行封闭的三角形。(∨)
3.1.4空间汇交力系平衡的充分和必要条件是力系的合力为零;空间力偶系平衡的充分和必要条件是力偶系的合力偶矩为零。(∨)
二、填空题
3.2.1若一空间力系中各力的作用线平行于某一固定平面,则此力系有5个独立的平衡方程。
3.3.3如图所示,三圆盘A、B、C的半径分别为15cm、10cm、5cm,三根轴OA、OB、OC在同一平面内,∠AOB为直角,三个圆盘上分别受三个力偶作用,求使物体平衡所需的力F和α角。
3.3.4某传动轴由A、B两轴承支承。圆柱直齿轮的节圆直径d=17.3cm,压力角 =20º,在法兰盘上作用一力偶矩为M=1030N.m的力偶,如轮轴的自重和摩擦不计,求传动轴匀速转动时A、B两轴承的约束反力。(答案:FAx=4.2kN,FAz=1.54kN,FBz=7.7kN,FBz.=2.79kN)
理论力学第一章答案

• wfei@ • wfei@
ϕ +ϕ ϕ +ϕ m1g sinϕ1 − k cos 1 2 ⋅ (l − 2R) ⋅ sin 1 2 = 0 2 2 m g sinϕ − k cosϕ1 + ϕ2 ⋅ (l − 2R) ⋅ sinϕ1 + ϕ2 = 0 2 2 2 2
o
ϕ1 ϕ2
m2
m1
2.23 质量为m,电荷为q的粒子在轴对称电场 中运动。写出粒子的拉格朗日函数和运动微分方程。 v v v v 解: 由题中 E = E 0 e r ,B = B 0 k 令 ϕ = E 0 ln R v 1 v A = B 0 R eθ 2 v v 在柱坐标系中,有: = 1 mv 2 − q ϕ + q A ⋅ V , L 2 d ∂L ∂L − =0 代入: & dt ∂ q α ∂ qα
2 p 2p
代入完整保守体系的拉格朗日方程,
d dt & R2 & g R & R + R − ω 2R + R − 2 R p2 p p
2
= 0
m
&& & 化简得到, ( p 2 + R 2 ) ⋅ R + R ⋅ R 2 − p 2 ω 2 R + pgR = 0
z o
F
G P
∴ P ⋅ FG = F1 ⋅ EF + ( P'− F1 ) ⋅
若有
DF AC = ,则有:P ⋅ FG EF AB
AB DF AC
A B
P'
F'2
= P'⋅EF
C
即秤锤的重量P与重物P’在秤台的位置无关,且 P ' = P
理论力学课后习题答案

理论力学课后习题答案理论力学课后习题答案引言:理论力学是物理学的基础课程之一,对于理解和应用物理学的原理和方法具有重要意义。
在学习理论力学的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将针对理论力学课后习题进行解答,帮助读者更好地理解和掌握这门课程。
第一章:牛顿力学1. 一个物体以初速度v0沿直线运动,加速度为a,求物体的位移与时间的关系。
答:根据牛顿第二定律F=ma,可得物体所受合力F=ma=mv/t,其中m为物体的质量,v为物体的速度,t为时间。
由此可得物体的位移s=vt+1/2at^2。
2. 一个质点在重力作用下自由下落,求它在t时刻的速度和位移。
答:在重力作用下,质点的加速度为g,即a=g。
根据牛顿第二定律F=ma,可得质点所受合力F=mg。
根据牛顿第一定律,质点的速度随时间的变化率为v=g*t,位移随时间的变化率为s=1/2gt^2。
第二章:拉格朗日力学1. 一个质点沿半径为R的圆周运动,求它的动能和势能。
答:质点的动能由动能定理可得,即K=1/2mv^2,其中m为质点的质量,v为质点的速度。
质点的势能由引力势能可得,即U=-GmM/R,其中G为引力常数,M为圆周的质量。
2. 一个质点在势能为U(r)的力场中运动,求它的运动方程。
答:根据拉格朗日方程可得,质点的运动方程为d/dt(dL/dv)-dL/dr=0,其中L=T-U,T为质点的动能,U为质点的势能。
第三章:哈密顿力学1. 一个质点在势能为U(x)的力场中运动,求它的哈密顿量和哈密顿运动方程。
答:质点的哈密顿量由哈密顿定理可得,即H=T+U,其中T为质点的动能,U为质点的势能。
质点的哈密顿运动方程为dp/dt=-dH/dx,其中p为质点的动量。
2. 一个质点在势能为U(x)的力场中运动,求它的哈密顿正则方程。
答:质点的哈密顿正则方程为dx/dt=dH/dp,dp/dt=-dH/dx,其中x为质点的位置,p为质点的动量。
结论:通过对理论力学课后习题的解答,我们可以更深入地理解和应用物理学的原理和方法。
理论力学习题及答案1-7.doc

第1章静力分析习题1.是非题(对画√,错画×)1-1.凡在二力作用下的约束称为二力构件。
()1-2.在两个力作用下,使刚体处于平衡的必要条件与充分条件式这两个力等值、反向、共线。
()1-3.力的可传性只适用于一般物体。
()1-4.合力比分力大。
()1-5.凡矢量都可以用平行四边形法则合成。
()1-6.汇交的三个力是平衡力。
()1-7.约束力是与主动力有关的力。
()1-8.作用力与反作用力是平衡力。
()1-9.画受力图时,对一般的物体力的可沿作用现任以的滑动。
()1-10. 受力图中不应出现内力。
()2.填空题(把正确的答案写在横线上)1-11.均质杆在A、B两点分别于矩形光滑槽接触,并在如图所示情况下平衡。
A点的受力方向为,B点的受力方向为。
1-12.AB杆自重不计,在5个已知力作用下处于平衡,则作用于B点的四个力的合力F R的大小F R= ,方向沿。
题1-11图F3R题1-12图3. 简答题1-13.如图所示刚体A、B自重不计,在光滑斜面上接触。
其中分别作用两等值、反向、共线的力F1和F2,问A、B是否平衡?若能平衡斜面是光滑的吗?1-14.如图所示,已知A点作用力F,能否在B点加一力使AB杆平衡?若能平衡A点的力F的方向应如何?1-15.如图所示刚架AC和BC,在C 处用销钉连接,在A、B处分别用铰链支座支承构件形成一个三铰拱。
现将作用在杆BC上的力F沿着其作用线移至刚体AC上。
不计三铰刚架自重。
试问移动后对A、B、C约束反力有没有影响?为什么?1-16.在刚体上的加上任意个的平衡力系,能改变原来力系对刚体的作用吗?但对于变形体而言又是如何?1-17.为什么说二力平衡条件、加减平衡力系原理和力的可传性等只能适用于刚体?1-18.如何区分二力平衡力和作用力与反作用力?1-19.为什么受力图中不画内力?如何理解?1-20.如何判定二力体或者二力杆?(a)(c)(d) (e)(g)(h)题1-21图题1-13图题1-14图题1-15图4.受力分析题1-21.画出下列标注字母物体的受力图,未画重力的各物体其自重不计,所有接触面均为光滑接触。
理论力学1-7章答案

习题7-1图Oυ(a)υυ(b)习题7-3图第7章 点的复合运动7-1 图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A ,与坐在车B 中的观察者看到车A 的相对速度v A /B ,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则v v 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3 图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω=(2)由(1)0ωr xt =代入(2),得)sin(01r xa y ωω=7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω= 2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ= ︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e a a a a +=(图b )4.021.022e =⨯==ωr a m/s 2 346.030cos e a =︒=a a m/s 2(↑)习题7-5图习题7-7图习题7-9图υ(a) (b)(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题7-1图Oυ(a)υυ(b)习题7-3图第7章 点的复合运动7-1 图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A ,与坐在车B 中的观察者看到车A 的相对速度v A /B ,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则v v 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3 图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω=(2)由(1)0ωr xt =代入(2),得)sin(01r xa y ωω=7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω= 2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ= ︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e a a a a +=(图b )4.021.022e =⨯==ωr a m/s 2 346.030cos e a =︒=a a m/s 2(↑)习题7-5图习题7-7图习题7-9图υ(a) (b)(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
由于机器负荷的变化,调速器重球以角速度1ω向外张开。
如ω= 10 rad/s ,1ω= 1.21 rad/s ;球柄长l = 0.5m ;球柄与铅垂轴夹角α= 30°。
试求此时重球的绝对速度。
解:动点:A ,动系:固连于铅垂轴,绝对运动:空间曲线,相对运动:圆图,牵连运动:定轴转动。
r e a v v v +=3)sin (e =+=ωαl e v m/s 605.01r ==ωl v m/s06.32r 2e a =+=v v v m/s 或 i v '-=3e m/sk j k j v '+'='+'=300.0520.0sin cos r r r ααv v )300.0 ,520.0 ,3(a -=v m/s7-9 图示直角曲杆OBC 绕O 轴转动,使套在其上的小环M 沿固定直杆OA 滑动。
已知OB = 0.1m ;OB 与BC 垂直;曲杆的角速度ω= 0.5 rad/s 。
试求当ϕ= 60解:动点:小环M ,动系:OBC ,绝对运动:直线,相对运动:直线,牵连运动:定轴转动。
图(a ):r e v v v +=M1.0cos e =⋅=⋅=ϕωωOB OM v m/s 173.0tan e ==ϕv v M m/s图(b ):C r e a a a a ++=M (1)上式向a C 投影,C e cos cos a a a M +-=ϕϕ又 05.02e =⋅=ωOM a m/s 220.0cos /22e r C =⋅==ϕωωv v a m/s 2代入(1),得 a M = 0.35m/s 2(→)习题7-11图aυeυ(a)aa(b)习题7-13图yAυAυ(a)7-`11 图示偏心凸轮的偏心距OC = e ,轮半径e r 3=。
凸轮以等角速度0ω绕O 轴转动。
设某瞬时OC 与CA 成直角,试求此瞬时从动杆AB 的速度和加速度。
解:1.动点:A (AB 上),动系:轮O ,绝对运动:直线,相对运动:圆周,牵连运动:定轴转动。
2.r e a v v v +=(图a ) 0r 2ωe v =,0e a 33230tan ωe v v =︒=(↑),0a r 3342ωe v v ==3.C τr n r e a a a a a a +++=(图b )向nr a 投影,得C nr e a 30cos 30cos a a a a -+︒=︒︒-+=cos30C n r e a a a a a )23(322r02r 2e v e v e ωω-+=)33423316(322002020ωωωωe e e -+==2092ωe (↓)7-13 A 、B 两船各自以等速v A 和v B 分别沿直线航行,如图所示。
B 船上的观察者记录下两船的距离ρ和角ϕ,试证明:ρϕρϕ2-=,2ϕρ r = 解:证法一:∵v A 、v B 均为常矢量,∴B 作惯性运动。
在B 船上记录下的两船距离ρ和角ϕ为A 船相对B船运动的结果。
以A 为动点,B 为动系,则牵连运动为平移,绝对运动为直线,相对运动:平面曲线。
r e a a a a +=∵ 0a ==A a a ,0a ==B a a ∴ 0r =a由教科书公式(2-35),0)2()(2r =++-=ϕρϕρϕρϕρρe e a∴ ⎪⎩⎪⎨⎧-==ρϕρϕϕρρ 22 证法二:建立图(a )坐标系Bxy ,则ϕρcos =A x ,ϕρϕϕρcos sin+⋅-=A x习题7-15图习题6-1图习题6-3图ϕρsin =A y ,ϕρϕϕρsin cos+⋅=A yϕϕρϕρϕϕρρϕϕρϕϕρϕϕρϕρsin )2(cos )(sin cos sin 2cos 22 +--=---=A xϕϕρρϕϕρϕρϕϕρϕϕρϕϕρϕρsin )(cos )2(cos sin cos 2sin 22-++=+-+=A y0)2()(22222r =++-=+=ϕρϕρϕρρ A A y x a∴ ⎪⎩⎪⎨⎧-==ρϕρϕϕρρ227-15 图示直升飞机以速度H υ= 1.22 m/s 和加速度a H = 2m/s 2向上运动。
与此同时,机身(不是旋翼)绕铅垂轴(z )以等角速度H ω= 0.9 rad/s 转动。
若尾翼相对机身转动的角速度为H B /ω= 180 rad/s ,试求位于尾翼叶片顶端的一点的速度和加速度。
解:j i k v H B H H P v /762.01.6ωω+-=k j i 22.12.13749.5++-=)762.02(762.01.6/2/2j k k j k a H B H H B H H P a ωωωω⨯+--= i k j k 9.2462468994.42---= )2468794.49.246(k j i ---=m/s 2第6章 点的一般运动与刚体的简单运动6-1 试对图示五个瞬时点的运动进行分析。
若运动可能,判断运动性质;若运动不可能,说明原因。
答:(a )减速曲线运动; (b )匀速曲线运动; (c )不可能,因全加速度应指向曲线凹 (d )加速运动;(e )不可能,0≠v 时,0n ≠a ,此时a 应指向凹面,不能只有切向加速度。
6-3 图示点P 沿螺线自外向内运动。
它走过的弧长与时间的一次方成正比,试问该点的速度是越来越快,还是越来越慢?加速度是越来越大,还是越来越小? 解:s = ktconst ===k sv ,匀速运动; 0τ=aρ2n v a =∴n a a = ∵ρ逐渐变小,∴ 加速度a 越来越大。
6-5 已知运动方程如下,试画出轨迹曲线、不同瞬时点的v 、a 图像,说明运动性质。
ωe ωe -υa υ(c)ωe νωe -O υ(b)(b)习题6-7图 yR -R R +O υ (a) 1.⎪⎩⎪⎨⎧-=-=225.1324t t y t t x , 2.⎩⎨⎧==)2cos(2sin 2t y tx 式中,t 以s 计;x 以mm 计。
解:1.由已知得 3x = 4y (1)⎩⎨⎧-=-=t yt x3344 ∴t v 55-= ⎩⎨⎧-=-=34y x∴5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。
2.由已知,得2arccos213arcsin y x = 化简得轨迹方程:2942xy -= (2)轨迹如图(b ),其v 、a 图像从略。
6-7 搅拌机由主动轴O 1同时带动齿轮O 2、O 3转动,搅杆ABC 用销钉A 、B 与O 2、O 3轮相连。
若已知主动轮转速为n = 950 r/min ,AB = O 2O 3,O 2A = O 3B = 250mm ,各轮的齿数Z 1、Z 2、Z 3如图中所示。
试求搅杆端点C 的速度和轨迹。
解:搅杆ABC 作平移,∴ v C = v A ,C 点的轨迹为半径250mm 的圆。
8.39502060π29502112=⨯⨯=⋅=Z Z ωωrad/s95.925.02=⨯=ωA v m/s6-9 图示凸轮顶板机构中,偏心凸轮的半径为R ,偏心距OC = e ,绕轴O 以等角速转动,从而带动顶板A 作平移。
试列写顶板的运动方程,求其速度和加速度,并作三者的曲线图像。
解:(1)顶板A 作平移,其上与轮C 接触点坐标: t e R y sin ω+=(ω为轮O 角速度)t e yv cos ωω== t e y a sin 2ωω-==(2)三者曲线如图(a )、(b )、(c )。
6-11 图示绳的一端连在小车的的点A 上,另一端跨过点B 的小滑车绕在鼓轮C 上,滑车离AC 的高习题6-9图xyωt习题6-13图习题6-15图习题6-11图度为h 。
若小车以速度v 沿水平方向向右运动,试求当θ= 45°时B 、C 之间绳上一点P 的速度、加速度和绳AB 与铅垂线夹角对时间的二阶导数θ各为多少。
解:1.∵P 点速度与AB 长度变化率相同∴2221)(d d 222122vx h x x x h t v P =+⋅=+= (θ= 45°,x = h 时) 2.同样:h v h x x h x x t va P P 2222)(d d 2222==+==(∵0=x,x = h ) 3.h x =θtan ,h x1tan -=θ ∴ 222211x h x h h x x h +=+= θ∴2222222)(2h v x h x hx -=+-= θ(顺)6-13 自行车B 沿近似用抛物线方程y = Cx 2(其中C = 0.01m -1)描述的轨道向下运动。