等比数列说课稿
《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《等比数列的前 n 项和》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析1、教材的地位和作用“等比数列的前 n 项和”是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的应用,而且在数学学科中也具有承前启后的作用。
它既是等差数列前 n 项和公式的拓展与延伸,又为后续学习数列求和的其他方法以及数学归纳法等知识奠定了基础。
2、教材内容本节课主要介绍了等比数列前 n 项和公式的推导方法,以及公式的应用。
通过错位相减法,引导学生推导出等比数列前 n 项和公式,并通过例题和练习让学生掌握公式的运用。
二、学情分析1、知识基础学生已经学习了等差数列的相关知识,掌握了等差数列前 n 项和公式的推导方法,同时也学习了等比数列的定义、通项公式等基础知识,具备了一定的数列运算能力和逻辑推理能力。
2、学习能力高二学生已经具备了一定的自主学习能力和探究能力,但对于较为复杂的数学问题,还需要教师的引导和启发。
3、心理特点学生对数学学习有一定的兴趣,但在面对抽象的数学概念和复杂的运算时,可能会产生畏难情绪。
因此,在教学过程中要注重激发学生的学习兴趣,调动学生的积极性。
三、教学目标1、知识与技能目标(1)理解等比数列前 n 项和公式的推导方法,掌握等比数列前 n项和公式。
(2)能够运用等比数列前 n 项和公式解决简单的问题。
2、过程与方法目标(1)通过公式的推导,培养学生的逻辑推理能力和运算能力。
(2)通过例题和练习,让学生体会从特殊到一般、类比、转化等数学思想方法。
3、情感态度与价值观目标(1)让学生在自主探究、合作交流的过程中,体验数学学习的乐趣,增强学习数学的信心。
(2)通过数学史的介绍,激发学生的爱国热情和对数学的热爱。
四、教学重难点1、教学重点等比数列前 n 项和公式的推导及应用。
2024等比数列说课稿范文

2024等比数列说课稿范文今天我说课的内容是《等比数列》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《等比数列》是人教版小学数学六年级下册第五单元第2课时的内容。
在学生已经学习了数列和等差数列的基础上,引入了等比数列的概念和特点,是数学领域中的重要知识点。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解等比数列的定义和特点,掌握等比数列的通项公式和求和公式。
②能力目标:在等比数列的应用问题中,培养学生分析和解决问题的能力。
③情感目标:培养学生对数学的兴趣,激发学生对数学的好奇心和求知欲望。
二、说教法学法本节课的教法为讲授法和讨论法相结合。
通过讲解等比数列的定义和特点,引导学生思考和发现规律;通过讨论解决应用问题,培养学生的分析和解决问题的能力。
学法为自主学习法和小组合作学习法。
通过课前预习和小组合作讨论,让学生主动探索和发现等比数列的规律和应用。
三、说教学准备在教学过程中,我准备了多媒体课件和一些示例题,以直观呈现教学素材,激发学生的学习兴趣,增加教学容量和效果。
四、说教学过程1、引入新课通过呈现一些数列,引导学生观察和发现规律,进入等比数列的学习。
2、讲解和示范讲解等比数列的定义和特点,引导学生理解等比数列的概念。
通过示范解题,讲解等比数列的通项公式和求和公式。
3、学生合作探究将学生分成小组,给每个小组分发一组等比数列的问题,让他们合作讨论解决。
引导学生思考问题的解决方法和思路。
4、讨论和展示鼓励学生将他们的解题过程和思路展示给整个班级。
让其他学生提出自己的观点和建议,进行讨论和交流。
5、巩固和拓展通过一些练习题巩固学生对等比数列的理解和掌握。
同时,给有能力的学生一些拓展题,挑战他们的思维和解决问题的能力。
6、总结和归纳让学生总结等比数列的特点和应用,进行课堂总结。
对于值得注意的地方,进行强调和概括。
五、板书设计在黑板上将等比数列的定义和特点进行清晰明了地展示。
等比数列的概念说课稿(通用5篇)

等比数列的概念说课稿等比数列的概念说课稿(通用5篇)在教学工作者开展教学活动前,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
写说课稿需要注意哪些格式呢?下面是小编收集整理的等比数列的概念说课稿(通用5篇),希望能够帮助到大家。
等比数列的概念说课稿1今天我说的课题是《等比数列及其通项公式》。
主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。
二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感悟和实践活动的要求”。
下面我就五个方面阐述这节课。
一、教材分析:本节授课内容为等比数列的定义及其通项公式的推导。
1、教材的地位和作用:等比数列是数列的重要组成部分,掌握了它及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。
同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
2、教材的处理:结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。
本节课是第一课时。
根据目前高一学生的状况以及以往的经验,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。
为了激发学生的学习热情,实施趣味教学,我利用一个初中自然学科中的“细胞分裂”的问题以及课本第109页的一个典故引出等比数列的定义及其通项公式。
之后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列及其通项公式的记忆和理解。
由此,我对教材的引入、例题、练习做了适当的补充和修改。
3、教学重点与难点及解决办法:根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义及通项公式。
解决的办法是:归纳类比;叠乘法。
根据学生的实际情况——运用所学的知识分析、解决问题的能力校差,我把这节课的难点定为:等比数列的定义及通项公式的深刻理解。
要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法。
等比数列的性质说课稿

等比数列的性质说课稿一、说教材本文“等比数列的性质”在数学课程中扮演着重要的角色,是数列学习的一个重要环节。
等比数列作为数列的一种特殊形式,不仅在数学理论中具有举足轻重的地位,而且在实际生活和工作中也具有广泛的应用。
本节内容旨在让学生掌握等比数列的基本性质,并能够运用这些性质解决实际问题。
本文主要内容围绕等比数列的定义、通项公式以及性质进行展开。
首先,通过引入等比数列的概念,让学生了解等比数列的基本构成。
接着,推导出等比数列的通项公式,为后续性质的学习打下基础。
最后,着重讲解等比数列的三个重要性质:性质一,任意两项的比值相等;性质二,任意两项的乘积等于其相邻两项的乘积;性质三,等比数列的项可以分为奇数项和偶数项,且这两组项分别构成新的等比数列。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能目标:理解等比数列的定义,掌握等比数列的通项公式,能够运用等比数列的性质解决实际问题。
2. 过程与方法目标:通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观目标:激发学生学习数学的兴趣,提高学生对数学美的鉴赏能力,培养学生严谨、踏实的科学态度。
三、说教学重难点本节课的教学重难点如下:1. 理解等比数列的定义,掌握等比数列的通项公式。
2. 掌握等比数列的性质,并能够运用这些性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
在教授本节课时,教师需要重点关注学生对等比数列性质的理解和应用,以及培养学生的数学思维能力。
同时,针对不同学生的学习情况,采取有针对性的教学方法,确保每个学生都能掌握本节课的知识点。
四、说教法在教学“等比数列的性质”这一课时,我计划采用以下几种教学方法,旨在提高教学效果,激发学生的学习兴趣,并培养学生的独立思考和解决问题的能力。
1. 启发法:- 我将通过一系列引导性问题,逐步启发学生思考等比数列的本质特征,例如:“什么是等比数列?”“等比数列中的每一项与前一项有什么关系?”通过这些问题,引导学生自主探索等比数列的定义和性质。
2024《等比数列》说课稿范文

2024《等比数列》说课稿范文今天我要为大家讲解的内容是《等比数列》。
一、说教材《等比数列》是人教版小学数学六年级下册第五单元的内容,是在学生已经学习了数列、等差数列等相关知识的基础上进行教学的。
等比数列是数与代数领域中的重要知识点,也是进一步理解数列规律和变化的关键。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解等比数列的意义,掌握等比数列的通项公式和求和公式。
②能力目标:能够判断数列是否为等比数列,能够将问题转化为等比数列来求解。
③情感目标:让学生体会数学中的规律和变化,培养学生的探索精神和解决问题的能力。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解等比数列的概念和特点,掌握等比数列的通项公式和求和公式。
难点是:将问题转化为等比数列来求解,理解等比数列的应用。
二、说教法学法在教学过程中,我将采用启发式教学法和探究式学习法,引导学生主动思考和发现问题的解决方法。
学生将通过实际问题的讨论和解答来严禁复制理解等比数列的概念和应用。
三、说教学准备为了更好地呈现教学内容,我将使用多媒体辅助教学,以图像和动画的形式展示等比数列的规律和变化。
此外,我还准备了一些实际问题和练习题,以供学生在课堂上进行讨论和思考。
四、说教学过程1.引入新课通过一个数列问题引起学生的思考,如:1,2,4,8,16,...,请问这个数列有什么规律?然后引导学生理解等比数列的概念和特点。
2.探究等比数列的通项公式和求和公式通过一些实例和练习,让学生发现等比数列的规律,并引导他们总结出等比数列的通项公式和求和公式。
3.应用等比数列解决实际问题给学生一些实际问题,比如:小明每天骑自行车上学,第一天骑了10千米,之后每天都比前一天多骑10%的距离,问小明连续骑了几天后的总距离超过了100千米。
通过将问题建模为等比数列,让学生运用等比数列的知识来解答问题。
《等比数列说课》课件

介绍几个等比数列在实际问题中的应用案例,激发学生对下节课内容的兴趣。
THANKS
感谢观看
通过绘制散点图或折线图 来表示等比数列的变化趋 势。
数学公式表示法
使用通项公式 an=a1*g^(n-1)来表示等 比数列的各项。
03
等比数列的通项公式
பைடு நூலகம்
等比数列通项公式的推导
定义等比数列
等比数列是一种常见的数列,其 中任意两个相邻项的比值都相等
。
推导通项公式
通过观察等比数列的特点,利用递 推关系式,推导出等比数列的通项 公式。
等比数列求和公式的变体
公式的推广
等比数列求和公式可以推 广到其他形式,如无穷等 比数列、各项为负数的等 比数列等。
特殊情况的处理
对于一些特殊情况,如公 比为1或无穷等,需要对等 比数列求和公式进行特殊 处理。
近似计算
对于一些近似计算,可以 使用泰勒展开等方法对等 比数列求和公式进行近似 处理,得到近似结果。
等比数列是一种特殊的数列,其中任 意两个相邻项的比值都相等。
an=a1*g^(n-1),其中an是第n项, a1是首项,g是公比。
等比数列的表示
通常用字母a、g、r等表示等比数列 的项,其中g是公比,表示相邻两项 的比值。
等比数列的性质
公比的性质
公比g是唯一确定的,它决定了 等比数列的特性。当g>1时,数 列是递增的;当0<g<1时,数列 是递减的;当g=1时,数列是常
公式表示
等比数列的通项公式为 a_n = a_1 * q^(n-1),其中 a_n 是第 n 项的值 ,a_1 是首项,q 是公比。
等比数列通项公式的应用
《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“等比数列的前 n 项和”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等比数列的前 n 项和”是高中数学数列这一章节的重要内容。
它不仅是等比数列知识的一个重要应用,也为后续学习数列求和的其他方法以及数学归纳法等知识奠定了基础。
在教材的编排上,通过引导学生从特殊到一般,逐步探究等比数列前 n 项和的公式推导,培养学生的逻辑推理和数学运算能力。
同时,教材中的例题和习题也有助于学生巩固所学知识,提高应用能力。
二、学情分析学生已经学习了等比数列的定义、通项公式等相关知识,具备了一定的数列运算和推理能力。
但对于等比数列前 n 项和公式的推导,可能会存在一定的困难,需要教师引导学生通过类比、归纳等方法进行探究。
此外,学生在数学学习中可能存在思维定式,对于新的数学方法和思路的接受需要一定的时间和过程。
因此,在教学中要注重启发式教学,引导学生积极思考,主动参与到知识的构建过程中。
三、教学目标1、知识与技能目标(1)理解等比数列前 n 项和公式的推导过程。
(2)掌握等比数列前 n 项和公式,并能熟练运用公式解决相关问题。
2、过程与方法目标(1)通过公式的推导,培养学生的逻辑推理和数学运算能力。
(2)让学生经历从特殊到一般、类比、归纳等数学思想方法的运用过程,提高学生的数学思维能力。
3、情感态度与价值观目标(1)通过探究等比数列前 n 项和公式,激发学生的学习兴趣和求知欲。
(2)培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
四、教学重难点1、教学重点等比数列前 n 项和公式的推导及应用。
2、教学难点等比数列前 n 项和公式的推导过程中错位相减法的理解和运用。
五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式、探究式的教学方法。
引导学生通过自主探究、合作交流等方式,逐步推导等比数列前 n 项和公式。
等比数列求和说课稿

等比数列求和说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是等比数列求和。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析等比数列求和是数列这一章节中的重要内容,它不仅是等比数列知识的一个重要应用,也为后续学习数列的综合问题奠定了基础。
在教材中,等比数列求和公式的推导过程蕴含了重要的数学思想方法,如错位相减法,对于培养学生的逻辑思维能力和运算能力具有重要的作用。
本节课的内容在教材中起着承上启下的作用,通过对前面等比数列通项公式的学习,学生已经具备了一定的知识基础和方法储备,为探究等比数列求和公式做好了铺垫。
同时,等比数列求和的知识在实际生活中也有着广泛的应用,如金融领域中的利息计算、工程中的增长问题等,能够让学生感受到数学与生活的紧密联系,提高学生学习数学的兴趣和积极性。
二、学情分析在知识储备方面,学生已经学习了等差数列的相关知识,掌握了数列的基本概念和通项公式的求解方法,对数列的研究有了一定的经验。
同时,学生也学习了等比数列的定义、通项公式等基础知识,为本节课的学习打下了良好的基础。
在能力水平方面,高二的学生已经具备了一定的观察、分析、归纳和推理能力,但对于较为复杂的数学问题,还需要进一步的引导和启发。
在学习态度方面,学生对数学有一定的兴趣,但在学习过程中可能会遇到困难,容易产生畏难情绪,需要教师给予及时的鼓励和帮助。
三、教学目标基于以上对教材和学情的分析,我确定了以下教学目标:1、知识与技能目标(1)掌握等比数列求和公式及其推导方法。
(2)能够运用等比数列求和公式解决相关的数学问题。
2、过程与方法目标(1)通过对等比数列求和公式的推导,培养学生的逻辑思维能力和运算能力。
(2)让学生经历从特殊到一般、类比、归纳等数学思想方法的运用过程,提高学生的数学素养。
3、情感态度与价值观目标(1)通过等比数列求和公式的探究,激发学生的学习兴趣和求知欲,培养学生勇于探索、敢于创新的精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列说课稿等比数列说课稿1一、大纲与教材等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。
第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作用决定的。
1、数列有着广泛的实际应用。
例如产品的规格设计、储蓄、分期付款的有关计算等。
2、数列有着承前启后的作用。
数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。
3、数列是培养提高学生思维能力的好题材。
学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。
本节课既是本章的重点,同时也是教材的重点。
等比数列前n项和前面承接了数列的定义、等差数列的知识内容,又是后面学习数列求和、数列极限的基础。
本节的重点是等比数列前n项和公式及应用,难点是公式的推导。
二、教学目标1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。
2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。
3、思想目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。
三、教学程序设计1、导言:本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?这样引入课题有以下三点好处:(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。
(2)故事内容紧扣本节课教学内容的主题与重点。
(3)有利于知识的迁移,使学生明确知识的现实应用性。
2、讲授新课:本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。
等比数列的前n项和公式的推导是本节课的难点。
依据如下:(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2) 从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3) 从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。
比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。
从而得知求等比数列前n项和……+ 的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:方法二:由等比数列的定义得:运用连比定理,后两种方法可以启发引导学生自行完成。
这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
依据如下:(1)新大纲中有较高层次的要求。
(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。
(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。
突出重点方法:(1)明确重点。
利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。
(2)运用纠错法对公式中学生容易出错的'地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。
再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。
(3)创设条件、充分保证。
设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。
对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。
四、习题训练本节课设置如下两种类型的习题:1.中知三求二的解答题;2.实际应用题.这样设置主要依据:(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。
同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性。
五、策略、方法与手段根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。
案例为浅层次要求,使学生有概括印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。
六、个人见解在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。
研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。
在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。
这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。
等比数列说课稿2一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。
等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。
二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。
在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。
在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。
并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。
三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。
过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。
体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。
情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。
四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。
五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。
六、教学过程为达到本节课的教学目标,我把教学过程分为如下6个阶段:1、创设情境:创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍.假如你是高老庄集团企划部的高参,请你帮八戒决策.这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活.2、探究问题,讲授新课:根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。
提出如何求等比数列前n项和的问题,从而引出课题。
通过回顾等差数列前n 项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。
教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。
得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。
3、例题讲解:我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。
本节课设置如下两种类型的例题:1)例1是公式的直接应用,目的是让学生熟悉公式会合理的'选用公式2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.4.形成性练习:练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。
学生练习时,教师巡查,观察学情,及时从中获取反馈信息。
对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。
通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。
5.课堂小结本节课的小结从以下几个方面进行:(1)等比数列的前n项和公式(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
进一步完成认知目标和素质目标。
6.作业布置针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。